Scheduling Cholesky Factorization
on Multicore Architectures

with GPU Accelerators

Although the hardware has dramatically changed in the last few years, nodes of
multicore chips augmented by Graphics Processing Units [GPUs] seem to be a
trend of major importance. Previous approaches for scheduling dense linear
operations on such a complex node led to high performance but at the double
cost of not using the potential of all the cores and producing a static and
non-generic code. We schedule dense linear algebra operations on multicore

Tile Cholesky Factorization

Emmanuel Agullo Rajib Nath

Cédric Augonnet Jean Roman

Jack Dongarra Samuel Thibault

Hatem Ltaief Stanimire Tomov

Raymond Namyst

architectures with GPU accelerators thanks to a runtime system capable of
using the full potential of the node and that handles the data coherency.
High-level algorithms - such as the Tile Cholesky Factorization - are
represented as collections of tasks/kernels with a data-driven execution order.
The kernels are taken from the PLASMA and MAGMA libraries and their
execution scheduled through the StarPU runtime.

For k=0..tiles-1 k tiles=5 { s } - Fine granularity
A[K][k]<- @O (ALKI[K]) A(2:4,2:4) @ - Tile layout
k=2

For m=k+1..tiles-1
A[m][k]¢ TRSM [A[k][k],A[m,k]]
For n=k+1..tiles-1
A[n][n]<- SYRK [A[n,k],A[n,n]]

| C—
=]
TRSM SYRK TRSM

—/

SYRK TRSM SYRK

» Asynchronism
* DAG to schedule

SYRK GEMM SYRK GEMM GEMM SYRK

TRSM

For m=n+1..tiles=1

A[m][n]<- GEMM [A[m,k],A[n][k],A[m][n]]

StarPU Runtime System

A Unified Runtime System

Transparent data management for Heterogeneous Architectures

[HPC Applications

)
)

8 A[Compiling Env. j [HPC Libs.

©

T

ol B High-level data [Execution Model j

cla3 mana t -

Elo gemen -

0o i : :

_g © library [Scheduling Engine j E

wlo P n

§ L [Specific Drivers j

o

ﬁv [OS / Vendor specific interfaces j
cpuﬂ GPUs [SPUs | -

Download at http://icl.cs.utk.edu/plasms

Cholesky Factoriz
- Standard BLAS
- Wrapper on top of vendor

- New BLAS [for QR and LU]
- Triangular on top of square

Pe rfo rmance Resurts CPU Intel Nehalem X5550 @ 2.67 GHz, 8 cores - sgemm peak 20 GFlop/s per core

3 NVIDA FX5800 GPUs @ 1.30 GHz - sgemm peak 333 GFlop/s per CPU

Data Unaware

Data Aware

Data-aware scheduling Scalability

k=2 TRSM
Download at http://runtime.bordeaux.inria.fr/StarPU/
A Unified A Unified
Task Abstraction Execution Model
Codelet Data 2 B Qo
r_@[@Hﬂﬂ'_H : % / Spu fgpuﬁ\
gpu 3 oY !
jspu (AR, Bﬂ) 5 DSM @ @BRAM
TaSk ---------- §..t.5.r..ﬁ.l.j ---------

@ Asynchronously submit tasks

@ Schedule tasks onto processing units
€ Ensure data availability & coherency
O 0Offload computation

© Notify task termination

- Exploit all resouces
- Hide low-level complexity
- Performance portability

MAGMA GPU BLAS Download at http://icl.cs.utk.edu/magma/

B ——

Principle

- CUDA BLAS

- Possibly hybrid CPU/GPU
- Auto-tuned

Cholesky Factorization

* Optimized SYRK and GEMM

- Special handling for TRSM

- Hybrid Kernels [magma_spotrf]

QR/LU Factorization

- Use of PLASMA CPU kernels

 Needs for new GPU kernels

- Coherency of Hybrid CPU/GPU kernels

On-going Work

Communication-Avoiding QR

* New high-level algorithm

- Needs for new GPU and CPU kernels

PERFORMANCE (Gflop/s)

Distributed Memory

O O PERFORMANCE (Gflop/s)

- Stepl: One StarPU instance per node

- Stepe: Distributed shared memaory

5120 10240 15360 20480 25600 30720 35840 40960 46080
MATRIX ORDER

1 1
25600 35840

L

A5
COMPPUTING LABORATORY
e UNIVERSITY of TENNESSEE

%I INRIA

centre de recherche BORDEAUX - SUD-OUEST

Microsoft

46080

SPONSORED BY
&
)
PEPPHER %

Programmability &
Portability

NVIDIA @\ The MathWorks

SEVENTH FRAMEWORK
PROGRAMME

R

