Scheduling Cholesky Factorization
on Multicore Architectures

with GPU Accelerators

Although the hardware has dramatically changed in the last few years, nodes of
multicore chips augmented by Graphics Processing Units [GPUs] seem to be a
trend of major importance. Previous approaches for scheduling dense linear
operations on such a complex node led to high performance but at the double
cost of not using the potential of all the cores and producing a static and
non-generic code. We schedule dense linear algebra operations on multicore
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architectures with GPU accelerators thanks to a runtime system capable of
using the full potential of the node and that handles the data coherency.
High-level algorithms - such as the Tile Cholesky Factorization - are
represented as collections of tasks/kernels with a data-driven execution order.
The kernels are taken from the PLASMA and MAGMA libraries and their
execution scheduled through the StarPU runtime.

For k=0..tiles-1 k tiles=5 { s } - Fine granularity
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For m=k+1..tiles-1
A[m][k]¢ TRSM [A[k][k],A[m,k]]
For n=k+1..tiles-1
A[n][n]<- SYRK [A[n,k],A[n,n]]
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For m=n+1..tiles=1

A[m][n]<- GEMM [A[m,k],A[n][k],A[m][n]]

StarPU Runtime System

A Unified Runtime System

Transparent data management for Heterogeneous Architectures
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Cholesky Factoriz
- Standard BLAS
- Wrapper on top of vendor

- New BLAS [for QR and LU]
- Triangular on top of square

Pe rfo rmance Resurts CPU Intel Nehalem X5550 @ 2.67 GHz, 8 cores - sgemm peak 20 GFlop/s per core

3 NVIDA FX5800 GPUs @ 1.30 GHz - sgemm peak 333 GFlop/s per CPU
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@ Asynchronously submit tasks

@ Schedule tasks onto processing units
€ Ensure data availability & coherency
O 0Offload computation

© Notify task termination

- Exploit all resouces
- Hide low-level complexity
- Performance portability

MAGMA GPU BLAS Download at http://icl.cs.utk.edu/magma/
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Principle

- CUDA BLAS

- Possibly hybrid CPU/GPU
- Auto-tuned

Cholesky Factorization

* Optimized SYRK and GEMM

- Special handling for TRSM

- Hybrid Kernels [magma_spotrf]

QR/LU Factorization

- Use of PLASMA CPU kernels

 Needs for new GPU kernels

- Coherency of Hybrid CPU/GPU kernels

On-going Work

Communication-Avoiding QR

* New high-level algorithm

- Needs for new GPU and CPU kernels

PERFORMANCE (Gflop/s)

Distributed Memory

O O PERFORMANCE (Gflop/s)

- Stepl: One StarPU instance per node

- Stepe: Distributed shared memaory
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