Numerical Linear Algebra on Emerging Architectures: the
PLASMA and MAGMA Projects

Emmanuel Agullo, Jim Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julien
Langou, Hatem Ltaief, Piotr Luszczek, Stanimire Tomov?!
Department of Electrical Engineering and Computer Science, Uiiy@fsSTennessee, USA

E-mail: eagullo,dongarra,hadri,kurzak,ltaief,luszczek, tomov@eecs.utk.edu
E-mail: demmel@cs.berkeley.edu

E-mail: julien.langou@ucdenver.edu

Abstract. The emergence and continuing use of multi-core architectures angicggpocessing units require
changes in the existing software and sometimes even a redesign of thésheth algorithms in order to
take advantage of now prevailing parallelism. Parallel Linear Algebr&&alable Multi-core Architectures
(PLASMA) and Matrix Algebra on GPU and Multics Architectures (MAGMArgawo projects that aims to
achieve high performance and portability across a wide range of muétiarghitectures and hybrid systems
respectively. We present in this document a comparative study oBRIAs performance against established
linear algebra packages and some preliminary results of MAGMA onidhytulti-core and GPU systems.

1 [Introduction

Recent activities of major chip manufacturers, such as Intel, AMD, IBMNYIDIA, make it more evident
than ever that future designs of microprocessors and large HPC sysi#trhe heterogeneous in nature,
relying on the integration of two major types of components. On the first hanttj/many-cores CPU
technology have been recently developed and the number of cores wilhwe to escalate because of
the desire to pack more and more components on a chip while avoiding the paleinstruction level
parallelism wall, and the memory wall [1]. And on the other hand specialqzerhardware and accelerators,
especially Graphics Processing Units (GPUs) are in commodity productionhae outpaced standard
CPUs in floating point performance in recent years, and have becoeasgsf not easier to program than
multi-core CPUs.

To address the critical and highly disruptive situation that is facing the ladgabra and high performance
computing (HPC) community due to the introduction of multi-core architecturesGids, we have
developed two projects called Parallel Linear Algebra Software for Molte-@rchitectures (PLASMA) [2,
3] and Matrix Algebra on GPU and Multi-core Architectures (MAGMA). PENA is a redesign
of LAPACK [4] and ScaLAPACK [5] for shared memory computers based multi-core processor
architectures. To achieve high performance on this type of archite®UASMA relies on tile algorithms,
which provide fine granularity parallelism. The MAGMA project aims to develogense linear algebra
library similar to LAPACK but for heterogeneous/hybrid architecturesrytia with current “Multi-
core+GPU” systems.

The document is organized as follows. Section 2 gives an overview &$MIA and its performance

1 Research reported here was partially supported by the National S€ienndation and Microsoft Research.



against established linear algebra packages such as LAPACK, SAglKARs well as equivalent
commercial software offerings (Intel MKL, IBM ESSL and IBM PESSL) two different architectures.
Section 3 presents MAGMA and some preliminary results of the project orichyiulti-core and GPU
systems.

2 PLASMA

To achieve high performance on multi-core architectures, PLASMA refigdeoalgorithms, which provide
fine granularity parallelism. The standard linear algebra algorithms can theepbesented as Directed
Acyclic Graphs (DAG) [6] where nodes represent tasks and e@gessent dependencies among them. Our
programming model enforces asynchronous, out of order schedfliogerations. This concept is used as
the basis for a scalable yet highly efficient software framework for agatpnal linear algebra applications.

In LAPACK, parallelism is obtained though the use of multithreaded Basic Linklgebra
Subprograms (BLAS) [7]. In PLASMA, parallelism is no longer hiddendesthe BLAS but is brought
to the fore to yield much better performance.

PLASMA performance strongly depends on tunable execution paramedeliag off utilization of
different system resources. The outer block size (NB) trades ddilpbization granularity and scheduling
flexibility with single core utilization, while the inner block size (IB) trades off meynlmad with extra-
flops.

We present in this paper a study of the three one sided factorizatiompliaseAPACK: Cholesky,
QR, and LU. Each of the one-sided tile factorizations presents incréasioigiplex challenges to parallel
programming. Cholesky is the easiest. The tile algorithm is represented b@avA relatively little work
required on the critical path. LU and QR factorizations have exactly the dapendency pattern between
the nodes of the DAG. These two factorizations exhibit much more sevieeglsling constraints than the
Cholesky factorization. Moreover the stability of the tile LU factorization isyedtwell understood.

PLASMA is currently scheduled statically with a trade off between load balgrand data reuse.

2.1 Comparison to other libraries

We perform a comparative study of PLASMA against established lineabedgpackages (LAPACK and
ScaLAPACK) as well as equivalent commercial software offeringse(IMKL, IBM ESSL and IBM
PESSL) for Cholesky, LU and QR factorization. We also compare with aap@roach at parallel execution
called TBLAS [8] (Task Based Linear Algebra Subroutines) in the Chglaad QR cases —the TBLAS LU
factorization has not yet been implemented. The experiments were cotdurcteo different multi-core
architectures based on Intel Xeon EMT64 and IBM Power6,

PLASMA, TBLAS, LAPACK and ScaLAPACK are all linked with the optimizednaor BLAS available
on the system provided within Intel MKL 10.1 and IBM ESSL 4.3 on the Intel&a Rower6 architectures,
respectively. The first architecture is a quad-socket quad-cor@inebased on an Intel Xeon EMT64
E7340 processor operating aB2 GHz. Its theoretical peak is equal t&9Gflop/s/ per core or 153
Gflop/s for the whole node (16 cores). The second architecture is ar@lé® composed of 16 dual-core
Power6 processors. Each dual-core Power6 processor runs@b#, leading to a theoretical peak of.&8
Gflop/s per core and 604 Gflop/s per node (32 cores).

2.2 Methodology

Factorizations are performed in double precision. PLASMA is tuned with thegal search method as
described in [9]. TBLAS, ScaLAPACK and PESSL have been tuned witkxhaustive search (because
their search space is smaller). LAPACK, MKL and ESSL have been tupéuebvendor.

Furthermore, to capture the best possible behavior of each librargpeatthe number of executions (up
to 10 times) and we report the highest performance obtained. We do slotlie caches [10] before timing
a factorizatioR. However, the TLB (Translation Lookaside Buffer) is flushed betwigenexecutions: the

2 |t is kernel usage, not problem size, that dictates whether one wishsto the cache [10]. Warm (or partially warm) cache
executions are plausible for dense linear factorizations. For instapaeseslinear solvers, which rely on dense kernels, intend to



140

120 r

100

80

60

40

20

o .
0 2000

600

500

400

300

200

100

loop over the different executions is performed in a script (rather thdninthe executable) and calls several
times the same executable.

ScalLAPACK, PESSL and PLASMA interfaces allow the user to provide diatabuted on the cores. In
our shared-memory multi-core environment, because we do not flushdhes;dhese libraries have thus
the advantage to start the factorization with part of the data distributed oat¢chex This is not negligible.
For instance, a 80008000 double precision matrix can be held distributed on the L3 caches a2 tw&s
of a Power6 node.

2.3 Experimental results

We present in this section results of experiments conducted on a large moicbees (16 cores on Intel64;
32 cores on Power6). Figures 1(a), and 1(d) present the CholBSH@TRF routine) performance of the
different libraries. PLASMA consistently outperforms the other librafi@éwed by TBLAS. These results
illustrate the performance improvement brought by tile algorithms. The higfieilercy of PLASMA
compared to TBLAS is essentially due to a better data reuse. Indeed, PAASSNeduling strategy
maximizes data reuse and thus benefits from a better cache effect thakSTBhose scheduler does not
take into account date reuse. PLASMA is even faster than the paralleMMGieference up to a matrix size

Texdgen

m-seq

ISCALAPACK
L LAPACK -

140 -

120

100

16xdssifb-seq

SCALAPACK

140 -

120

ISCALAPACK 5w

U 16%ds§ssm-seq |

LAPACK -~

LAPACK

100

80

80

60

60

40

40

20

fffffffff

b

20

el

4000

6000
Matrix size

8000

10000 12000

(2) DPOTREF - Intel64 - 16 cores

0
0 2000

4000 6000

Matrix size

8000

10000 12000

(b) DGEQREF - Intel64 - 16 cores

0
0 2000

4000

6000
Matrix size

8000

10000 12000

(c) DGETREF - Intel64 - 16 cores

600

600

(d) DPOTRF - Power6 - 32 cores

(e) DGEQRF - Power6 - 32 cores
Figure 1: Performance comparison on a large number of cores (Gflop/s).

DGEMM e DGEMM e DGEMM e
PLASMA —— PLASMA —— PLASMA ——
TE';gIS """""" 32xdgemm-seq 500 - TE;@E """"" 500 r PEggt """"""
ESSL ESS 32xdssrfb-seq SCALAPACK @
[SCALAPACK 8 400 SCALAPACK - 400 LAPACK --e
LAPACK --e-- — LAPACK --o--
— 300 200 32xdssssm-seq
o S P
R R L —]
""" 200 4 200
"""" 100 100 :
. < . ‘ e _’, ------------------------
0 0 0 =
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Matrix size Matrix size Matrix size

(f) DGETRF - Power6 - 32 cores

N = 2000 on the Intel64 machine when 16 cores are used. This is not cotdrgdimce PLASMA does not
rely on the parallel version of DGEMM. Each PLASMA thread indeed tkesserial dgemm-seq. Better
performance can then be achieved thanks to better scheduling. Fomatge size, the parallel DGEMM
dominates all the other operations. This illustrates the fact that using a fouglegranularity (as in tile
algorithms) is more critical when processing small or moderate size matricesal$b explains the major
improvement brought by PLASMA compared to the other libraries on matricemall and moderate size.
Figures 1(b) and 1(e) illustrate the performance of the QR factorizati@E@RF routine) when all the
available cores are used (16 on Intel64 or 32 on Power6). PLASMAedaims the other libraries and

maximize data reuse between successive calls to dense operations.



TBLAS is also very competitive. These results demonstrate the excelldab#ity of tile algorithms. On
the Intel64 machine, TBLAS actually has a better performance than PLASkENW6 cores are used and
when the matrix size is larger than or equal to 10,000. Indeed, when the esgtriccessed are large, the
critical scheduling problem corresponds to maximizing a steady state thpoughhe main disadvantage
of a static schedule is that cores may be stalling in situations where work istéd@ailehis throughput is
easier to maximize with a dynamic scheduling strategy. Approaches suchL@sST&hich do implement

a dynamic scheduling, are thus likely to achieve a higher performance fiproaghes that implement a
static scheduling (such as PLASMA currently does). All in all, these reaudtsnotivation for a dynamic
scheduling mechanism that would assign priorities according to a tradetefebn data reuse and critical
path progress.

Finally, figures 1(c), and 1(f) show that the LU factorization (DGETRtine) has a performance
behavior similar to the QR factorization and PLASMA again outperforms ther dithraries. However,
the lower efficiency of dssssm-seq compared to dssrfb-seq (dsssspaisorms more extra-flops) induces
a lower performance of the PLASMA LU factorization compared to the PLASOR one. On Intel64,
this leads MKL to be slightly better than PLASMA when the matrix size is larger tmagoal to 10,000
(N >10,000). But, similarly to the QR case, moving towards a hybrid scheduling sheuldve the penalty
due to the static scheduling strategy used in PLASMA which should improveetiermance on large
matrices. Furthermore, we note that an optimized implementation of the dsss&erseiqvill improve the
performance of tile algorithms.

3 MAGMA

The MAGMA research is based on the idea that, to address the complexgfesllef the emerging hybrid
environments, optimal software solutions will themselves have to hybridizabicing the strengths of
different algorithms within a single framework. Building on this idea, we aim tsigfelinear algebra
algorithms and frameworks for hybrid manycore and GPUs systems thanzdobe applications to fully
exploit the power that each of the hybrid components offers.

The problems and the challenges for developers in the new computatiodstdgoe of hybrid processors
are daunting. Critical parts of the software infrastructure are alreadydp a very difficult time keeping up
with the pace of change: In some cases, performance is not scalinghgrasnber of cores grows because
more and more time is spent on slow data movement rather than fast arithmetic.

Preliminary studies on a new class of “heterogeneity-aware” algorithmediited communication” and
“high-parallelism” confirm that this is the case. An example of the new clags®mimunication-optimal
algorithms is the RBT LP LU(NB) algorithm that we developed for Multi-core PUGsystems [11]. This
algorithm aims at solving a nonsymmetric linear system of equations. Figurewssdts performance,
comparing it with the pairwise pivoting (PwP) LU from PLASMA on curretdts-of-the-art multi-core
systems, and the PP LU for 1 Core + 1 GPU. This algorithm underscoo#isesirthange in the design space
that is characteristic for many of the new techniques [12], namely that theewhniques often gain in
speed for the price of relaxed accuracy. Understanding this trddé-sfeedvs accuracy has to be further
theoretically studied as it can lead to very efficient algorithms. For exampde éeperiments with random
matrices show that LP LU(NB+64) is comparable in accuracy to PP LU, &dW(NB) loses only from
1 to 2 digits of accuracy to gain up to 30% in speed compared to PP LU. Anathenple, also related to
reducing communication, is using mixed precision algorithms. Mixed precisiversdor example often
achieve significant speedups on GPUs (e.g. updmd the GTX 280 [12]) compared to double precision
solvers but the speed depends on the condition number of the matrix.

4 Conclusion and per spectives

We have shown the performance improvements brought by tile algorithms tm3bcores — the largest
shared memory multi-core system we could access. We may expect thatebelse generalize somewhat
to other linear algebra algorithms and even any algorithm that can be s@grbg a DAG of fine-grain
tasks.



&8 Cores+1 GPU NB N -7 nb nb
RET LP LU{NB)

==] Core+1 GPU RET
LP LU(NE)

v 71Core+1GPU
PP LU

+ 16 Cores / Tigerton
PwP LU (PLASMA)
#r 8 Cores / Harpertown
PwP LU (PLASMA)

HARDWARE

GPU: GeForce GTX 280
(240 @ 1.29 GH2)
Host : Intel Xeon

Harpertown o
Multicor es: 10 double precision

- Intel Xeon Harpertown

single precision

0+ 0 : ; : ; 1Core + 1GPU 7 Cores
L2 d & g5 8 7 %A1 _‘(ﬁt:&gﬁ%sggn%zn} Lo & g i 8 Panel Trailin Trailing
Matrix size x 1000 (4x 4@ 2.4 GHz) Matrix size x 1000 T g J

- factorization sub-matrix sub-matrix

Figure 2: Performance of a communication-optimal LU for a Multi-careéGPU system in both single (left) and
double (middle) precision arithmetis the PwP LU from PLASMA for multi-cores and the PP LU for 1 Cord +
GPU system. The heterogeneity-aware work splitting usstiasvn on the right (for an 8 cores host).

We are also working on the interpolation of the optimum tuning parameters fricmmitad number of
parallel executions among the range of cores and matrix sizes to the fdf pessibilities. This on-
going auto-tuning work should eventually be incorporated within the PLASId#ware distribution. Our
experiments have also shown the limits of static scheduling for the factorizdtlarge matrices. We are
currently working on the implementation of a dynamic scheduling for PLASMA.

Current work on MAGMA show that architecture trends have moved tdsvheterogeneous (GPU +
CPU) designs of increased parallelism and communication costs, and iofteads have to reflect on
that. MAGMA addresses this with innovative heterogeneity-aware algoritboisiques on extracting

parallelism and reducing communication.

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. HusbakdKeutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W.
Williams, and K. A. Yelick. The landscape of parallel computing reseafclview from Berkeley. Technical Report
UCB/EECS-2006-183, Electrical Engineering and Computer Scienepariment, University of California at Berkeley,
2006.

[2] Buttari A., Langou J., Kurzak J., and Dongarra J. A class oflbel tiled linear algebra algorithms for multicore architectures.
Parallel Computing, 35(1):38-53, 2009.

[3] Buttari A., Dongarra J., Kurzak J., Langou J., LuszczelkaRd Tomov S. The impact of multicore on math softwalPARA
2006, Umea, Sweden, June 2006.

[4] Anderson E., Bai Z., Bischof C., Blackford L. S., Demmel J.,\Dongarra J., Du Croz J., Greenbaum A., Hammarling S.,
McKenney A., and Sorensen LAPACK Users Guide. SIAM, 1992.

[5] Blackford L. S., Choi J., Cleary A., D'Azevedo E., DemmelDhillon I., Dongarra J., Hammarling S., Henry G., Petitet A.,
Stanley K., Walker D., and Whaley R. (GcaLAPACK Users Guide. SIAM, 1997.

[6] Christofides N.Graph Theory: An algorithmic Approach. 1975.

[7] BLAS: Basic linear algebra subprogramsttp://www.netlib.org/blas/.

[8] SongF., YarKhan A., and Dongarra J. Dynamic task schedutintirfear algebra algorithms on distributed-memory multicore
systems. Technical report, UTK CS Technical Report 638, 2009.

[9] E. Agullo, B. Hadri, H. Ltaief, and J. Dongarra. Comparative gtad one-sided factorizations with multip le software
packages on multi-core hardware. Technical report, 2009. Subrtot®g09.

[10] Whaley R. Clint and Castaldo Anthony M. Achieving accurate andesdrsensitive timing for code optimizatioigoftware:
Practice and Experience, 38(15):1621-1642, 2008.

[11] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towasisd linear algebra for hybrid GPU accelerated manycore
systems. Technical Report UT-CS-08-632, University of Terems2008. Parallel Computing (submitted).

[12] M. Baboulin, J. Demmel, J. Dongarra, S. Tomov, and V. VolkBahancing the performance of dense linear algebra solvers on
GPUs [in the MAGMA project]. Poster at Supercomputing 08, NovemBe008. http://www.cs.utk.edu/"tomov/SC08-
poster.pdf.



