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Outline

Challenges related to GPU and Multicore

The Hybridization Methodology of MAGMA

Auto-tuning: GTX280 and Tesla C1060 

High-level one-sided and two-sided 
factorizations and solvers

Auto-tuning: move to Fermi (Tesla C2050)

Conclusion and future work
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Challenges

Increase in parallelism
Tesla C2050 (Fermi): 448 CUDA cores @1.15 GHz
SP peak is 1075 GFlop/s, DP peak is 515 Gflop/s

Increase in communication
cost [vs computation]
Processor speed improves ~59% / year
memory bandwidth by only 23%

Heterogeneity
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Matrix Algebra on GPU and Multicore Architectures 
(MAGMA)

MAGMA: a new generation linear algebra (LA) libraries to achieve the fastest possible time to an 
accurate solution on hybrid/heterogeneous architectures, starting with current multicore+MultiGPU systems
Homepage: http://icl.cs.utk.edu/magma/

MAGMA & LAPACK

– MAGMA - based on LAPACK and extended for hybrid systems (multi-GPUs + multicore systems); 

– MAGMA - designed to be similar to LAPACK in functionality, data storage and interface, in order to allow 
scientists to effortlessly port  any of their LAPACK-relying software components to take advantage of the 
new architectures

– MAGMA - to leverage years of experience in developing open source LA software packages and systems 
like LAPACK, ScaLAPACK, BLAS, ATLAS as well as the newest LA developments (e.g. communication 
avoiding algorithms) and experiences on homogeneous multicores (e.g. PLASMA)

Support
  -  NSF, Microsoft, NVIDIA  [ now CUDA Center of Excellence at UTK on the development of
                                               Linear Algebra Libraries for CUDA-based Hybrid Architectures ]

MAGMA developers

– University of Tennessee, Knoxville;  University of California, Berkeley;  University of Colorado, Denver

http://icl.cs.utk.edu/magma/
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“delayed update” to organize
successive Level 2 BLAS as
a single Level 3 BLAS

“delayed update” to organize
successive Level 2 BLAS as
a single Level 3 BLAS

Localized (over tiles) elementary
transformations

Localized (over tiles) elementary
transformations

A New Generation of Algorithms

 MAGMA
 Hybrid Algorithms
 (heterogeneity friendly) 

Rely on
 - hybrid scheduler (of DAGs)
 - hybrid kernels 
    (for nested parallelism)
 - existing software infrastructure
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Hybridization methodology 

MAGMA uses HYBRIDIZATION methodology based on
Representing linear algebra algorithms as collections 
of TASKS and DATA DEPENDANCIES among them

Properly SCHEDULING the tasks' execution over the 
multicore and the GPU hardware components

Successfully applied to fundamental
linear algebra algorithms

One and two-sided factorizations and slvers

Iterative linear and eigen-solvers

Faster, cheaper, better ?
High-level

Leveraging prior developments

Exceeding in performance (and sometimes accuracy) homogeneous solutions

Hybrid CPU+GPU algorithms
(small tasks for multicores and large 
      tasks for GPUs)

Hybrid CPU+GPU algorithms
(small tasks for multicores and large 
      tasks for GPUs)
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MAGMA Status

 LU, QR, Cholesky (S, C, D, Z)

 Linear solvers 

In working precision, based on LU, QR, and 
Cholesky

Mixed-precision iterative refinement

 CPU and GPU interfaces

 Two-sided factorizations

Reduction to upper Hessenberg form for the 
general eigenvalue problem

 MAGMA BLAS

Routines critical for MAGMA (GEMM, SYRK, 
TRSM, GEMV, SYMV, etc.)

Bidiagonal two-sided reduction for 
SVD

Tridiagonal two-sided for the 
symmetric eigenvalue problem

Divide & Conquer for the symmetric 
eigenvalue problem

GEMM for FERMI

Cholesky and QR for multiGPUs on 
MAGNUM tiles

Hybrid kernels (building blocks) for tile 
algorithms (e.g., dynamically scheduled)

GMRES and PCG

MAGMA 0.2 Unreleased
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MAGMA Software Stack
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Auto-tuning MAGMA BLAS
(GTX280 and Tesla C1060)

Two components of the auto-tuner:

Code Generator:
produces code variants according to a set of pre-defined, parametrized 
templates and algorithms

also applies certain state of the art optimization techniques

Heuristic Search Engine:
runs the variants produced by the code generator and finds out the best one 
using a feedback loop

uses exhaustive search as the kernels are really important
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xGEMM kernel (1/4)
(GTX280 and Tesla C1060)

'

A thread block computes a block of matrix C

Each thread computes a row of the block 
submatrix of C

Part of matrix B is loaded into shared memory 
and computations are done in terms of axpy

Principle (from Volkov and Demmel)
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xGEMM kernel (2/4) 
(GTX280 and Tesla C1060)

' Parameters:
Blocking size: BlkM, BlkN

Blocking Size in shared memory: BlkK

Thread Block Size: NTX , NTY

A and/or B in shared memory

Amount of allocated shared memory

Precision: single or double

Other optimizations:
Prefetching into registers

...

Parametrization
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dGEMM kernel (3/4) 
(GTX280 and Tesla C1060)

Performance on rectangular matrices (BS=64)
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dGEMM kernel (4/4) 
(GTX280 and Tesla C1060)

Performance on rectangular matrices (BS=128)
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Statically Scheduled One-Sided Factorizations
(LU, QR, and Cholesky)

Hybridization
Panels (Level 2 BLAS) are factored on CPU using LAPACK

Trailing matrix updates (Level 3 BLAS) are done on the GPU using “look-ahead” 

Note

Panels are memory bound but are only O(N2) flops and can be overlapped 
with the O(N3) flops of the updates

In effect, the GPU is used only for the high-performance Level 3 BLAS updates, 
i.e., no low performance Level 2 BLAS is scheduled on the GPU
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Performance of the one-sided 
statically scheduled hybrid factorizations 
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   GPU : NVIDIA GeForce GTX 280  (240 cores @ 1.30GHz)                      GPU BLAS :  CUBLAS 2.2, sgemm peak:  375 GFlop/s
   CPU : Intel Xeon dual socket quad-core (8 cores @2.33 GHz)                 CPU BLAS :  MKL 10.0     , sgemm peak:  128 GFlop/s

1 2 3 4 5 6 7 8 9 10
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Overhead
CPU
CPU+GPU
GPU

T
im

e

G
F

lo
p

/s

                      QR factorization in single precision arithmetic, CPU interface
      Performance of MAGMA vs  MKL                   MAGMA QR time breakdown 

[ for more performance data, see  http://icl.cs.utk.edu/magma ]

Matrix size x 1000 Matrix size x 1000

http://icl.cs.utk.edu/magma
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Linear Solvers
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Solving Ax = b using LU factorization 

Intel(R) Xeon(R)E5410@2.34GHz / 8 Cores + GTX 280 @1.30GHz / 240 Cores
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 Direct solvers
   - Factor and do triangular solves 
      in the same, working precision
 Mixed Precision Iterative Refinement

   - Factor in single (i.e. the bulk of the computation
      in fast arithmetic) and use it as preconditioner
      in simple double precision iteration, e.g. 
      x

i+1
 = x

i
 + (LU

SP
)-1 P (b – A x

i
)

 Direct solvers
   - Factor and do triangular solves 
      in the same, working precision
 Mixed Precision Iterative Refinement

   - Factor in single (i.e. the bulk of the computation
      in fast arithmetic) and use it as preconditioner
      in simple double precision iteration, e.g. 
      x

i+1
 = x

i
 + (LU

SP
)-1 P (b – A x

i
)
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MultiGPU and Multicore

MAGNUM tiles
Tasks are hybrid, GPU BLAS-based, or 
multicore kernels

Using PLASMA with customized extensions to 
reduce communication and w/ hybrid MAGMA 
kernels

● Demonstrated scalability for one-sided 
factorizations

● Highly optimized, used as benchmark to 
compare with dynamic schedulers 
[e.g., performance on 4 C1060 GPUs for 
Cholesky is up to 1200 Gflop/s, for QR is up 
to 830 Gflop/s in SP ]

Using StarPU to schedule hybrid, GPU and
multicore kernels (from PLASMA and MAGMA)
http://runtime.bordeaux.inria.fr/StarPU/
[in collaboration with INRIA Bordeaux Sud Ouest]

Using the DPLASMA scheduler 

Rectangular tiles
Tiles of variable sizes to be used to account for
the heterogeneity of the system

To experiment with “communication-avoiding”
algorithms

PLASMA tile algorithms 

A single GPU kernel processing multiple tile 
tasks in parallel
[vs only one, but magnum tile, at a time]   

Scheduling:

http://runtime.bordeaux.inria.fr/StarPU/
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Scheduling with PLASMA
  Cholesky factorization in SP

HOST: 4x AMD Opteron core @1.8GHz 
GPUs: 4x C1060 (240 cores each @1.44GHz) 
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Scheduling with StarPU
 Statistics for codelet spotrf
         CUDA 0 (Quadro FX 5800) -> 3 / 36 (8.33 %)
         CUDA 1 (Quadro FX 5800) -> 1 / 36 (2.78 %)
         CUDA 2 (Quadro FX 5800) -> 3 / 36 (8.33 %)
         CPU 0 -> 6 / 36 (16.67 %)
         CPU 1 -> 9 / 36 (25.00 %)
         CPU 2 -> 4 / 36 (11.11 %)
         CPU 3 -> 6 / 36 (16.67 %)
         CPU 4 -> 4 / 36 (11.11 %)
 Statistics for codelet ssyrk
         CUDA 0 (Quadro FX 5800) -> 41 / 630 (6.51 %)
         CUDA 1 (Quadro FX 5800) -> 40 / 630 (6.35 %)
         CUDA 2 (Quadro FX 5800) -> 49 / 630 (7.78 %)
         CPU 0 -> 105 / 630 (16.67 %)
         CPU 1 -> 85 / 630 (13.49 %)
         CPU 2 -> 105 / 630 (16.67 %)
         CPU 3 -> 102 / 630 (16.19 %)
         CPU 4 -> 103 / 630 (16.35 %)
 Statistics for codelet strsm
         CUDA 0 (Quadro FX 5800) -> 125 / 630 (19.84 %)
         CUDA 1 (Quadro FX 5800) -> 127 / 630 (20.16 %)
         CUDA 2 (Quadro FX 5800) -> 122 / 630 (19.37 %)
         CPU 0 -> 50 / 630 (7.94 %)
         CPU 1 -> 52 / 630 (8.25 %)
         CPU 2 -> 52 / 630 (8.25 %)
         CPU 3 -> 54 / 630 (8.57 %)
         CPU 4 -> 48 / 630 (7.62 %)
 Statistics for codelet sgemm
         CUDA 0 (Quadro FX 5800) -> 2258 / 7140 (31.62 %)
         CUDA 1 (Quadro FX 5800) -> 2182 / 7140 (30.56 %)
         CUDA 2 (Quadro FX 5800) -> 2261 / 7140 (31.67 %)
         CPU 0 -> 87 / 7140 (1.22 %)
         CPU 1 -> 94 / 7140 (1.32 %)
         CPU 2 -> 85 / 7140 (1.19 %)
         CPU 3 -> 85 / 7140 (1.19 %)
         CPU 4 -> 88 / 7140 (1.23 %)

Performance of Cholesky factorization in SP

SGEMM
  gpu : 333.04 GFlop/s
  cpu :  20.06 GFlop/s
STRSM
  gpu :  59.46 GFlop/s
  cpu :  18.96 GFlop/s
SSYRK
  gpu : 298.74 GFlop/s
  cpu :  19.50 GFlop/s
SPOTRF
  gpu :  57.51 GFlop/s
  cpu :  17.45 GFlop/s
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Scheduling with DPLASMA
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Two-sided matrix factorizations
Used in singular-value and eigen-value problems 

LAPACK-based two-sided factorizations are rich in Level 2 BLAS and 
therefore can not be properly accelerated on multicore CPUs

We developed hybrid algorithms exploring GPUs' high bandwidth
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CPU DGEMV
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GPU:  GTX280  (240 cores   @ 1.30GHz, 141    GB/s)
CPU:  2 x 4 cores Intel Xeon @ 2.33GHz,  10.4 GB/s)

GPU:  GTX280  (240 cores   @ 1.30GHz, 141    GB/s)
CPU:  2 x 4 cores Intel Xeon @ 2.33GHz,  10.4 GB/s)

High-performance CUDA kernels were developed 
for various matrix-vector products
[ e.g., ssymv reaching up to 102 Gflop/s for the
  symmetric eigenvalue problem ]

High-performance CUDA kernels were developed 
for various matrix-vector products
[ e.g., ssymv reaching up to 102 Gflop/s for the
  symmetric eigenvalue problem ]
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Two-sided factorizations
(performance in single precision arithmetic) 
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   GPU : NVIDIA GeForce GTX 280  (240 cores @ 1.30GHz)                      GPU BLAS :  CUBLAS 2.3, dgemm peak:  75 GFlop/s
   CPU : Intel Xeon dual socket quad-core (8 cores @2.33 GHz)                 CPU BLAS :  MKL 10.0     , dgemm peak:  65 GFlop/s
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Auto-tuning: move to FERMI GPU

What has changed regarding MAGMA algorithms?
– MAGMA is coded on high-level, extracting its performance from the 

performance of low-level kernels, i.e.,
everything works for FERMI and nothing has changed on high-level

– We have relied on being able to develop the low-level kernels needed of very 
high-performance
as GPUs become more complex, this has become more difficult

● Shared memory is slower in Fermi
● Register blocking is performed

● Both A and B are brought into shared memory
● Extra parameter: shape of the register blocking, square gave 

good results (see next slides)

– Auto-tuning becomes even more important … and tricker
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xGEMM kernel
(GTX280 and Tesla C1060)

'

A thread block computes a block of matrix C

Each thread computes a row of the block 
submatrix of C

Part of matrix B is loaded into shared memory 
and computations are done in terms of axpy

Principle (reminder)
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blk_M
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B
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M
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blk_K

xGEMM for Fermi (1/2)
(Tesla C2050)
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(Tesla C2050: 448 CUDA cores @ 1.15GHz, theoretical SP peak is 1.03 Tflop/s, DP peak 515 GFlop/s)
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LU on Fermi in DP

FERMI       Tesla C2050: 448 CUDA cores @ 1.15GHz
                  SP/DP peak is 1030 / 515 GFlop/s 

ISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHz
                  SP/DP peak is 1075 / 538 GFlop/s   
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LU, Cholesky, and QR on Fermi in DP
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Conclusion

The performance of high-level routines relies on highly 
optimized low-level kernels

The auto-tuning framework is generic

But needs some adaptation to take into account new 
algorithmic schemes as hardware is evolving fast

Possible need to rewrite the kernels in assembly 
(GEMM, SYRK, TRSM, …)

Auto-tuning at higher level is of importance too (not discussed 
here)

Blocking size of the panel (1 gpu) 

Magnum tile size (multi-gpu)



  

Collaborators / Support

MAGMA Matrix Algebra on GPU
and Multicore Architectures
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