Accelerating the reduction to upper Hessenberg
form through hybrid GPU-based computing

Stanimire Tomov! and Jack Dongarra!-2-3
! University of Tennessee (USA)

2 Qak Ridge National Laboratory (USA)
3 University of Manchester (UK)

May 24, 2009

Abstract. We present a Hessenberg reduction (HR) algorithm for hy-
brid multicore + GPU systems that gets more than 16 x performance im-
provement over the current LAPACK algorithm running just on current
multicores (in double precision arithmetic). This enormous acceleration
is due to proper matching of algorithmic requirements to architectural
strengths of the hybrid components. The reduction itself is an important
linear algebra problem, especially with its relevance to eigenvalue prob-
lems. The results described in this paper are significant because Hessen-
berg reduction has not yet been accelerated on multicore architectures,
and it plays a significant role in solving nonsymmetric eigenvalue prob-
lems. The approach can be applied to the symmetric problem and in
general, to two-sided matrix transformations. The work further moti-
vates and highlights the strengths of hybrid computing: to harness the
strengths of the components of a hybrid architecture to get significant
computational acceleration which otherwise may have been impossible.
Keywords: Hessenberg reduction, eigenvalue problems, two-sided fac-
torizations, dense linear algebra, hybrid computing, GPUs.

1 Introduction

Hardware trends. When processor clock speeds flatlined in 2004, after more
than fifteen years of exponential increases, CPU designs moved to multicores.
There is now widespread recognition that performance improvement on CPU-
based systems in the near future will come from the use of multicore platforms.
Along with multicores, the HPC community also started to use alternative hard-
ware solutions that can overcome the shortcomings of standard multicores on a
number of applications. One important example here is the use of Graphics Pro-
cessing Units (or GPUs) for general purpose HPC. Graphics hardware has sub-
stantially evolved over the years, exponentially outpacing CPUs in performance,
to the point where current GPUs have reached a theoretical peak performance of
1 TFlop/s in single precision, support fully the IEEE double precision arithmetic
standard [20], and have a programming model (e.g. see CUDA [21]) that may
revive the quest for a free lunch [16]. These developments have pushed the use

of GPUs to become pervasive [22, 32, 33]. Currently, major chip manufacturers,
such as Intel, AMD, IBM and NVIDIA, make it more evident that future de-
signs of microprocessors and large HPC systems will be hybrid/heterogeneous
in nature, relying on the integration (in varying proportions) of two major types
of components:

1. Multi/many-cores, where the number of cores will continue to escalate; and
2. Special purpose hardware and accelerators, especially GPUs.

These trends motivate our work because in order to efficiently use the emerging
hybrid hardware, optimal software solutions will themselves have to hybridize,
or in other words, to match algorithmic requirements to architectural strengths
of the hybrid components. Indeed, in this paper we show that although there are
algorithmic bottlenecks that prevent the Hessenberg reduction from efficiently
using a multicore architecture, a hybrid solution that relies on proper task split-
ting and task scheduling over the multicore and GPU components can overcome
these bottlenecks and as a result to yield an enormous performance acceleration.

Hessenberg reduction. The reduction to upper Hessenberg form [15] is an
important linear algebra problem, especially with its relevance to eigenvalue
solvers. In particular, it is the first step in computing the Schur decomposition of
a non-symmetric square matrix, which in turn gives, for example, the solution for
the non-symmetric eigenvalue problem. The operation count for the reduction
of an n x n matrix is approximately 1—30713 which, in addition to not running
efficiently on current architectures, makes the reduction a very desirable target
for acceleration.

The bottleneck. The problem in accelerating HR stems from the fact that
the algorithm is rich in Level 2 BLAS operations, which do not scale on multi-
core architectures and run only at a fraction of the machine’s peak performance.
There are dense linear algebra (DLA) techniques that can replace Level 2 BLAS
operations with Level 3 BLAS. For example, in the so-called one-sided factoriza-
tions like LU, QR, and Cholesky, the application of consecutive Level 2 BLAS
operations that occur in the algorithms can be delayed and accumulated so that
at a later moment the accumulated transformation is applied at once as a Level
3 BLAS (see LAPACK [1]). This approach totally removes Level 2 BLAS from
Cholesky, and reduces its amount to O(n?) in LU, and QR, thus making it
asymptotically insignificant compared to the total O(n?) amount of operations
for these factorizations. The same technique can be applied to HR [18], but in
contrast to the one-sided factorizations, it still leaves about 20% of the total
number of operations as Level 2 BLAS [26]. We note that 20% Level 2 BLAS
may not seem much, but in practice, using a single core of a multicore machine,
these 20% can take about 70% of the total execution time, thus leaving the grim
perspective that multicore use — no matter how many cores would be available
— can ideally reduce only the 30% of the execution time that are spent on Level
3 BLAS.

Current work directions. A subject of current research in the field of DLA is
to design algorithms of minimized communications [4, 2], e.g. through designing
algorithms where ideally all the operations involved are Level 3 BLAS. This is
possible for the one-sided factorizations. Block Cholesky, as mentioned, already
has this property, for QR certain out-of-core versions achieve this [17], and for
LU there are similar to QR out-of-core algorithms [23], randomization techniques
[3,29], etc. These techniques are applied in current efforts for developing efficient
algorithms for multicore architectures [10, 25]. Replacing Level 2 BLAS entirely
with Level 3 BLAS is not possible for HR because the factorization is two-sided -
namely, elementary Level 2 BLAS operations (that have to be accumulated as a
Level 3 BLAS) have to be applied to both sides of the operator. The effect of this
is that the accumulation of say nb Level 2 BLAS operations (where nb is a certain
block size) as a Level 3 BLAS (in a process sometimes called panel factorization),
still requires nb Level 2 BLAS operations. These operations involve the entire
trailing matrix - e.g. for panel of size i x nb the Level 2 BLAS involve matrices
of size i X i vs being restricted to just the ¢ X nb panel for example as in the one
sided factorizations.

The rest of the paper is organized as follows. In Section 2, we give background
information on multicore and GPU-based computing in the area of DLA. Section
3 describes the standard HR algorithm and the proposed hybridization. Next are
performance results (Section 4) and finally conclusions (Section 5).

2 Hybrid GPU-based computing

The development of high performance DLA for new architectures, and in partic-
ular multicores, has been successful in some cases, like the one sided factoriza-
tions, and difficult for others, like some two-sided factorizations. The situation
is similar for GPUs - some algorithms map well, others do not. By combining
these two architectures in a hybrid multicore + GPU system we seek to exploit
the opportunity of developing high performance algorithms, as bottlenecks for
one of the components (of this hybrid system) may not be for the other. Thus,
proper work splitting and scheduling may lead to very efficient algorithms.

Previous work. This opportunity for acceleration has been noticed before in
the context of one sided factorizations. In particular, while developing algorithms
for GPUs, several groups [31,5, 3] observed that panel factorizations are often
faster on the CPU than on the GPU, which led to the development of highly
efficient one sided hybrid factorizations for single CPU core + GPU [11, 30], mul-
tiple GPUs [30, 24], and multicore+GPU systems [29]. M. Fatica [13] developed
hybrid DGEMM and DTRSM for GPU-enhanced clusters, and used them to
accelerate the Linpack benchmark. This approach, mostly based on BLAS level
parallelism, results only in minor or no modifications to the original source code.

Further developments. We found that a key to generalize and further de-
velop the hybrid GPU-based computing approach is the concept of representing

algorithms and their execution flows as Directed Acyclic Graphs (DAGs). In this
approach we split the computation in tasks and dependencies among them, and
represent this information as a DAG, where DAG nodes are the tasks and DAG
edges the dependencies (this was originally introduced in the context of DLA
for just multicore architectures [9]). Figure 1 shows an illustration. The nodes
in red in this case represent the sequential parts of an algorithm (e.g. panel
factorization) and the ones in green the tasks that can be done in parallel (e.g.
the update of the trailing matrix). Proper scheduling can ensure very efficient
execution. This is the case for the one sided factorizations, where we schedule
the execution of the tasks from the critical path on the CPU (that are in general
small, do not have enough parallelism, and therefore could not have been effi-
ciently executed on the GPU) and the rest on the GPU (grouped in large task
for single kernel invocation as shown; highly parallel).

| aPu
_ord
ora

Fig. 1. Algorithms as DAGs for hybrid GPU-based computing

The hybrid approaches mentioned so far have used GPUs for Level 3 BLAS
parts of their computation. We note that the introduction of GPU memory hier-
archies, e.g. in NVIDIA’s CUDA-enabled GPUs [33], provided the opportunity
for an incredible boost of Level 3 BLAS [30, 19], because memory could be reused
rather than having performance relying exclusively on high bandwidth as in ear-
lier GPUs. Indeed, one can see that early attempts to port DLA on GPUs have
failed to demonstrate speedup compared to CPUs [12,14]. Nevertheless, high
bandwidth has always been characteristic for GPUs, and can be instrumental
in overcoming bandwidth bottlenecks in a number of very important DLA algo-
rithms, as shown in this paper. We design a hybrid HR algorithm that exploits
the strength of multicore and GPU architectures, where related to GPUs, we
use their high performance on both Level 3 and Level 2 BLAS.

3 Hessenberg reduction

The HR algorithm reduces a general n x n matrix A to upper Hessenberg form
H by an orthogonal similarity transformation @Q’AQ = H. The matrix @ is
represented as a product of n — 1 elementary reflectors

Q:Hl H2 anlv Hi:I—’Ti ’Ui’l);,

where 7; is scalar, and v; is a vector. In the block HR algorithm a set of nb
reflectors, where nb is referred to as block size, can be grouped together

H1 H2 HnbEI—VTV/,

where V = (v1|...|vnp), and T is nb X nb upper triangular matrix. This trans-
formation, known as compact WY transform [7,27], is the basis for the delayed
update idea mentioned above, where instead of applying nb Level 2 BLAS trans-
formations (that are inefficient on current architectures), one can apply the ac-
cumulated transformation as a Level 3 BLAS. The resulting algorithm is known
as block HR.

3.1 Block Hessenberg reduction

Algorithm 1 gives (in pseudo-code) the block HR, as currently implemented
in LAPACK 3.1 (function DGEHRD; incorporating the latest improvements [26]).
Function DGEHD2 on line 6 uses unblocked code to reduce the rest of the matrix.

Algorithm 1 DGEHRD(n, A)

1: for i =1 to n — nb step nb do
2: DLAHR2(i, A(1:n, i:n), V, T, Y)

3 A(l:n, i4+nb:n)—= Y Vmb+1:, :)T
4: AQ:d, i:idnb) —= Y(1:4, :)V(1:nb, :)T
5. A(Gi+1:n,i+nb:in) = I-VTVT)A@li+1:n,i+nb:n)

6: end for
7: DGEHD2(...)

Algorithm 2 gives the pseudo-code for DLAHR2. DLAHR2 performs the two
sided reduction for the current panel and accumulates matrices V and T for the
compact WY transform (I —V T V1), and matrix Y = A(1 :n, i :n) V T.
We denote by Y; = (y1]...|y;) the first j columns of Y, by T; the submatrix
T(1:4,1:j),and by V; = (v1]...|v;) the first j columns of V. Householder(j, z)
returns a vector v and a scalar 7 = v7v/2 where

v(1:5) =0, v(@G+1) =1 v(G+2:)=a(2:)/(x()+ sign(z(1))||z[l2).

The latest improvement [26] is that in LAPACK 3.0 line 8 was distributed in
the for loop above as a sequence of Level 2 BLAS operations.

Algorithm 2 DLAHR2(:, A,V,T,Y)
1: for j =1 to nbdo

2 A(i+1l:in, j)—= Yj1 Ali+j—1, 1:5—1)

30 A(li+1:n, j) = I-Vier TF, ViEL) AGG+1:n, 5)
4: [vj, ;] = Householder(j, A(i+j+1:mn, j))

5. yj=Al+1:n, j+1:n)v;

6: Ti(1:j-1,5) = -7 T Visavs T;(G.0) =7
7: end for

8 Y(1:i, 1:nb)=A(1:4, i:n) VT

3.2 On designing the hybrid algorithm
The following steps helped in designing the hybrid HR algorithm:

Locate the performance bottlenecks of the block HR;

Study the execution and data flow of the block HR;

Split the algorithm into a collection of tasks and dependencies among them;
Schedule the task execution over the components of the hybrid system;
Implement the design on high level: hybridizing LAPACK code with BLAS-
based tasks on the multicore and CUBLAS-based tasks on the GPU.

Uk =

Performance bottlenecks. For large applications, related to item 1 from the
list, we recommend using tools like TAU [28] to help in locating performance
bottlenecks. TAU can generate execution profiles and traces that can be ana-
lyzed with ParaProf [6], Jumpshot [35], and Kojak [34]. Profiles (of execution
time or PAPI [8] counters) on runs using various numbers of cores of a mul-
ticore processor can be compared using ParaProf to easily see which functions
scale, what is the performance for various parts of the code, what percent of
the execution time is spent in the various functions, etc. In our case, using a
dual socket quad-core Intel Xeon at 2.33 GHz, this analysis shows that line 5
of Algorithm 2 (colored in red) runs at about 70% of the total time, does not
scale with multicore use, and has only 20% of the total amount of flops. We
note that the computation at line 5 is the accumulation of the matrix Y and is
obviously the major bottleneck of the block HR algorithm. These findings are
also illustrated on Figure 2.

Task splitting. Studying the execution and data flow (item 2) is important in
order to properly split the computation into tasks and dependencies (item 3).
It is important here to study the memory footprint of the routines — what data
is accessed and what data is modified — in order to accomplish item 3, and in
particular to identify the algorithms’ critical path, and decouple from it as much
work as possible (tasks off of the critical path that in general would be trivial
to parallelize). We identified that it is good to split every iteration of Algorithm
1 into three main tasks. Namely, these are tasks that we denote by P;, M;, and
G, and associate them with the updates of 3 corresponding matrices. We denote

m O Level 3 BLAS update

[80% flops; ~30% of the run time]

m m Level 2 BLAS update
[20% flops; ~70% of the run time]

By =Av.
A . [JLine 5 Jof }{lgorithm 2]

Fig. 2. Current computational bottleneck: the Level 2 BLAS y; = Ajv;

for convenience each of these matrices by the name of the task updating it, i.e.
correspondingly P;, M;, and G;. The splitting is illustrated on Figure 3, Left
and described as follows:

— The panel factorization task P; (20% of the flops; line 2 of Algorithm 1)
updating the submatrix in red, and accumulating the matrices V;, T; and Yj;
— Task G; (60% of the flops) updating the submatrix in yellow

Gi=(I-V;; V') Gi (I =V; T; Vi(nb+1: ,)7
— Task M; (20% of the flops) updating the submatrix in blue

M;=M; (I-V; T; V).

i= 0 1 2 m Task scheduling:
B Multicore+GPU (20%)
O GPU (60%)
B Multicore (20%)
Gy
G, G,
80%..
critical
path

Fig. 3. Main tasks and their scheduling

We note that splitting line 3 of Algorithm 1 and merging it into tasks G; and M;
is motivated by the memory footprint analysis. Indeed, using this splitting one

can see that task M; gets independent of G; and falls off the critical path of the
algorithm (see Figure 3, Right). This is important for the next step: scheduling
the tasks’ execution over the components of the hybrid system. Note that the
critical path is still 80% of the total amount of flops.

Scheduling. The scheduling is given also on Figure 3, Right. The tasks on the
critical path must be done as fast as possible — and are scheduled in a hybrid
fashion on both the Multicore and GPU. The memory footprint of task P;, with
'P’ standing for panel, is both P; and G; but G; is accessed only for the time
consuming computation of y; = A;v; (see Figure 2). Therefore, the part of
P; that is constrained to the panel (not rich in parallelism, with flow control
statements) is scheduled on the multicore, and the time consuming y; = A;v;
(highly parallel but requiring high bandwidth) is scheduled on the GPU. G;,
with ’G’ standing for GPU, is scheduled on the GPU. This is Level 3 BLAS
update and can be done very efficiently on the GPU. Moreover, note that G;_1
contains the matrix A; needed for task P;, so for the computation of A;v; we
have to only send v; to the GPU and the resulting y; back from the GPU to
the multicore. The scheduling so far heavily uses the GPU, so in order to make
the critical path execution faster and at the same time to make a better use
of the multicore, task M;, with M’ standing for multicore, is scheduled on the
multicore.

Hybrid code development. Finally, item 5 is a general recommendation that
we advocate. This general approach makes the transition from LAPACK al-
gorithms easier, algorithms more readable, and abstracts the resulting hybrid
algorithms from the specifics of the GPU and its link to the multicore. Note
that one does not need to know about GPUs or even CUDA in order to develop
these algorithms, but can still design hybrid algorithms that use the available
GPUs and get very high performance. The approach assumes that basic kernels
(line CUBLAS) would be available from a third party, which is a mild assump-
tion based on the current high pace of GPU kernels development in the scientific
community.

3.3 Hybrid Hessenberg reduction

Algorithm 3 gives in pseudo-code the hybrid HR algorithm. Prefix ’d’, standing
for device, before a matrix denotes that the matrix resides on the GPU memory.
The algorithm name is prefixed by MAGMA, standing for Matriz Algebra for
GPU and Multicore Architectures, and denoting a project* on the development of
a dense linear algebra library similar to LAPACK but for heterogeneous/hybrid
architectures, starting with current Multicore+GPU systems [2].

Algorithm 4 gives the pseudo-code for MAGMA _DLAHR2.

Figure 4 illustrates the communications between the multicore and GPU for
inner/outer iteration j/i.

% see http://icl.cs.utk.edu/magma/

Algorithm 3 MAGMA _DGEHRD(n, A)

: Send matrix A from the CPU to matrix dA on the GPU
: for i =1 to n — nb step nb do
MAGMA_DLAHR2(:, V, T, dP;, dV, dT, dY)
Send dG;—1(1 : mb, :) to the multicore (asynchronously)
Schedule G; on the GPU (asynchronously; using dV, dT, and dY')
Schedule M; on the multicore (asynchronously; using V' and T)
end for
: MAGMA_DGEHD2(...)

RPN

Algorithm 4 MAGMA _DLAHR2(¢, V, T, dP;, dV, dT, dY)
1: Send dP; from the GPU to P on the multicore
2: for j =1 to nb do

33 P(:,j)—-=Y;1Tj1 P(i—-1,1:5-1)
£ P, j) = (I=V,ia T VL) P2,)
5. [vj, ;] = Householder(j, P(j+1: , 7))

6: Send v; from the multicore to dv; on the GPU
70 dy; = dA(i+1:n, j+1:n) du;

8 Ti(1:j-1,7) = —7 Tiav; T;0,5) =7
9: Send dy; from the GPU back to y; on the CPU
10: end for

11: Send T from the multicore to dT" on the GPU

C P U Work G p U dWork
0
dY qv
N
.|Copy Nto CP! Aj
.| Copy y,to CP!
T I |

2. Copy v to GPU

Fig. 4. CPU/GPU communications for inner/outer iteration j/i.

3.4 Differences with LAPACK

Our user interface is exactly as LAPACK’s DGEHRD. The user gives and re-
ceives the factored matrix in the same format. The result is the same up to
round-off errors related to a slightly different order of applying certain compu-
tations. In particular, LAPACK’s matrix-matrix multiplications involving V are
split into 2 multiplications: a DTRMM with the lower triangular sub-matrix
V(1 :nb, 1: nb) and a DGEMM with the rest of V. As nb is usually small,
multiplications on the GPU with triangular nb x nb matrices is slow. Therefore,

10

we keep zeroes in the upper triangular part of V(1 : nb, 1 : nb) and perform
multiplications with V' using just one kernel call. For the same reason, multipli-
cations with T" are performed as DGEMMs. In LAPACK, matrix Y = AV T
is accumulated during the panel factorization. We accumulate A V' during the
panel factorization and T is applied at once as a DGEMM during the matrix up-
date part of the algorithm. Our work space is twice larger than LAPACK’s work
space on both the multicore and the GPU. This means we need work space of
size 2 X n x nb. On the multicore the additional space is used to enable processing
tasks P and M in parallel (as each of them needs n x nb work space). On the
GPU the additional space is used to separately store V' from the matrix so that
we can put zeroes only once in its upper triangular part, and use V' as mentioned
above. These modifications, in addition to providing higher performance, make
also the code very readable, and shorter than LAPACK’s.

4 Performance Results

The performance results that we provide in this section use NVIDIA’s GeForce
GTX 280 GPU and its multicore host, a dual socket quad-core Intel Xeon running
at 2.33 GHz. On the multicore we use LAPACK and BLAS from MKL 10.0 and
on the GPU CUBLAS 2.1, unless otherwise noted.

Performance. Figure 5 shows the performance of 2 hybrid HR algorithms, and
the block HR on single core and multicore. The basic hybrid HR is for 1 core +

et g pher bound
50 - o = Multicore + GPU

40 0 ‘O'Hybrid (basic)
0 35 o e
a g o ¥ Multicore
o =1 Core
T8
[¢]

GPU : GeForce GTX 280
(240 Cores @ 1.30 GHz)

Multicore : Intel Xeon

S (2x4 Cores @ 2.33 GHz)

1 2 3 4 5 6 T 8

Matrix size x 1,000

Fig. 5. Performance (in double precision) for the hybrid HR.

GPU, and uses CUBLAS 2.1. The Multicore4+GPU hybrid algorithm is the one
described in the paper plus various kernels’ optimizations, described as follows.
The result shows that we achieve an enormous 16x speedup compared to the
current block HR running on multicore. We see that the basic implementation

11

brings most of the acceleration which is due to the use of hybrid architecture and
the proper algorithmic design — splitting the computation into tasks, and their
scheduling so that we match algorithmic requirements to architectural strengths
of the hybrid components. We note that the performance achieved is half the
performance of one-sided factorizations based (entirely) on Level 3 BLAS, e.g.
the hybrid LU [29] runs on the same platform at up to 100 GFlop/s.

Performance upper bound We get asymptotically within 90% of the “up-
per bound” performance, as shown on Figure 5. Here upper bound denotes the
performance of the critical path of our algorithm when we do not count synchro-
nization and data transfer times, i.e. this is the performance of tasks P; and G;
(without counting M;) just based on the performance of the BLAS used.

Optimizations We optimized the GPU matrix-vector product as it is criti-
cal for the performance. Figure 6 compares cublasDgemv, MAGMA _DGEMYV,
and MKL DGEMV. We also give some implementation details at the bottom
of the figure. The theoretically optimal implementation would have a perfor-

Achieved = 100 GB/s - MAGMA DGEMV

== cublasDgemv

25

20 = PLASMA_DGEMV
¥ MKL DGEMV

GFlop/s

o)
W
ted

Bandwidth:
Theoretical : 141 GB/s
Achievable : 115 GB/s

3x
Optimality:
L Saturates bus
7

Overlaps comp. & comm.

0
1 2 3 4 5 6 7 8

Matrix size x 1,000

2 64 threads @ 1 thread / row
2 Blocking of size 64 @ Cashing 64 elements of x in shared memory

Fig. 6. Developing optimal GPU matrix-vector product.

mance of about 35 GFlop/s (the theoretical maximum bandwidth of 141 GB/s
over 4). This would assume 100% bus utilization and 100% overlap of the com-
putation with the communication needed. We achieve 25 GFlop/s. Shown is
also the performance of a similar to the GPU algorithm but just for multicores
(PLASMA_DGEMYV) that uses 4 threads to achieve about 80% performance im-
provement over MKL’s DGEMYV. We can get close to optimal performance with
a single thread for matrices stored in row-major format.

12

Using the optimized DGEMV gave up to 42% (achieved for matrices around
2000 x 2000). Using multicores vs single core gave a speedup of up to 16%
(achieved for matrices in the range of n = 2000 to 3000).

We use block size nb = 32. Testing with larger nb gives slower performance re-
sults. For nb = 32 we used MAGMA_DGEMM kernels that outperform CUBLAS
2.1 by 10 GFlop/s on average. These kernels are based on the auto-tuning ap-
proach described in [19].

We also optimized the multicore implementation of tasks M;. Our original
implementation used MKL’s parallel BLAS to get an average performance of
about 17 GFlop/s for matrix of size 8 000 (the averages for P; and G; are
correspondingly 23 GFlop/s and 64 GFlop/s), and about 10 GFlop/s towards
the end of the computation. We changed this to a 1-D block row partitioning
of M; and assigned the update for single block of rows to a single core. This
is a trivial splitting and was easy to code using OpenMP. The performance
improved to an average of 30 GFlop/s and up to 45 GFlop/s towards the end
of the computation. High performance towards the end of the computation is
important (especially for large matrices) because this is when M; becomes larger
and larger compared to P; and G;. Using the optimized code on a matrix of size
8,000, the execution of tasks M; is totally overlapped with the execution of P;
and G; for the first 97% of the computation, and becomes dominant in the last
3% of the computation. In our case this was not a bottleneck because of the
high performance that we achieve at the end. Another solution is if the GPU is
scheduled to do part of M; near the end of the computation.

5 Conclusions

We presented a hybrid HR algorithm that gets 16 x performance improvement
over the latest LAPACK 3.1 algorithm running just on current multicores (in
double precision arithmetic). This result is significant because the Hessenberg
reduction has not been accelerated on multicore architectures, and it plays a
significant role in solving nonsymmetric eigenvalue problems. Moreover, our ap-
proach shows a way of accelerating a large and important class of DLA algo-
rithms, namely the two-sided factorizations.

The approach taken also makes a point that is of general interest to hybrid
computing: the complexity of development could be kept low if one works on a
high level, but at the same time it is still possible to get significant acceleration by
properly splitting the computation into tasks (as implemented in already existing
high performance libraries) and properly scheduling them in order to match
algorithmic requirements to architectural strengths of the hybrid components.

Acknowledgments

This work is supported by Microsoft, the U.S. National Science Foundation, and
the U.S. Department of Energy. We thank NVIDIA and NVIDIA’s Professor
Partnership Program for their hardware donations. We thank Julien Langou

13

(UC, Denver) and Hatem Ltaief (UT, Knoxville) for their valuable suggestions
and discussions on the topic.

References

1.

10.

11.

12.

13.

14.

15.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK user’s
guide, STAM, 1999, Third edition.

. M. Baboulin, J. Demmel, J. Dongarra, S. Tomov, and V. Volkov, Enhancing the

performance of dense linear algebra solvers on GPUs [in the MAGMA project],
Poster at supercomputing 08, November 18, 2009.

M. Baboulin, J. Dongarra, and S. Tomov, Some issues in dense linear algebra for
multicore and special purpose architectures, Tech. report, LAPACK Working Note
200, May 2008.

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, Minimizing communication in
linear algebra, Tech. report, LAPACK Working Note 218, May 2009.

S. Barrachina, M. Castillo, F.D. Igual, R. Mayo, and E.S. Quintana-Orti, Solving
dense linear systems on graphics processors, Technical Report ICC 02-02-2008,
Universidad Jaime I, February, 2008.

R. Bell, A. Malony, and S. Shende, ParaProf: A portable, extensible, and scalable
tool for parallel performance profile analysis, Euro-Par, 2003, pp. 17-26.

C. Bischof and C. Van Loan, The WY representation for products of Householder
matrices, STAM J. Sci. Stat. Comp. 8 (1987), no. 1, S2-S13, Parallel processing for
scientific computing (Norfolk, Va., 1985). MR, 88f:65070

S. Browne, C. Deane, G. Ho, and P. Mucci, PAPI: A portable interface to hardware
performance counters, (June 1999).

A. Buttari, J. Dongarra, J. Kurzak, J. Langou, and S. Tomov, The impact of
multicore on math software, In PARA 2006, Umea Sweden, 2006.

A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, A class of parallel tiled linear
algebra algorithms for multicore architectures, Technical Report UT-CS-07-600,
University of Tennessee, 2007, LAPACK Working Note 191.

J. Dongarra, S. Moore, G. Peterson, S. Tomov, J. Allred, V. Na-
toli, and D. Richie, FEzploring new architectures in accelerating CFD for
Air Force applications, Proc. of HPCMP UGCO08 (July 14-17, 2008),
http://www.cs.utk.edu/ tomov /ugc2008_final.pdf.

K. Fatahalian, J. Sugerman, and P. Hanrahan, Understanding the efficiency of
GPU algorithms for matriz-matriz multiplication, HWWS ’04: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware (New
York, NY, USA), ACM, 2004, pp. 133-137.

M. Fatica, Accelerating Linpack with CUDA on heterogenous clusters, GPGPU-2:
Proceedings of 2nd Workshop on General Purpose Processing on Graphics Pro-
cessing Units (New York, NY, USA), ACM, 2009, pp. 46-51.

N. Galoppo, N. Govindaraju, M. Henson, and D. Manocha, LU-GPU: Efficient
algorithms for solving dense linear systems on graphics hardware, SC ’05: Proceed-
ings of the 2005 ACM/IEEE conference on Supercomputing (Washington, DC,
USA), IEEE Computer Society, 2005, p. 3.

G. H. Golub and C. F. Van Loan, Matriz computations, second ed., Baltimore,
MD, USA, 1989.

14

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.
34.

35.

W. Gruener, Larrabee, CUDA and the quest for the free lunch,
http://www.tgdaily.com/content/view/38750/113/, 08/2008, TGDaily.

B. Gunter and R. van de Geijn, Parallel out-of-core computation and updating of
the QR factorization, ACM Trans. Math. Softw. 31 (2005), no. 1, 60-78.

S. Hammarling, D. Sorensen, and J. Dongarra, Block reduction of matrices to con-
densed forms for eigenvalue computations, J. Comput. Appl. Math 27 (1987), 215—
227.

Y. Li, J. Dongarra, and S. Tomov, A note on auto-tuning GEMM for GPUs., Tech.
report, LAPACK Working Note 212, January 2009.

NVIDIA, Nvidia Tesla doubles the performance for CUDA developers, Computer
Graphics World (06/30,/2008).

NVIDIA, NVIDIA CUDA Programming Guide, 6/07/2008, Version 2.0.

J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. Lefohn, and T. Pur-
cell, A survey of general-purpose computation on graphics hardware, Computer
Graphics Forum 26 (2007), no. 1, 80-113.

E. Quintana-Orti and R. van de Geijn, Updating an LU factorization with pivoting,
ACM Trans. Math. Softw. 35 (2008), no. 2, 1-16.

G. Quintana-Orti, F.Igual, E.Quintana-Orti, and R. van de Geijn, Solving dense
linear systems on platforms with multiple hardware accelerators, PPoPP ’09: Pro-
ceedings of the 14th ACM SIGPLAN symposium on Principles and practice of
parallel programming (New York, NY, USA), ACM, 2009, pp. 121-130.

G. Quintana-Orti, E. S. Quintana-Orti, E. Chan, F. G. Van Zee, and R. van de
Geijn, Programming algorithms-by-blocks for matrixz computations on multithreaded
architectures, Technical Report TR-08-04, University of Texas at Austin, 2008,
FLAME Working Note 29.

G. Quintana-Orti and R. van de Geijn, Improving the performance of reduction to
Hessenberg form, ACM Trans. Math. Softw. 32 (2006), no. 2, 180-194.

R. Schreiber and C. Van Loan, A storage-efficient WY representation for products
of Householder transformations, STAM J. Sci. Stat. Comp. 10 (1989), no. 1, 53-57.
MR 90b:65076

S. Shende and A. Malony, The TAU parallel performance system, Int. J. High
Perform. Comput. Appl. 20 (2006), no. 2, 287-311.

S. Tomov, J. Dongarra, and M. Baboulin, Towards dense linear algebra for hybrid
GPU accelerated manycore systems., Tech. report, LAPACK Working Note 210,
October 2008.

V. Volkov and J. Demmel, LU, QR and Cholesky factorizations using vector capa-
bilities of GPUs, Tech. Report UCB/EECS-2008-49, EECS Department, University
of California, Berkeley, May 2008.

V. Volkov and J. W. Demmel, Using GPUs to accelerate linear al-
gebra routines, Poster at PAR lab winter retreat, January 9, 2008,
http://www.eecs.berkeley.edu/ volkov/volkov08-parlab.pdf.

General-purpose computation using graphics hardware, http://www.gpgpu.org.
NVIDIA CUDA ZONE, http://www.nvidia.com/object/cuda_home.html.

F. Wolf and B. Mohr, Kojak - a tool set for automatic performance analysis of
parallel applications, Proc. of Euro-Par (Klagenfurt, Austria), Lecture Notes in
CS, vol. 2790, Springer, August 2003, pp. 1301-1304.

O. Zaki, E. Lusk, W. Gropp, and D. Swider, Toward scalable performance visual-
ization with Jumpshot, HPC Applications 13 (1999), no. 2, 277-288.

