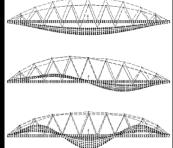


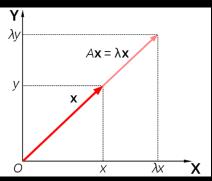
# MAGMA: A Breakthrough in Solvers for Eigenvalue Problems

Stan Tomov w/ J. Dongarra, A. Haidar, I. Yamazaki, T. Dong T. Schulthess (ETH), and R. Solca (ETH) University of Tennessee

## Eigenvalue and eigenvectors

- $A x = \lambda x$
- Quantum mechanics (Schrödinger equation)
- Quantum chemistry
- Principal component analysis (in data mining)
- Vibration analysis (of mechanical structures)
- Image processing, compression, face recognition
- Eigenvalues of graph, e.g., in Google's page rank







- To solve it fast
  [ acceleration analogy car @ 64 mph vs speed of sound ! ]
- T. Dong, J. Dongarra, S. Tomov, I. Yamazaki, T. Schulthess, and R. Solca, Symmetric dense matrix-vector multiplication on multiple GPUs and its application to symmetric dense and sparse eigenvalue problems, ICL Technical report, 03/2012.
- J. Dongarra, A. Haidar, T. Schulthess, R. Solca, and S. Tomov, A novel hybrid CPU- GPU generalized eigensolver for electronic structure calculations based on fine grained memory aware tasks, ICL Technical report, 03/2012.

## The need for eigensolvers

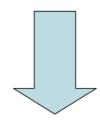
## Electronic structure calculations

Density functional theory

Many-body Schrödinger equation (exact but exponential scaling)

$$\{-\sum_{i} \frac{1}{2} \nabla_{i}^{2} + \sum_{i,j} \frac{1}{|r_{i} - r_{j}|} + \sum_{i,j} \frac{Z}{|r_{i} - R_{j}|}\} \Psi(r_{1},...r_{N}) = E\Psi(r_{1},...r_{N})$$

- · Nuclei fixed, generating external potential (system dependent, non-trivial)
- · N is number of electrons



Kohn Sham Equation: The many body problem of interacting electrons is reduced to non-interacting electrons (single particle problem) with the same electron density and a different effective potential (cubic scaling).

$$\begin{split} &\{-\frac{1}{2}\nabla^{2}+\int\frac{\rho(r')}{|r-r'|}dr'+\sum_{r}\frac{Z}{|r-R_{I}|}+V_{xc}\}\psi_{i}(r)=E_{i}\psi_{i}(r)\\ &\rho(r)=\sum_{i}|\psi_{i}(r)|^{2}=|\Psi(r_{1},...r_{N})|^{2} \end{split}$$

- V<sub>XC</sub> represents effects of the Coulomb interactions between electrons
- ·  $\rho$  is the density (of the original many-body system)

 $V_{xc}$  is not known except special cases  $\Rightarrow$  use approximation, e.g. Local Density Approximation (LDA) where  $V_{xc}$  depends only on  $\rho$ 

A model leading to self-consistent iteration computation with need for HP LA (e.g, diagonalization and orthogonalization)

# The need for eigensolvers

Schodinger equation:

$$H\psi = E\psi$$

- Choose a basis set of wave functions
- Two cases:
  - Orthonormal basis:

$$H x = E x$$
  
in general it needs a big basis set

— Non-orthonormal basis:

$$Hx = ESx$$

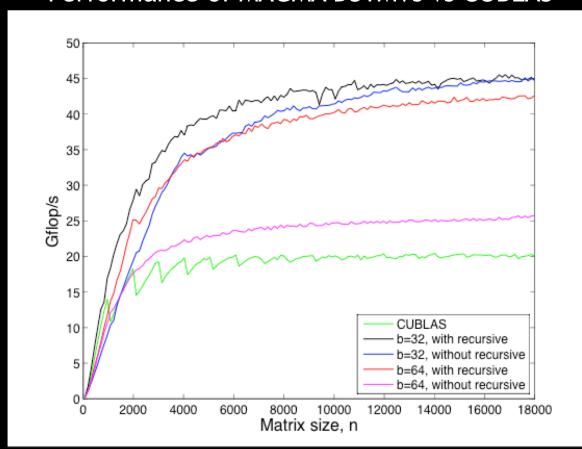
## Hermitian Generalized Eigenproblem

## Solve $A \times = \lambda B \times$

- 1) Compute the Cholesky factorization of B = LL<sup>H</sup>
- 2) Transform the problem to a standard eigenvalue problem  $\tilde{\mathbf{A}} = \mathbf{L}^{-1}\mathbf{A}\mathbf{L}^{-H}$
- 3) Solve Hermitian standard Eigenvalue problem  $\tilde{A} y = \lambda y$ 
  - Tridiagonalize A (50% of its flops are in Level 2 BLAS SYMV)
  - Solve the tridiagonal eigenproblem
  - Transform the eigenvectors of the tridiagonal to eigenvectors of  $ilde{\mathbf{A}}$
- 4) Transform back the eigenvectors  $x = L^{-H} y$

# Fast BLAS development

#### Performance of MAGMA DSYMVs vs CUBLAS



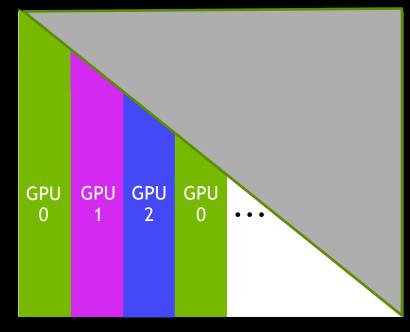
$$y = \alpha A x + \beta y$$

# Parallel SYMV on multiple GPUs

- Multi-GPU algorithms were developed
  - 1-D block-cyclic distribution
  - Every GPU
    - has a copy of x
    - Computes y<sub>i</sub> = α A<sub>i</sub> where A<sub>i</sub> is the local for GPU i matrix
    - Reuses the single GPU kernels
  - The final result

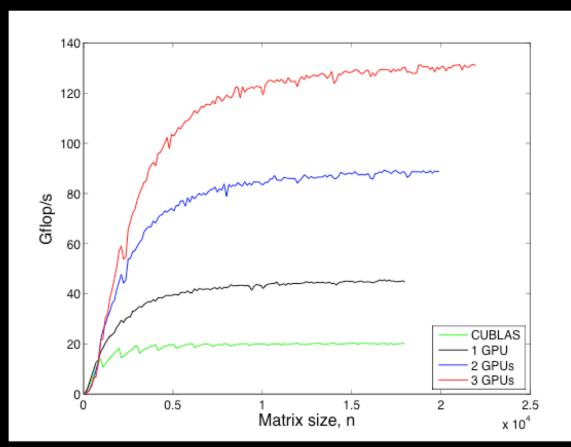
$$y = \sum_{0}^{\#GPUs-1} y_i + \beta y$$

is computed on the CPU



# Parallel SYMV on multiple GPUs

Performance of MAGMA DSYMV on multi M2090 GPUs



## **Hybrid Algorithms**

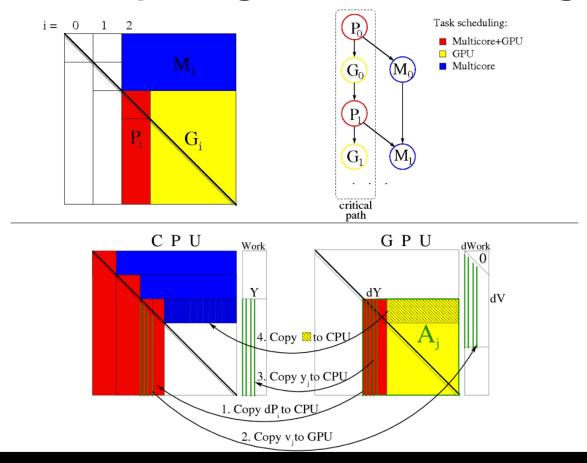
Two-sided factorizations (to bidiagonal, tridiagonal, and upper Hessenberg forms) for eigen- and singular-value problems

#### Hybridization

- Trailing matrix updates (Level 3 BLAS) are done on the GPU (similar to the one-sided factorizations)
- Panels (Level 2 BLAS) are hybrid
  - operations with memory footprint restricted to the panel are done on CPU
  - The time consuming matrix-vector products involving the entire trailing matrix are done on the GPU

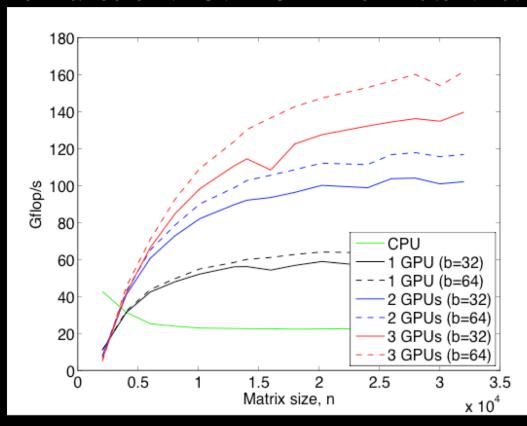
# **Hybrid Two-Sided Factorizations**

## Task Splitting & Task Scheduling



## From fast BLAS to fast tridiagonalization

Performance of MAGMA DSYTRD on multi M2090 GPUs



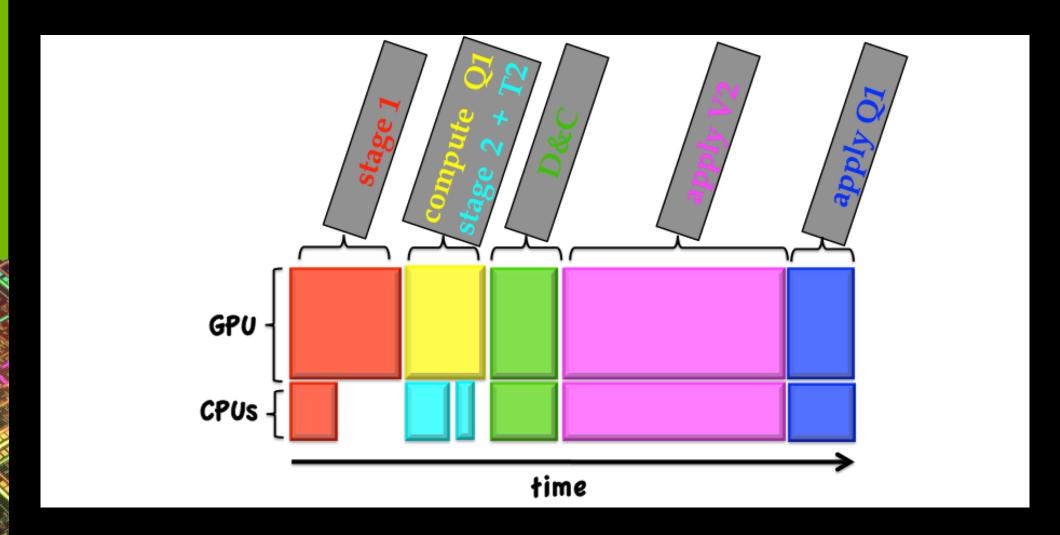
- 50 % of the flops are in SYMV
- Memory bound, i.e. does not scale well on multicore CPUs
- Use the GPU's high memory bandwidth and optimized SYMV
- 8 x speedup over 12 Intel cores (X5660 @2.8 GHz)

## Can we accelerate 4 x more?

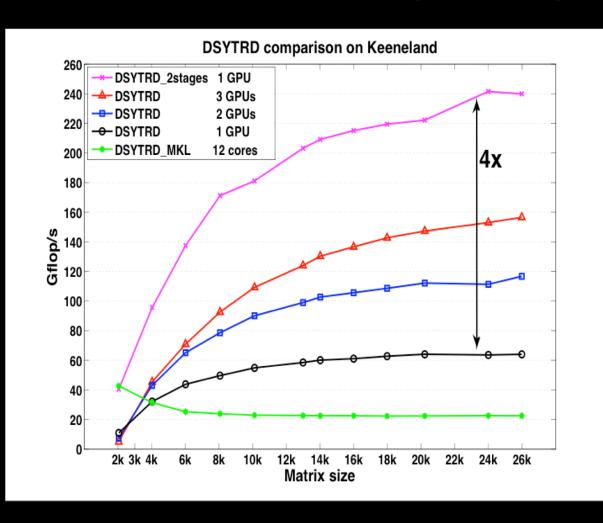
## A two-stages approach

- Increases the computational intensity by introducing
  - 1st stage: reduce the matrix to band
    [ Level 3 BLAS; implemented very efficiently on GPU using "look-ahead" ]
  - 2<sup>nd</sup> stage: reduce the band to tridiagonal
    [ memory bound, but we developed a very efficient "bulge" chasing algorithm with memory aware tasks for multicore to increase the computational intensity ]

# Schematic profiling of the eigensolver



# An additional 4 x speedup!



12 x speedup over 12 Intel cores (X5660 @2.8 GHz)

## Conclusions

- Breakthrough eigensolver using GPUs
- Number of fundamental numerical algorithms for GPUs (BLAS and LAPACK type)
- Released in MAGMA 1.2
- Enormous impact in technical computing and applications
- 12 x speedup w/ a Fermi GPU vs state-of-the-art multicore system (12 Intel Core X5660 @2.8 GHz)
  - From a speed of car to the speed of sound!

## Colloborators / Support

- MAGMA [Matrix Algebra on GPU and Multicore Architectures] team <a href="http://icl.cs.utk.edu/magma/">http://icl.cs.utk.edu/magma/</a>
- PLASMA [Parallel Linear Algebra for Scalable Multicore Architectures] team <a href="http://icl.cs.utk.edu/plasma">http://icl.cs.utk.edu/plasma</a>
- Collaborating partners

University of Tennessee, Knoxville University of California, Berkeley University of Colorado, Denver

INRIA, France KAUST, Saudi Arabia







