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Abstract—This paper proposes a triangular solve algorithm
with variable block size for graphics processing unit (GPU). By
using diagonal blocks inversion with recursion, this algorithm
works with tunable block size to achieve the best performance.
Various methods are shown on how to make use of existing
profiling tools to successfully measure and analyze performance
of this algorithm. We use some of the most popular CPU and GPU
profiling tools for their advantages and overcome their disadvan-
tages with several new techniques to analyze the performance
and relationship of different components of applications. With
the presented methodologies, insight information is produced
which helps to understand and tune the proposed algorithm and
considerably improve the performance of the solver itself as well
as the application using it.

I. INTRODUCTION

CUDA visual profiler [17] is by far the most popular tool
for GPU code profiling. It allows users to gather information
about kernel execution and memory transfer operations. The
profiler can be used to identify performance bottlenecks or
to quantify the benefit of optimizing a single kernel, but it
lacks the ability to analyze the interaction between different
kernels, and unfortunately this is exactly what is needed to
tune the triangular solver — a code that has several GPU kernels
running together. Our goal is to minimize the total run time
rather than that of each kernel — in some cases, reducing
the run time of a particular kernel can adversely impact the
run time of other kernels, resulting in larger overall execution
time. The algorithm we are proposing consists of three kind
of kernels. Different kernels have different proportion in the
total execution time, and the time distribution varies when
parameters of the algorithm are adjusted. To obtain more
insight of the execution to tune the triangular solver it was
necessary to interface with TAU, a popular CPU profiler tool,
which provides insight into the impact of one kernel on others.

The rest of the paper is organized as the following. Section
II describes the application background of the paper and
introduces the triangular solve algorithm with variable block
size that is to be analyzed and tuned throughout the text.
Section III discusses the disadvantages of low level profiler,
namely the CUDA visual profiler, and section IV shows
the disadvantage of the high level profiling tools with GPU
program. Section V explains how to interface TAU to profile
GPU program and section VI and VII discuss usage of TAU
to optimize the proposed algorithm. Section VIII shows the
experiment result and IX gives a brief of the related work.
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Single step of diagonal element inversion in the block inversion

II. APPLICATION BACKGROUND

A. Theoretical Setting

The triangular solver is a part of general linear equation
solver: given a triangular matrix 7 of dimension n by n (T €
R"*"™) and a right hand side matrix B of dimension n by nrhs
(B € R™"hs)  the solution matrix X is governed by equation

TX =B. (D

If nrhs > 1 then this is a Level 3 BLAS operation [9], [8], [0],
[7]. It has sixteen variants depending on whether T is upper or
lower triangular, has a unit or non-unit diagonal, is multiplied
from left or right in a transposed or non-transposed form.
Very similar analysis can be applied to any of the variants
so for conciseness we only discuss the L-L-N-N variant:
multiplication from left, lower triangular T, non-transpose and
non-unit diagonal. The letters correspond to the first four
parameters to BLAS routine XTRSM (x may be substituted
for ’S” or ’D’ — for single or double precision, respectively).
For clarity we will use L rather than T to represent lower
triangular matrix or submatrix.

B. Block Algorithm for Diagonal Inversion

A standard practice of high performance BLAS operation
is to use a variant of a block algorithm [3], [13]. In our case



we partition the triangular system of equations:
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The algorithm has three main computational components:

1) The inversion of the diagonal blocks of submatrices Ly
and Ly, (the inversion becomes simply a reciprocal of
diagonal elements when block size NB = 1.)

2) Matrix multiplication (GEMM) to produce the solution
to one block of x.

3) GEMM to update the remaining blocks of b.

BLAS uses forward substitution algorithm which is equiv-
alent to NB =1 of algorithm (2), and the performance of
BLAS TRSM suffers from this choice because the inversion
of the diagonal blocks, Ll_]1 and Lz_zl, is on the critical path of
the execution. This means all the diagonal block inversion or
element reciprocal has to be done in a sequential fashion, even
though there is no actual dependencies between them. Also,
since the diagonal blocks inversion is much slower than the
other two parts (the GEMMs), this algorithm is not suitable
for direct use on GPU.

We use a different approach to ensure high performance by
choosing an algorithmic variant with higher level of available
parallelism. The bottleneck of the serialized diagonal block
inversion is removed by spawning a set of thread blocks
that perform all the inversions in parallel as there is no
dependence between each inversion. The time of part 1 of
the TRSM algorithm is essentially reduced to the time to
perform inversion on just one block. Since the diagonal
block inversion also determines the numerical stability for the
whole triangular system solver, a high performance triangular
inversion algorithm with good stability is be preferred. Out of
the two candidates in [10], the following one is chosen:

For X = L~!, problem size n x n, xj; and [;; being the i
elements on the diagonal of X and L, respectively.

for j=n:—1:1
-1
xjj:ljj
X(j+Ten ) =X(j+1:nj+1:n)L(j+1:n,))
X(j+1:n,j)=—x;X(j+1:n,j)
end

3)
This method makes n calls to TRMV (triangular matrix-
vector multiplication), and on a GPU this is implemented
as GEMV (regular matrix-vector multiplication) with zeros
enforced on upper triangular of the matrix to avoid conditional
branches that separate the execution path between upper and
lower triangular parts. It has been proven that the stability
of this method is as good as using forward substitution for
inversion[10] , so it is used for our diagonal block inversion
kernel.
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Figure 1 shows the inversion kernel mid-way through the
execution at step j. A 1D thread block of size NB is used to
invert this matrix. Note that b has a single column of elements.
The green blocks are those involved in this step of operation.
As j decreases, the green lower triangular matrix becomes
larger and eventually it will cover the whole matrix except
for the first column. In other words, at step j, the triangular
matrix used in step j— 1 is still used, which requires matrix
used in step j— 1 to stay in shared memory. As j reaches O (the
first column), the whole matrix would stay in shared memory.
Nowadays, most of GPUs have 16KB shared memory. For
a non-blocking triangular inversion on a GPU, the largest
possible dimension size that is a multiple of 16 (half a warp
of threads on a GPU) is 32. Using the CUDA Profiler, we
determine the total time of inverting a 32 by 32 triangular
block and the time to invert the two 16 by 16 blocks on the
diagonal followed by Triple-Matrix update (TM update) to
finish the block at the bottom left corner. Such an algorithmic
variant is preferable to using algorithm from Equation (3) on
the whole 32 by 32 block.

C. Variable Block Size Algorithm

While the diagonal block inversion algorithm is limited to
at most 32 x 32, inversion of larger blocks can be done in a
recursive manner [ 18] with the inner block size (non-blocking
triangular inversion) being 16.

Figure 2 is an example of how the recursive inversion algo-
rithm works. At step 1, the non-blocking inversion algorithm
is applied to all the diagonal blocks of size 16 x 16, denoted
by red blocks. Then in the following three steps, we applied
GEMM update to the corner blocks in red with two matrix
multiplications that involve three matrices. This is described
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Fig. 3. Illustration of a race condition issue when mixing input and output
parameters for GEMM.
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In each step of TM update, a triangular block that has the
red block X»; to update is called a ‘page’. In figure 2 for
example, step 2 has four pages, and step 4 has one page.
The number of pages is the number of TM updates in a
certain step. On a GPU, all pages in any step are updated
simultaneously because there is no dependency between them.
Volkov’s GEMM algorithm [21] is modified for this purpose.
At each step, two kernels are launched one after another to
do Lp1 « L21L1’11 and Ly « —L;21L21 respectively. These two
kernels are named triple_sgemm_update_64_part1_L, and
triple_sgemm_update_64 part2_L, ‘64’ respresents
the problem size of the current GEMM, which can
vary. And these two kernels update the inversion of
a size twice the number in the routine name. For
example, triple_sgemm_update_64_part1_L, and
triple_sgemm_update_64_part2_L finishes the inversion
of blocks of size 128.

This dual-kernel setup as opposed to fusing two GEMMs
into one kernel is to avoid race condition; because L,; is the
output of the first GEMM and the input of the second GEMM,
a Read-After-Write (RAW) hazard.

D. Implementation Issues

Volkov’s GEMM uses 64x16 block size, of which there are
(M/64) x (N/16) thread block in a 2D grid. When there is
more than one row of thread blocks in the grid, an in-place
hazard exists for GEMM (C = AB+ C) when B is the same
buffer as C. This affects part of the TM update, as well as
CublasSgemm, which is also based on Volkov’s GEMM.
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Fig. 4. Time to perform a copy of a matrix of a given size using multiple
calls to cudaMemcopy and a custom b_copy routine optimized for the task.

Figure 3 illustrates this issue when the grid has two rows
and multiple column blocks of threads performing GEMM. In
such a scenario, one thread block 7(1,4) touches all of the
green section of the data in matrix A and B and writes result
to the green part of C. A thread block 7(2,4) on the second
row and the same column in the grid is about to do the same
thing but only slightly later than 7(1,4). Since B and C are
stored in the same buffer, T(2,4) uses B that has already been
overwritten by T(1,4). Thus, it results in a race condition.
This happens both in our TM update and in the second part
of our triangular solver algorithm, x| = Lfllbl. The solution
for the TM update is to use an intermediate buffer centrally
symmetric to C (L in (4) in the current page) so that B and
C are on longer same in GEMM. The result is copied to Ly
after all thread blocks finish, and L;, is set to O.

The solution for the GEMM that produces the triangular
solve for result x is discussed in Section III.

III. Low-LEVEL PROFILING WITH CUDA PROFILER

Due to the race condition of in-place update when perform-
ing by =L; 'b;, a separate buffer x is created on the GPU so
that this hazard is removed by doing x; = L;lb,-. After x is
filled with the whole solution, the content is transferred to
buffer b.

With the presence of LDB(leading dimension of buffer b),
it is not uncommon for the right hand side to be a block of
a larger matrix. The stride, then, between the starting address
of each column of b is LDB which could be larger than the
length of the column M. Clearly, cudaMemcpy() can only
be used when LDB = M, otherwise the copy has to be done
column by column. The initial implementation of this mem-
ory copy was done with successive calls to cudaMemcpy()
within a for-loop. Even though coalesced access to the GPU
device memory [15] is guaranteed in each step of the loop,
profiling shows the time of this memory access has become
the dominant factor of the whole TRSM.

To best utilize the bandwidth of device-to-device com-
munication and to fully take advantage of the parallelism
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Fig. 5. Sample graphical output from the CUDA Profiler running the
cublasSgemm() routine.

provided by its large amount of cores, we optimize the memory
copy by launching GPU kernels with the 2D grid of N
column of threading blocks. Each thread block has a 512
by 1 configuration. For each column of b, a total number of
[M/512] thread blocks pull the data from their corresponding
column to the same column in b, and all data in x is copied to
b simultaneously. The routine that invokes the memory copy
kernel is called b_copy().

Figure 4 shows the comparison of these two implementa-
tions. The time of memory copy is decreased from the initial
version by a factor of around 1000.

IV. LIMITATIONS OF HIGH-LEVEL PROFILING WITH
CUDA PROFILER

Out of all the three main components of the triangular
solver, cublasSgemm() is a natural candidate for optimiza-
tion: it is an order O(n) operation which makes its run
time grow quickly especially with multiple right hands and
when problem size is large. It is therefore crucial to tune its
performance to maximize overall performance of the triangular
solver.

Internally, cublasSgemm() calls different CUDA kernels
to deal with various calling sequences of GEMM (keep in
mind that GEMM takes 13 parameters as an input). And even
for the same calling sequences cublasSgemm() calls different
kernels depending on the shape of the input matrices. Figure 5
shows a sample output of the Linux CUDA profiler for the
triangular solver run with M=1024 and N=128. The names
in the green rectangle are the actual computational kernels
that are called inside cublasSgemm(); their corresponding
thread block grid shape is shown in the blue rectangle.
Notice that when dealing with a CUBLAS routine such as
cublasSgemmy(), the profiler in its current form has limita-
tions that stand in the way of a more informed performance
analysis. Dealing with multiple kernels in a single run is
one such limitation: cublasSgemm() is used to perform both
x| = Ll_llbl and by = (by — Lp1b;) operations. However, it is
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Fig. 6. Timing of cublasSgemm() with and without the CUDA profiler.
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Fig. 7. Program structure to instrument CUDA kernels with TAU.

not clear which kernels in the green rectangle are called from
which instance of cublasSgemmy().

Another limitation of the CUDA Profiler comes from its use
of hardware performance counters. The fact that counters are
shared between threads, warps, and GPU multiprocessors prac-
tically eliminates the possibility for reliable absolute counter
readings. Instead, the use of relative performance trends is
advised [11].

Finally, to establish the practical usefulness of the pro-
filer for our purposes, we timed one of the most important
CUBLAS routines: cublasSgemm(). Figure 6 shows the
obtained timings in two scenarios: with and without the CUDA
profiler attached. The figure clearly indicates high overhead
associated with running the compiler , and this confirms the
importance of relative rather than absolute profiling mentioned
earlier [11].

extern "C" void

diag_strtri_W(int M, char uplo, char diag, float =*A,
float =d_) {
diag_strtri (M, uplo, diag, A, d_dinvA, 1lda);

cudaThreadSynchronize () ;

}

Fig. 8. An example of a wrapper for routine diagi_strtri().



extern "C" void
diag_strtri_W(int M, char uplo, char diag, float =A,
float xd_dinvA, int lda) {

TAU_PROFILE (

"void diag_strtri_ (int, char, char, float x, float =«,
int) C [{magma_strsm_main.cpp} {27,1}-{31,1}1",

" w_ TAU_USER);

diag_strtri (M, uplo, diag, A, d_dinvA, 1lda);

cudaThreadSynchronize () ;

}

Fig. 9. TAU instrumentation for the wrapped CUDA kernel call.
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Fig. 10. Text output from TAU after running triangular solve routine.

V. INTERFACING CUDA wiTH TAU

TAU (Tuning and Analysis Utilities) [19] Performance
System® is a portable profiling and tracing toolkit for per-
formance analysis of parallel programs written in various
languages such as Fortran, C, C++, Java, and Python. The
versatile array of performance analysis methods available in
TAU compelled us to use it for understanding the behavior of
our CUDA code.

The first issue to overcome is establishing the interface
between the CUDA compiler tool-chain and TAU’s compiling
framework. TAU allows specifying a C++ compiler with
the —c++ option. The list of supported compilers is very
comprehensive and allows for use of products from many
vendors on a wide range of platforms. In contrast, the CUDA
environment is specific to a single vendor that works only
with one brand of GPU accelerator. The current (as of this
writing) release of TAU 2.19.1 does not support NVIDIA’s
CUDA technology.

We are interested in profiling a CUDA routine called
diag_strtri() that performs diagonal block inversion. The
routine contains the standard CUDA syntax: the triple angle
bracket notation of the form <<<...>>>. Such code has
to be compiled by the CUDA compiler called NVCC. As
mentioned above, NVCC is not on the C++ compiler list of
TAU, and NVCC treats files with . cpp extension as standard
C++ file. This means a simple name extension change from
.cu to .cpp will break the compilation of the CUDA code.

To solve this issue, all the non-kernel related routines are
brought out into a separate file, resulting in a program structure
is shown in figure 7. Upper level C++ routines reside in the
C++ file. CUDA kernels stay in the . cu file(s), and routines
like diag_strtri that need to be profiled but have CUDA kernel
syntax will be redirected to a wrapper routine in a C++ macro.
As an alternative to binary instrumentation, all C++ routines
whose source code cannot be accessed, are wrapped. This
facilitates TAU’s automatic instrumentation at the source code

level.
Figure 8 shows how a call to a CUDA kernel is wrapped to
make the CUDA-specific syntax invisible to the TAU’s C++
compiler. Figure 9 shows the instrumentation code inserted
automatically by TAU.
Once TAU is properly set up as described above, the
default GNU compiler is replaced in the Makefile with the
tau_cxx.sh command that produces an instrumented exe-
cutable.
A number of options are provided to view the result of the
execution, for example, the text profiling output for timing
information and Jumpshot [24] for viewing the trace files. The
configuration of these two routines are straightforward [5].
A typical text profiling result is shown in figure 10, and a
tracing image example is presented in figure 11.
For our triangular solver, four routines are profiled:
o The diagonal inverse routine diag_strtri(), labeled
‘diag_strtri’

o The matrix multiplication that updates the solution,
CublasSgemm(), labeled ‘sgemm1’

« The matrix multiplication that update the right-hand side,
CublasSgemm(), labeled ‘sgemm?2’

e The memcopy from temporary buffer to the solution

buffer, b_copy(), labeled *b_copy’

So far we have described a syntactic integration between
TAU and the CUDA environment. A more nuanced interaction
occurs for synchronization in the profiled code fragments.

CUDA’s kernel launch and some CUDA utility routines are
non-blocking. They return immediately and the execution on
CPU continues. This gives CUDA the ability to schedule and
run more than one kernel in parallel and overlap communica-
tion with computation. Attention has to be paid when timing
CUDA kernels and utility routines because some of them, such
as cudaMemcpy() for example, do have a synchronization
call to cudaThreadSynchronize() at the end. Others, such
as CublasSgemm(), do not. Profiling tools require a clear
delineation of the start and end of the routine being analyzed.
Without any further changes to profiling wrappers, returning
from a kernel launch marks the wrong finish time because the
kernel might still be running on the GPU. As an example,
the profiling code is run with and without a call to cud-
aThreadSynchronize(). The results are shown in figure 11.
Without a call to cudaThreadSynchronize() at the end, the
first three kernels seem to take a very short time while the very
last step of the execution, which is b_copy() that copies data
to the result buffer, seems to take a few orders of magnitude
longer. In a homogeneous multicore environment, such a large
difference would clearly indicate an error in the profiling layer
but wide performance variability of an hybrid multicore system
is very likely [23]. This is mostly due to the control logic
constraints of the GPU hardware and how they get magnified
by high levels of parallelism — a detailed explanation of such
variation is beyond the scope of this writing.

As a consequence of lack of synchronization, one might be
led to the wrong conclusion that it is not necessary to tune
the first three kernels because, as evidenced by the traces,
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the performance is dominated by the speed of the device-
to-device memory copy operation. In reality, however, TAU
captures only the time to launch a kernel for the first three
routines. The actual time to run these routines is credited to
b_copy() because it finishes with a call to cudaThreadSyn-
chronize(). The correct time distribution is shown in figure 12:
cudaThreadSynchronize() call was added after invocation of
kernels that don’t synchronize the threads. The figure clearly
shows that cublasSgemm() consumes the most amount of
time.

VI. PROFILING CUDA wWiITH TAU

With all the tools and wrapping correctly set up, the insight
of the TRSM algorithm can be obtained. Figure 13 shows the
Gflop/s performance of STRSM with respect to different block
sizes. The figure indicates that the best choice apparently is at
NB=128. To better understand why this is the case, we turn
to TAU to show the distribution of time among the routines
invoked by the triangular solver. Figure 14 shows the time
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distribution of diag_strtri() and cublasSgemm() and memory
copy.

diag_strtri() has a slow growth of time when NB< 128,
and then the growth rate seems double. cublasSgemm time,
on the other hand, has a quick drop as NB goes from 16 to 32,
then it slowly decreases all the way from NB=16 to NB=512.

The sum of these two has its lowest point at NB = 128,
which backs up the Gflop/s result well. At NB =256 and above
the sum time starts to increase. Even though CublasSgemm
still keeps taking shorter time, the increase in diag_strtri() has
compromised the decreasing trend.

diag_strtri() is the critical factor in this algorithm. If from
NB =128 and above the growth of diag_strtri() time could be
a little bit slower, NB = 256 would have become the lowest
point on the sum time line in 13, which would in turn translate
to an even higher Gflop/s.

We want to find the causes of this exponential growth and
if there is any ingredient in this recipe that can be improved.
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VII. DECOMPOSITIONAL PERFORMANCE ANALYSIS
THROUGH PROFILING

There are several possible reasons for the rapid increase of
run time of diag_strtri():

1) TM update is O(n?)

2) The communication overhead for TM update is O(n?)

triple_sgemm_update_64_part2_L 196.8 208
triple_sgemm_update_above64_partl_L 558.592 567
triple_sgemm_update_above64_part2 L 647.552 658
triple_sgemm_update_above64_partl_L 2059.23  207(
triple_sgemm_update_above64_part2_L 2567.14  257%

triple_sgemm_update_above64 part3_L|279.264 il

sgemmnN 320.704 329

Fig. 15. The relevant portion of the CUDA Profiler output after running
cublasSgemm inside the triangular solver.
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Fig. 16. Comparison of thread launch time and computation time for various
blocking factors.

3) The number of thread blocks in each step of the TM
update increases, challenging the scheduling capability
of CUDA

4) Extra memory copies used to deal with the in-place ma-
trix multiplication issue in TM update when NB > 128

5) Kernel launch overhead increases as NB grows

(1) and (2) are because that GEMM in triangular matrix
inversion is O(n?) complexity [4].

When the number of thread blocks increases, the CUDA
scheduler might not be able to keep up with the increased
workload and the overhead might be an issue. To prove or
disprove this conjecture, we port the code to Fermi (C2050)
which has 448 cores — almost double that of GTX280. Also,
Fermi has a dual-warp scheduler [16]. With more computa-
tional resources and a broader execution channel, the problem
caused by too many thread blocks could be at least suppressed.
Unfortunately, by comparing the output of CUDA profiler on
both GPUs, we see no such effect. The run time of the triple-
matrix update still increases when NB > 256. This disproves
our initial conjecture: CUDA seems to be able to handle large
workload consistently well.

Possibility 4 comes from the observation that the time
of diag_strtri() only starts to increase when NB >= 256,
and this is exactly the case when extra copy is used to
prevent the in-place matrix-matrix multiplication issue in
TM update. The kernel that does the extra copy is named
triple_sgemm_update_above64_part3_L.

Figure 15 is the output of CUDA profiler for a run
with M = 1024,N = 128, NB = 512. NB = 512 is selected
so that we could see the profiling of two consecutive
triple_sgemm_update_above64_part3_L, and they are the
selected two rows in figure 15. The first row belongs to
the TM update that updates an inversion of dimension 256,
and the second is 512. We see times quadruple from 256 to
512 with part 1 and part 2 of TM update, while time of
triple_sgemm_update_above64_part3_L barely doubles.
Clearly this extra copy is not contributing to the exponential
increase issue of diag_strtri().
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Fig. 17. Triangular solver performance on various hardware with different
software implementations When M > N.

Lastly, we empty the TM update kernels, and count just the
kernel launch time with regard to different NB. For each NB,
kernels are called recursively, so we need the accumulated
time of for every NB. Figure 16 shows this result. The kernel
launch time does increases exponentially along with NB. But if
this portion of time is removed, the leftover time (which is the
net time spent in computation and communication, as shown
by the red line in figure 16) still maintains the exponential
increase trend. Also, since the total percentage of the kernel
launch overhead over the total time actually decreases when
NB increases, we conclude that this overhead does contribute
to the time of diag_strtri(), but to a very minimal extent.

In conclusion, by decomposing the issue into several pos-
sible reasons and analyzing them one by one, it appears
that the excessive growth of the time of diag_strtri() as NB
increases is directly related to the complexity of the TM
update, which is O(n?), and other factors only marginally
affect the performance. Therefore, no further optimization for
diag_strtri() would be able to make a significant change in
run time.

VIII. EXPERIMENTAL RESULTS

In a lot of cases cublasStrsm from CUBLAS is slower
than the implementation on multicore CPUs and this forces
TRSM to be done on CPU, which leads to extra memory
copies. In our experiment, we compare the performance of
our tuned TRSM, namely magmablas_strsm() with both
multicore CPU implementation and cublasStrsm. The goal
is to show that with help of CUDA profiler and TAU, our
TRSM has been tuned to the performance where TRSM on
CPU as an alternative is no long necessary.

The experiment environment was as follows:

o CPU: Intel Xeon E5410 (8 cores) @ 2.33GHz

« GPU: NVIDIA GeForce GTX 280 (240 cores) @ 1.3GHz

« BLAS: GotoBLAS2

o CUDA-2.3

And in our implementation we use single precision floating-
point arithmetic [!].
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Fig. 18. Triangular solver performance on various hardware with different
software implementations When M < N.

For solving a system of linear equations of the form Lx = b
with a triangular matrix L, the size of L is M, and the Number
of Right Hand Side (NRHS) is N. We show results for two
different cases:

1) M is large but N is small, as found in LAPACK solver
routines, like SGETRS, SGEQRS, etc.

2) M is small, but N is large, as found in LAPACK
factorization routines, SGETRF, SPOTREF, etc.

Figure 17 shows the result of case 1. The two curves at the
bottom show that cublasStrsm has similar performance to that
of GotoBLAS?2 and even worse if the time of device memory
transferring is considered. By contrast, when using diagonal
block inversion algorithm we see up to 10-fold performance
increase for most of the tests. With the help of TAU and CUDA
visual profiler to tune the multiple block size algorithm, up to
15-fold gain is obtained.

Figure 18 is the result of case 2. M = 128 is a common block
size for some of the factorization routines in our MAGMA
project [2]. Here, cublasStrsm is slower than GotoBLAS2
from the very beginning. Both of our versions have 100%
improvement asymptotically to both cublasStrsm and Goto-
BLAS2. Our tuning for NB=128 gives it another 10% increase.
This improvement is not as good as in case 1 because with
M = 128, the GEMM that produces the solution only gets
to work with small matrix sizes, which based on our profiling
result leads to low performance and also the diagonal inversion
is also performed on small matrices and the improvement
becomes negligible. Also, note that with smaller NRHS, Go-
toBLAS2 is better. In the future overhead to transfer the data
between the GPU and CPU memory will be evaluated, and
the resulting algorithm could automatically switch between
GotoBLAS2 and magmablas_strsm depending on the input
matrices’ shape to achieve the best performance.

In conclusion, the proposed TRSM algorithm with variable
block size has shown good performance and with the help of
CUDA visual profiler and TAU we were able to understand
the roles that different parts of the solver play and accordingly



give further performance improvement.

IX. RELATED WORK

Triangular system solvers are important for both factorizing
system of equation and the subsequent back- and forward-
solves. Unfortunately, the performance of cublasStrsm()
available from NVIDIA in CUBLAS suffers from inefficien-
cies in the context of triangular solver and thus is not suitable
for practical use. Consequently, there have been some efforts
trying to improve the routine’s performance. Explicit matrix
inversion of diagonal submatrices that turns triangular solve
into a matrix-matrix multiplication has been done in the con-
text of developing factorization routines for GPUs [22], [20]:
much better performance has been reported. The recursive
algorithm that we used was proposed for triangular matrix
inversion [18].

CUDA Profiler is used predominantly for measuring and
profiling GPU performance but as we show, this has its short-
comings [! 1] — mostly related to the fact that only low-level
information is available to the user. Higher level information
can be obtained with TAU: since version 2.18.1 it can interface
with the runtime accelerator library from PGI [12]. This allows
to extract performance information associated with kernels
that execute on the GPUs. Also, the development group of
TAU continues work on a special module for CUDA called
TAUcuda [14]. Tt is designed to measure the performance of
GPU computations programmed using CUDA and integrate
this information with application performance data captured
with the TAU Performance System.

NVIDIA released a beta version of the Nexus add-on to
Microsoft Visual Studio for the Windows Platform. This add-
on is designed specifically to support CUDA C, OpenCL, and
DirectCompute applications [16]. It is capable of capturing
performance events and information across both CPU and
GPU, and presenting the information to the developer on a
single timeline. This makes it convenient for developers to
see how their application behaves and performs as a whole
across all hardware subsystems.
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