A Block-Asynchronous Relaxation Method
for Graphics Processing Units

Hartwig Anzt'®, Stanimire Tomov®, Jack Dongarra®®¢, Vincent Heuveline®

®Karlsruhe Institute of Technology, Germany
b University of Tennessee Knoaville, USA
¢Qak Ridge National Laboratory, USA
4 University of Manchester, UK

Abstract

In this paper, we analyze the potential of asynchronous relaxation methods
on Graphics Processing Units (GPUs). We develop asynchronous iteration
algorithms in CUDA and compare them with parallel implementations of
synchronous relaxation methods on CPU- or GPU-based systems. For a set
of test matrices from UFMC we investigate convergence behavior, perfor-
mance and tolerance to hardware failure. We observe that even for our most
basic asynchronous relaxation scheme, the method can efficiently leverage the
GPUs computing power and is, despite its lower convergence rate compared
to the Gauss-Seidel relaxation, still able to provide solution approximations
of certain accuracy in considerably shorter time than Gauss-Seidel running on
CPUs or GPU-based Jacobi. Hence, it overcompensates for the slower con-
vergence by exploiting the scalability and the good fit of the asynchronous
schemes for the highly parallel GPU architectures. Further, enhancing the
most basic asynchronous approach with hybrid schemes — using multiple iter-
ations within the ”subdomain” handled by a GPU thread block, we manage
to not only recover the loss of global convergence but often accelerate conver-
gence of up to two times, while keeping the execution time of a global iteration
practically the same. The combination with the advantageous properties of
asynchronous iteration methods with respect to hardware failure identifies
the high potential of the asynchronous methods for Exascale computing.

Keywords: Asynchronous Relaxation, Chaotic Iteration, Graphics
Processing Units (GPUs), Jacobi Method

LCorresp. author: Fritz-Erler-Str. 23, 76139 Karlsruhe, hartwig.anzt@kit .edu

Preprint submitted to Special Issue of JPDC on Heterogeneous ComputingOctober 14, 2012

1. Introduction

The latest developments in hardware architectures show an enormous in-
crease in the number of processing units (computing cores) that form one
processor. The reason for this varies from various physical limitations to en-
ergy minimization considerations that are at odds with further scaling up of
processor’ frequencies — the basic acceleration method used in the architec-
ture designs for the last decades [15]. Only by merging multiple processing
units into one processor does further acceleration seem possible. One exam-
ple where this core gathering is carried to extremes is the GPU. The cur-
rent high-end products of the leading GPU providers consist of 2880 CUDA
cores for the NVIDIA Tesla K20 and 3072 stream processors for the North-
ern Islands generation from ATI. While the original purpose of GPUs was
graphics processing, their enormous computing power also suggests the usage
as accelerators when performing parallel computations. Yet, the design and
characteristics of these devices pose some challenges for their efficient use.
In particular, since the synchronization between the individual processing
units usually triggers considerable overhead and limits the performance to
the slowest component, it is attractive to employ algorithms that have a high
degree of parallelism and only very few synchronization points.

On the other hand, numerical algorithms usually require this synchroniza-
tion. For example, when solving linear systems of equations with iterative
methods like the Conjugate Gradient or GMRES, the parallelism is usually
limited to the matrix-vector and the vector-vector operations (with synchro-
nization required between them) [32, 33, 13]. Also, methods that are based
on component-wise updates like Jacobi or Gauss-Seidel have synchronization
between the iteration steps [25, 20]: no component is updated twice (or more)
before all other components are updated. Still, it is possible to ignore these
synchronization steps, which will result in a chaotic or asynchronous itera-
tion process. Despite the fact that the numerical robustness and convergence
properties severely suffer from this chaotic behavior, they may be interesting
for specific applications, since the absence of synchronization points make
them perfect candidates for highly parallel hardware platforms. The result is
a trad-off: while the algorithm’s convergence may suffer from the asynchro-
nism, the performance can benefit from the superior scalability. Additionally,
the asynchronous nature implies a high tolerance to hardware failure, which

is one of the key properties required for numerics suitable for future hard-
ware.

In this paper, we want to analyze the potential of employing asynchronous
iteration methods on GPUs by analyzing convergence behavior and time-to-
solution when iteratively solving linear systems of equations. We split this
paper into the following parts: First, we will shortly recall the mathematical
idea of the Jacobi iteration method and derive the component-wise iteration
algorithm. Then the idea of an asynchronous relaxation method is derived,
and some basic characteristics concerning the convergence demands are sum-
marized. The section about the experiment framework will first provide in-
formation about the linear systems of equations we target. The matrices
affiliated with the systems are taken from the University of Florida matrix
collection. Then we describe the asynchronous iteration method for GPUs
and multi-GPUs that we designed. In the following section we analyze the ex-
periment results with focus on the convergence behavior, iteration times and
fault-tolerance for the different matrix systems. In Section 5 we summarize
the results and provide an outlook about future work in this field.

2. Mathematical Background
2.1. Jacobi Method

The Jacobi method is an iterative algorithm for finding the approximate
solution for a linear system of equations

Az = b, (1)

where A is strictly or irreducibly diagonally dominant. One can rewrite the
system as (L+ D+ U)z = b where D denotes the diagonal entries of A while
L and U denote the lower and upper triangular part of A, respectively. Using
the form Dz = b — (L + U)x, the Jacobi method is derived as an iterative
scheme

"t = D7Nb — (L + U)a¥).

Denoting the error at iteration k+1 by e*™! = 2%*! —* (2* exact solution of
1), this scheme can also be rewritten as e** = (I—D~'A)e*. The matrix B =
I— D7 A is often referred to as iteration matriz. The Jacobi method provides
a sequence of solution approximations with increasing accuracy when the
spectral radius of the iteration matrix B is less than one (i.e., p(B) < 1) [4].

The Jacobi method can also be rewritten in the following component-wise
form:

v = L <bi - Zaij$§> : (2)
Qi —
JF#i

2.2. Asynchronous Iteration Methods

For computing the next iteration in a relaxation method, one usually re-
quires the latest values of all components. For some algorithms, e.g., Gauss-
Seidel [25], even the already computed values of the current iteration step
are used. This requires a strict order of the component updates, limiting
the parallelization potential to a stage, where no component can be updated
several times before all the other components are updated.
The question of interest that we want to investigate is, what happens if this
order is not adhered. Since in this case, the individual components are up-
dated independently and without consideration of the current state of the
other components, the resulting algorithm is called chaotic or asynchronous
iteration method. Back in the 70’s Chazan and Miranker analyzed some ba-
sic properties of these methods, and established convergence theory [12]. In
the last 30 years, these algorithms were subject of dedicated research activ-
ities [19, 18, 36, 37, 3, 9]. However, they did not play a significant role in
high-performance computing, due to the superior convergence properties of
synchronized iteration methods. Today, due to the complexity of heteroge-
neous hardware platforms and the high number of computing units in paral-
lel devices like GPUs, these schemes may become interesting again: they do
not require explicit synchronization between the computing cores, probably
even located in distinct hardware devices. Since the synchronization usually
thwarts the overall performance, it may be true that the asynchronous iter-
ation schemes overcompensate the inferior convergence behavior by superior
scalability.
The chaotic-, or asynchronous-relaxation scheme defined by Chazan and Mi-
ranker [12] can be characterized by two functions, an update function wu(-)
and a shift function s(-,-). For each non-negative integer k, the component
of the solution approximation = that is updated at step k is given by wu(k).
For the update at step k, the component m used in this step is s(k, m) steps
back. All the other components are kept. This can be expressed as:

e b s i = (k)
Z wf if i # u(k).

)

(3)

T

Furthermore, the following conditions can be defined to guarantee the well-
posedness of the algorithm [34]:

1. The update function u(-) takes each of the values ¢ for 1 < i < N
infinitely often.

2. The shift function s(-,-) is bounded by some 5 such that
0 < s(k,i) <5 Vke{l,2..}Vie{l2...n}. For the initial
step, we additionally require s(k,i) < k.

If these conditions are satisfied and p(|B|) < 1 (i.e., the spectral radius of the
iteration matrix, taking the absolute values for its elements, to be smaller
than one), the convergence of the asynchronous method is fulfilled [34].

3. Experiment Framework

3.1. Linear Systems of Equations

In our experiments, we search for the approximate solutions of linear sys-

tem of equations, where the respective matrices are taken from the University
of Florida Matrix Collection?. Due to the convergence properties of the iter-
ative methods considered the experiment matrices must be properly chosen.
While for the Jacobi method a sufficient condition for convergence is clearly
p(B) = p(I — D7'A) < 1 (i.e., the spectral radius of the iteration matrix B
to be smaller than one), the convergence theory for asynchronous iteration
methods is more involved (and is not the subject of this paper). In [34] John
C. Strikwerda has shown, that a sufficient condition for the asynchronous
iteration to converge for all update and shift functions satisfying conditions
(1) and (2) in 2.2 is the condition p(|B|) < 1, where |B| is derived from B
by replacing its elements by their corresponding absolute values.
Due to these considerations, we choose to only analyze symmetric, positive
definite systems, where the Jacobi method converges. The properties of the
test matrices used and their corresponding iteration matrices are summarized
in Table 1. Structure plots can be found in Figure 1.

We furthermore take the number of right-hand sides to be one for all
linear systems.

2UFMC; see http://www.cise.ufl.edu/research/sparse/matrices/

[Matrix name [[Description [#n | #nnz | cond(A) [cond(D~TA) [p(M)

CHEMI7ZTZ statistical problem 2,541 7,361 | 1.3e+03 7.2e403 0.7889
FVl 2D /3D problem 9,604 85,264 | 9.3e+04 12.76 0.8541
FV2 2D /3D problem 9,801 87,025 | 9.5e+04 12.76 0.8541
FV3 2D /3D problem 9,801 87,025 | 3.6e+07 4.4e4-03 0.9993
SIRMT3M1 structural problem 5,489 | 262,411 | 2.2e+06 7.2e+06 2.65
TREFETHEN_2000 combinatorial prob. 2,000 41,906 | 5.1e+04 6.1579 0.8601
TREFETHEN_20000 combinatorial prob. | 20,000 | 554,466 | 5.1e4+04 6.1579 0.8601

Table 1: Dimension and characteristics of the SPD test matrices and their
corresponding iteration matrices.

(a) CHEM97ZTZ (b) FV1, FV2, FV3 (¢) sIRMT3M1 (d) TREFETHEN

Figure 1: Sparsity plots of test matrices.

3.2. Hardware and Software Issues

The experiments were conducted on a heterogeneous GPU-accelerated
multicore system [35] located at the Engineering Mathematics and Com-
puting Lab (EMCL) at the Karlsruhe Institute of Technology, Germany.
The system is equipped with two Intel XEON E5540 @ 2.53GHz and 4
Fermi C2070 (14 Multiprocessors x 32 CUDA cores @1.15GHz, 6 GB mem-
ory [29]). The GPUs are connected to the host through a PCl-ex16. In
the synchronous implementation of Gauss-Seidel on the CPU, 4 cores are
used for the matrix-vector operations that can be parallelized. The Intel
compiler version 11.1.069 [14] is used with optimization flag “~O3”. The
GPU implementations of block-asynchronous iteration and Jacobi are based
on CUDA [28] in version 4.0.17 [30] using a block-size of 448. The kernels
are then launched through different streams. The thread block size, the
number of streams, along with other parameters, were determined through
empirically based tuning.

3.8. An Asynchronous Iteration Method for GPUs

The asynchronous iteration method for GPUs that we propose is split
into two levels. This is due to the design of graphics processing units and
the CUDA programming language.

The linear system of equations is decomposed into blocks of rows, and the
computations for each block is assigned to one thread block on the GPU.
For these thread blocks, an asynchronous iteration method is used, while on
each thread block, a Jacobi-like iteration method is performed. We denote
this algorithm by async-(1).

Further, we extended this basic algorithm to a version where the threads in
a thread block perform multiple Jacobi iterations (e.g., 5) within the block.
During the local iterations the x values used from outside the block are kept
constant (equal to their values at the beginning of the local iterations). After
the local iterations, the updated values are communicated. This approach
was also analyzed in [5] and is inspired by the well known hybrid relaxation
schemes [7, 6], and therefore we denote it as block-asynchronous (see Algo-
rithm 1).

Algorithm 1 Block-Asynchronous Iteration.
for all (J; € {J;...J;}) do {asynchronous outer loop}
read z from global memory
s:=d;+ Yz bijz; (off-block part)
for all (i € J;) do {synchronous Jacobi updates on subdomain}
for (k = 0;k <iter; k + +) do {equal local stopping criterion}
T; =S+ ZjEJl b@jl‘é-ocal
end for
end for
end for

In other words, using domain-decomposition terminology, our blocks would
correspond to subdomains and thus we additionally iterate locally on every
subdomain. We denote this scheme by async-(local _iters), where the index
local _iters indicates the number of Jacobi updates on the subdomains. An-
other motivation for this comes from the hardware side, especially the fact
that the additional iterations almost come for free (as the subdomains are
relatively small and the data needed largely fits into the multiprocessor’s
cache). The obtained algorithm, visualized in Figure 2, can be written as

Block1 § A 1 Air “1151“1 “bm
B|0Ck l g Ay Al,l Air l‘li bli
xr bir

A T b

Figure 2: Visualizing the asynchronous iteration in block description used
for the GPU implementation.

component-wise update of the solution approximation:

1 Ts—1 Tk n
(k1) _ (k—s(k+1,5)) (k) (m—s(k+1,5))
Ll > aie; =D aggry) = Y aigz; ; (4)
7,0 j=1 j=Tg j=Tgp+1
global part local part global part

where Ts and Tg denote the starting and the ending indexes of the ma-
trix/vector part in the thread block. Furthermore, for the local components,
the always antecedent values are used, while for the global part, the values
from the beginning of the iteration are used. The shift function s(k + 1, j)
denotes the iteration shift for the component j - this can be positive or neg-
ative, depending on whether the respective other thread block already has
conducted more or less iterations. Note that this gives a block Gauss-Seidel
flavor to the updates. It should also be mentioned, that the shift function
may not be the same in different thread blocks.

3.4. Block-Asynchronous Iteration on Multi-GPU Systems

Using multiple GPUs, an additional layer of asynchronism is added to the
block-asynchronous iteration method. Now we may split the original system
into blocks that are addressed to the different devices, whereas the local
blocks of rows are again split into even smaller blocks of rows, that are then
assigned to the different thread blocks on the respective GPUs. In between
the GPUs as well as in between the different thread blocks, an asynchronous
iteration method is conducted, while on each thread block, multiple Jacobi-
like iteration steps can be applied (see Figure 3). For this reason, one could
consider the multi-GPU implementation of the block-asynchronous iteration

Block 1 %Al.ll' Air __~I?r1 __b“
GPU 1 siock ! <[4 [an] an EI N
ﬁ: T bir
GPU 2 siockp = A,] ax
A x b

Figure 3: Visualizing the block-asynchronous iteration for multi-GPU imple-
mentation.

also as three-stage iteration, but as both outer (block) updates are asyn-
chronous, there is no algorithmic difference to the two-stage iteration. (The
inter-GPU and inter-block iterations are considered as one asynchronous
block-component update.) For implementing the asynchronous iteration on
multi-GPU systems, the central question is how the updated values can be
communicated efficiently. In the classical approach to multi-GPU implemen-
tations, the main memory serves as communication facility, transferring data
to the different devices. This usually triggers a high CPU workload and, due
to the PCI-connection, a bottleneck in the algorithm. CUDA 4.0 offers a
whole set of possibilities, replacing the former slow communication via the
host [30]. While the asynchronous multi-copy technique allows for copying
data from the host to several devices and vice versa simultaneously, GPU-
direct introduces the ability to transfer data between the memory of distinct
GPUs without even involving the CPU. It also features the ability to access
GPU memory located in a different device inside a kernel call.

Despite the fact that more implementations can be realized, we want to limit
our analysis to the following possibilities:

1. Asynchronous Multicopy (AMC) Like in the classical approach,
the host memory serves as communication facility. The performance
is improved by allowing for asynchronous data transfers from and to
the distinct graphics processing units. The data is put in streams, that
are then handled independently and without synchronization. This al-
lows the simultaneous data transfer between host and multiple devices.

While for computing the next iteration requires the communication of
all components of the iteration vector, every GPU sends only the new
values of the respectively updated components back to the host. We
want to stress that this approach is only possible due to the asynchro-
nism in the iteration method, otherwise the performance would suffer
from synchronization barriers managing the update order. This ap-
proach, illustrated in Figure 4a may especially be interesting for archi-
tectures where different GPUs are accessed with different bandwidths,
or the distinct GPUs processing with different speed.

. GPU-Direct Memory Transfer (DC) One feature of CUDA 4.0
is the GPU-direct, allowing the data transfer between different GPUs
via PCI without involving the host. If the complete iteration vector
is stored on one GPU, say the master-GPU, it can be transferred to
the other devices without using the main memory of the host. Again,
after every GPU has completed the kernels, the updated components
are copied back to the memory of the master-GPU, serving as central
storage, see Figure 4b. While connection to the master-GPU now be-
comes the bottleneck, the CPU of the host system is not needed, and
can be used for other tasks.

. GPU-Direct Memory Kernel Access (DK) The possibility to ac-
cess data located in another device inside a kernel allows even another
implementation, avoiding any explicit data transfer in the code. In
this algorithm, the components of the iteration vector are exclusively
stored in the memory of the master-GPU, and the kernels handled by
the different devices directly access the data in the master-GPU, see
Figure 4c. Like in the GPU-direct memory transfer implementation,
the CPU of the host system is not needed, and can be used for other
tasks.

4. Numerical Experiments

4.1. Stochastic Impact of Chaotic Behavior of Asynchronous Iteration meth-

ods

At this point it should be mentioned, that only the synchronous Gauss-

Seidel and Jacobi methods are deterministic. While synchronous relaxation
algorithms always provide the same solution approximations for each solver
run, the unique pattern concerning the distinct component updates in their

10

Host

IH‘ost Melar’rzo‘ryI

[FPCIT -]
— ! L Ii,l:_ﬁl
v v o
GPU 1 GPU 2 GPU 3
GPU Memory GPU Memory GPU Memory

(a) Asynchronous multicopy (AMC)

Host
Host Memory
| ;ILEfEfEfEfEfEfEfEfE:J[QiG,F: oI IIIIS - |
W i} B
GPU 1 GPU 2 GPU 3
GPU Memory GPU Memory GPU Memory

(b) GPU-direct memory transfer (DC), GPU1 serves as master-GPU.

Host
Host Memory
| |:::::::::::PC'| ———————————— : |
m— : J R—
| e
GPU 1 GPU 2 GPU 3
GPU Memory GPU Memory GPU Memory

(¢) GPU-direct memory kernel access (DK), GPU1 serves as master-
GPU.

Figure 4: Visualizing the different Multi-GPU memory handling. The dotted
lines indicate the explicit data transfers.

11

asynchronous counterparts generates a sequence of iteration approximations,
that can usually only be reproduced by choosing exactly the same update
order. This also implies that variations in the convergence rate may occur
for the individual solver runs. If the scheduling for the individual component
updates is based on a recurring pattern, these variations in the convergence
behavior may increase with the number of iterations since the component
update pattern may multiply its influence for higher iteration counts. When
iterating locally in the block-asynchronous approach (see Algorithm 1), the
influence of the unique component update order potentially has even more
impact since the local iterations do not account for the off-block entries.
This may especially become a critical issue when targeting linear systems
with considerable off-diagonal parts.

To investigate the issue of the non-deterministic behavior, we conduct mul-
tiple solver runs using the same experiment setup and monitor the relative
residual behavior for the different approximation sequences. As the main
focus of this chapter is on the block-asynchronous method, we apply the
async-(5) algorithm based on a moderate block size of 128, which allows for
a strong influence of the non-deterministic GPU-internal scheduling of the
threads [28]. Targeting the matrices FV1 and TREFETHEN_2000 ensures,
that we include results for very different matrix structures, i.e. these sys-
tems have very different diagonal dominance (see Section 3.1). All tests
on the non-deterministic behavior are based on 1000 solver runs using the
same hardware and software configuration on the GPU-accelerated Supermi-
cro system (see 3.1 for details about the hardware). For each matrix system,
we report in Figure 5 the variations in convergence as difference between the
largest and smallest relative residual in absolute and relative values (relative
to the average residual). From Figure 5a we can deduce that the async-(5)
method using the given experiment setup converges within about 130 global
iterations for matrix Fv1. Having achieved convergence, also the absolute
variations in between the fastest and slowest convergence approach a limit,
see Figure Hc. While the absolute values provide a general idea about the
magnitude of the variations, investigating the relative variances in Figure
5e allows for a more efficient quantification of the differences. Obviously,
there exist some variations, but they are very small, and may even be ne-
glected. The large relative variations for more than 130 iterations can be
explained by rounding effects when computing the relative variation using
the very small values (see Table 3) on a system with limited accuracy. The
overall small variations were expected due to the design and sparsity pat-

12

T T T T 1 T T T T
average async-(5) —+— average async-(5) —+—
0.01 | 0.01 | 4
0.0001 | 0.0001 |
— 1e-06 | _ 1e-06 -
© [
3 S 1e-08
‘s 1e-08 |- ‘@
1 <
S te10 | B
k] k]
° o fe12}
1e-12
1e-14 -
1e-14
1e-16 |
1e-16 R
1e-18 | B
15'18 1 1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 0 10 20 30 40 50
global iterations # global iterations
(a) average convergence, FV1 (b) average convergence, TREFETHEN_2000
0.0001 F di%ference'betw Ia'rgest an'd smalle'st rel. re's4 — i 0.0001 | differelnce betw. Ialrgest and snllallest rel.rels. — |
1e-06 | 1e-06 |-
5 1e-08 s 1e-08 -
g £ o0
S tfe-10 g '
2 2
3 3 He12}
S fe-12 [S
o Qo
© S qe-14 |
1e-14 |
1e-16 -
1e-16 -
r 1e-18
1e-18 L L L L L L L ! ! ! !
0 20 40 60 80 100 120 140 0 10 20 30 40 50
global iterations # global iterations
(c) absolut variations, Fv1 (d) absolut variations, TREFETHEN_2000
0.02 T T T T T T T 0.3 T T T T
(largest - smallest rel. res.)/(average rel. res.) —+— (largest - smallest rel. res.)/(average rel. res.) ——
0.25 1
0.015 R
= c 02F
S S
g @
c IS
> 0.01 4 = 015
o [
> 2
S ks
e € o1t
0.005 - i
0.05
0 e e s —t—+—+ t I 0 L L L L
0 20 40 60 80 100 120 140 0 10 20 30 40 50
global iterations # global iterations
(e) relative variations, Fv1 (f) relative variations, TREFETHEN_2000

Figure 5: Visualizing the average convergence, the absolute respectively rel-
ative variations in the convergence behavior of async-(5) depending on the
number of conducted global iterations.

13

tern of the matrix: Fv1 is symmetric and almost all elements are gathered
on the diagonal blocks, and therefore are accounted for in the local itera-
tions. Similar tests on diagonal dominant systems with the same sparsity
pattern but higher condition number reveal, that the latter one has only
small impact on the variations between the individual solver runs, see [1].
For the system TREFETHEN_2000 we converge within about 40 iterations
(see Figure 5b). Only very few solver runs have not reached convergence af-
ter 45 iterations. Like in the FV1 case, we observe in Figure 5d the expected
exponential decrease of the absolute variation. Concerning the relative vari-
ations, the results look quite different: All values for the relative variations
are significantly higher than for the test matrix Fv1. Close to convergence,
the relative difference between largest and smallest relative residual approxi-
mates 20 %. This confirms the expectation, that the larger off-block parts in
TREFETHEN_2000 emphasize the non-deterministic GPU-internal schedul-
ing since they are not accounted for in the local iteration on the subdomains
(see Section 3.3 for the algorithm design). Furthermore, we can identify a
dependency between iteration count and the relative variation: The compo-
nent update orders multiply their impact when conducting a high number of
iterations, and the relative difference between the individual approximations
rises (see Figure 5f). The linear growth of the relative variations immediately
suggests the existence of a recurring pattern in the GPU-internal scheduling,
which amplifies the variations in the convergence of the different solver runs.
The exact numbers for these plots can be found in Table 2 and 3, respectively,
where we additionally provide information about the statistical parameters
variance, standard error and standard deviation [21]. Summarizing the re-
sults, we can conclude that the scheduling of the threads has influence on
the convergence behavior of the block-asynchronous iteration. Especially
for systems with significant off-diagonal parts, the effects should be consid-
ered when using the method in scientific computing. For diagonal dominant
systems on the other hand, the variations may be negligible. Furthermore,
it seems that the GPU-internal scheduling is based on a recurring pattern
which ensures that at some point of the iteration run, all components have
been updated similarly often. Due to this pattern, it may be useful to apply
larger block-sizes that allow for less possibilities in the scheduling. Larger
block-sizes usually come along with the advantage of accounting for more
elements in the local iterations, and therewith faster convergence. (Only for
very specific matrix properties it may be reasonable to choose small block
sizes, i.e. if the off-diagonal parts can be reduced or the matrix size is a

14

[# global iters [averg. res. max. res. [min. res. [abs. var. [rel. var.

10 | 7.8304e-02 | 7.8313e-02 | 7.8285e-02 | 2.8111e-05 | 3.5885e-04
20 | 6.3243e-03 | 6.3251e-03 | 6.3231e-03 | 2.0125e-06 | 3.1782e-04
30 | 5.1392e-04 | 5.1400e-04 | 5.1383e-04 | 1.6310e-07 | 3.1716e-04
40 | 4.1902e-05 | 4.1912e-05 | 4.1895e-05 | 1.7607e-08 | 4.2002e-04
50 | 3.4238e-06 | 3.4244e-06 | 3.4231e-06 | 1.3232e-09 | 3.7969e-04
60 | 2.8019e-07 | 2.8026e-07 | 2.8012e-07 | 1.3318e-10 | 4.7467e-04
70 | 2.2956e-08 | 2.2961e-08 | 2.2951e-08 | 9.7834e-12 | 4.2254e-04
80 | 1.8825e-09 | 1.8829e-09 | 1.8820e-09 | 9.6127e-13 | 5.0995e-04
90 | 1.5449e-10 | 1.5453e-10 | 1.5445e-10 | 8.4035e-14 | 5.4372e-04
100 | 1.2685e-11 | 1.2689e-11 | 1.2682e-11 | 6.6530e-15 | 5.2025e-04
110 | 1.0422e-12 | 1.0426e-12 | 1.0418e-12 | 7.2436e-16 | 6.9082e-04
120 | 8.5725e-14 | 8.5753e-14 | 8.5695e-14 | 5.7262e-17 | 6.6724e-04
130 | 7.1399e-15 | 7.1458e-15 | 7.1345e-15 | 1.1334e-17 | 1.5823e-03
140 | 9.2748e-16 | 9.3342e-16 | 9.2265e-16 | 1.0767e-17 | 1.1608e-02
150 | 6.5579e-16 | 6.6219e-16 | 6.5022e-16 | 1.1964e-17 | 1.8243e-02

[# global iters [variance [standard deviation [standard error]
10 | 1.6334e-11 4.0415e-06 2.0233e-07
20 | 1.1244e-13 3.3532e-07 1.6787e-08
30 | 7.4425e-16 2.7281e-08 1.3657e-09
40 | 6.7713e-18 2.6021e-09 1.3027e-10
50 | 4.9401e-20 2.2226e-10 1.1127e-11
60 | 4.1092e-22 2.0271e-11 1.0148e-12
70 | 2.9781e-24 1.7257e-12 8.6395e-14
80 | 2.6892e-26 1.6398e-13 8.2096e-15
90 | 1.9368e-28 1.3916e-14 6.9672¢-16
100 | 1.4737e-30 1.2139e-15 6.0775e-17
110 | 1.2855e-32 1.1338e-16 5.6761e-18
120 | 8.8288e-35 9.3962e-18 4.7039e-19
130 | 4.6302e-36 2.1518e-18 1.0772e-19
140 | 3.1601e-36 1.7776e-18 8.8994e-20
150 | 3.9031e-36 1.9756e-18 9.8905e-20

Table 2: Variations and statistics in the convergence behavior for 1000 solver
runs on Fv1.

multitude of the smaller block size.) However, the main consequence of the
results is a convention for the rest of this paper: Although we will not stress
it explicitly every time, all further results should be considered as average
using several solver runs. It should be kept in mind, that a different solution
update pattern may lead to a slightly faster or slower convergence rate.

4.2. Convergence Rate of Asynchronous Iteration

In the next experiment, we analyze the convergence behavior of the asyn-
chronous iteration method (async-(1)) and compare it with the convergence
rate of the Gauss-Seidel and Jacobi method. Note that the residuals in all
reported data of this and the following sections are always in the [>-norm

(7 l2)-

15

residual

residual

residual

1e-05

1e-10

1e-15

Glauss-SeideI on'CPU S
Jacobi on GPU --
async-(1) on GPU -------- i

0 50

100
#iters

(a) CHEM97ZTZ

Glauss-SeideI on'CPu R
Jacobi on GPU --
async-(1) on GPU -------- i

1e-05 <
©
=]
S
(7]
<
1e-10
1e-15
1 1 1
0 50 100 150 200
#iters
(c) Fv2
1000 p— . ; T
: Gauss-Seidel on CPU ——
B Jacobi on GPU --

100 | ¢ async-(1) on GPU -------- E
10f;]
W 13

=]
k=]
3
0.1 | 4 =
0.01 E
0.001 E
0.0001 L L L
0 50 100 150 200
#iters

(e) SIRMT3M1

residual

25000

I Glauss-Seidel on'CPU N
Jacobi on GPU --
TR async-(1) on GPU --------]
1e-05
1e-10
1e-15
1 1 L
0 50 100 150
#iters
(b) FV1
T : .
Gauss-Seidel on CPU ——
Jacobi on GPU --
1 async-(1) on GPU --------]
1e-05 -
1e-10 |
1e-15 |]
1 1 | !
0 5000 10000 15000 20000
#iters
(d) Fv3
T . .
Gauss-Seidel on CPU ——
Jacobi on GPU -------
! async-(1) on GPU v+ |
1e-05
1e-10
1e-15
1 1 L
0 50 100 150 200
#iters

(f) TREFETHEN_2000

Figure 6: Convergence behavior for different test matrices.

16

[# global iters | averg. res. max. res [min. res. [abs. var. [rel. var.

5 | 8.0190e-04 | 8.1516e-04 | 7.3689e-04 | 7.8277e-05 | 9.7614e-03
10 | 8.4330e-06 | 8.6821e-06 | 7.7307e-06 | 9.5147e-07 | 1.1282e-01
15 | 8.8600e-08 | 9.2472e-08 | 7.9658e-08 | 1.2813e-08 | 1.4462e-01
20 | 9.3022e-10 | 9.8491e-10 | 8.3319e-10 | 1.5171e-10 | 1.6309e-01
25 | 9.7817e-12 | 1.0427e-11 | 8.6158e-12 | 1.8120e-12 | 1.8524e-01
30 | 1.0260e-13 | 1.1038e-13 | 8.8065e-14 | 2.2314e-14 | 2.1747e-01
35 | 1.0906e-15 | 1.1960e-15 | 9.6899e-16 | 2.2705e-16 | 2.0818e-01
40 | 1.1012e-16 | 1.1843e-16 | 1.0755e-16 | 1.0881e-17 | 0.9880e-01
45 | 1.0811e-16 | 1.1041e-16 | 1.0692e-16 | 3.4880e-18 | 3.2261e-02
50 | 1.0811e-16 | 1.1057e-16 | 1.0723e-16 | 3.3381e-18 | 3.0875e-02

[# global iters [variance [standard deviation [standard error]
5 | 1.6769e-10 1.2949e-05 4.0970e-07
10 | 2.8159e-14 1.6780e-07 5.3091e-09
15 | 4.8964e-18 2.2127e-09 7.0009e-11
20 | 7.0058e-22 2.6468e-11 8.3742e-13
25 | 9.4666e-26 3.0767e-13 9.7345e-15
30 | 1.2095e-29 3.4778e-15 1.1003e-16
35 | 1.5321e-33 3.9142e-17 1.2384e-18
40 | 2.4862e-36 1.5767e-18 4.9887e-20
45 | 2.2543e-37 4.7479e-19 1.5021e-20
50 | 2.2468e-37 4.7400e-19 1.4996e-20

Table 3: Variations and statistics in the convergence behavior for 1000 solver
runs on TREFETHEN_2000.

The experiment results, summarized in Figure 6 show that for test sys-
tems CHEM97Z7TZ, Fv1, Fv2, Fv3 and TREFETHEN_2000 the synchronous
Gauss-Seidel algorithm converges in considerably less iterations than the
asynchronous iteration. This superior convergence behavior is intuitively
expected, since the synchronization after each component update allows for
the usage of the updated components immediately for the next update in
the same global iteration. For the Jacobi implementation, the synchroniza-
tion after each iteration still ensures the usage of all updated components
in the next iteration. Since this is not true for the asynchronous iteration,
the convergence depends on the problem and the update order. While the
usage of updated components implies the potential of a Gauss-Seidel con-
vergence rate, the chaotic properties may trigger convergence slower than
Jacobi. Still, we observe for all test cases convergence rates similar to the
synchronized Jacobi iteration, which is still low compared to Gauss-Seidel.

The results for test matrix SIRMT3M1 (Figure 6e) show an example where
neither of the methods is suitable for direct use. The reason is that here
p(B) > 1 (in particular, p(B) =~ 2.65, see Table 1). Nevertheless, note that
this matrix is SPD and Jacobi-based methods still can be used after a proper

17

scaling is added, e.g., taking B =1 — 7D 'A with 7 = ﬁ, where \; and

A\, approximate the smallest and largest eigenvalue of D~1A.

4.3. Convergence Rate of Block-Asynchronous Iteration

We now consider a block-asynchronous iteration method which addition-
ally performs a few Jacobi-like iterations on every subdomain. A motivation
for this approach is hardware related — specifically, this is the fact that the
additional local iterations almost come for free (as the subdomains are rela-
tively small and the data needed largely fits into the multiprocessors’ caches).
In Table 4 we report the overhead triggered by the additional local iterations
conducted on the subdomains. Switching from async-(1) to async-(2) affects
the total computation time by less than 5%, independent of the total number
of global iterations. At the same time, this leads to an algorithm where every
component is updated twice as often. Even if we iterate every component
locally by 9 Jacobi iterations, the overhead is less than 35%, while the total
updates for every component differ by a factor of 9 [1].

There exists though a critical point, where adding more local iterations
does not improve the overall performance. It is difficult to analyze the trade-
off between local and global iterations [27], and we refrain from giving a
general statement for the optimal choice of local iterations. This is due to
the fact that the choice depends not only on the characteristics of the linear
problem, but also on the iteration status of the thread block and the local
components (as related to the asynchronism), subdomain sizes, and other
parameters. Based on empirical tuning and practical experience (trying to
match the convergence of the new method to that of a Gauss-Seidel itera-
tion) we set the number of local Jacobi-like updates to five. Therefore we
choose async-(5) for all subsequent analysis of the block-asynchronous itera-
tion method in this chapter. The additional local iterations in asynchronous
methods provide less contribution to the iteration process than global ones in
synchronized algorithms, as they do not take into account off-block entries.
We note that as a consequence, the number of iterations in asynchronous
algorithms can not directly be compared with the number of iterations in
a synchronized algorithm. To account for this mismatch and the fact that
the local iterations almost come for free in terms of computational effort
we from now on use the convention of counting only the number of global
iterations, where every single component is updated five times as often by
iterating locally. Using this notation we now aim for comparing in Figure 7
the convergence rate of async-(5) with the Gauss-Seidel convergence rate.

18

residual

residual

Gauss-Seidel on CPU —— ' Gauss-Seidel on CPU ——
async-(5) on GPU ==----- async-(5) on GPU -------
m 1 4
_ 1e-05 4 — 1e-05 4
© ©
=] =}
=] =]
|7 (73
o]
1e-10 g 1e-10 .
1e-15 1e-15 R
1 1 1 1 1 1
50 100 150 200 0 50 100 150 200
#iters #iters
(a) CHEM97ZTZ (b) Fv1
T T T T T T
Gauss-Seidel on CPU —— Gauss-Seidel on CPU ——
async-(5) on GPU ==----- async-(5) on GPU ==-----
1 E 1 e
1e-05 4 _ 1e05 g
© ™,
=] .
=] .
7 ™,
o
1e-10 g 1e-10 R
1e-15 E 1e-15 B
1 1 1 1 1 1 1
0 50 100 150 200 0 5000 10000 15000 20000 25000
#iters #iters
(c) FV2 (d) Fv3
1000 ' Gauss-Seidel on CPU —— I Gauss-Seidel on CPU ——
async-(5) on GPU ------- async-(5) on GPU -------
100 | 4 1 i
10 E
72— _ 1e-05 B
1F 13
=]
=]
3
0.1 | 4 =
1e-10 1
0.01 E
0.001
1e-15 1
00001 1 1 1 1 1 1
50 100 150 200 0 50 100 150 200
#iters # iters
(e) SIRMT3M1

(f) TREFETHEN_2000

Figure 7: Convergence rate of block-asynchronous iteration.

19

computation time for # global iterations

method 100 | 200 | 300 | 400 | 500
async-(1) | 1.376425 | 2.437521 | 3.501462 | 4.563519 | 5.624792
async-(2) | 1.431110 | 2.546361 | 3.660030 | 4.773864 | 5.891870
async-(3) | 1.482574 | 2.654470 | 3.819478 | 4.987472 | 6.156434
async-(4) | 1.532940 | 2.749808 | 3.972644 | 5.191812 | 6.410378
async-(5) 1.577105 | 2.838185 | 4.099068 | 5.363081 | 6.655686
async-(6) 1.629628 | 2.938897 | 4.255335 | 5.569045 | 6.879329
async-(7) | 1.680975 | 3.044979 | 4.412199 | 5.778823 | 7.144304
async-(8) | 1.736295 | 3.148895 | 4.571684 | 5.990520 | 7.409536
async-(9) | 1.786658 | 3.259132 | 4.730689 | 6.202893 | 7.676786

Table 4: Overhead to total execution time by adding local iterations, matrix
FV3.

As theoretically expected, synchronous relaxation as well as the block-
asynchronous async-(5) are not directly suitable to use for the SIRMT3M1
matrix. Besides this case, the async-(5) improves the convergence rate of
async-(1) for all other test cases. While, depending on the matrix structure,
we may expect an improvement factor of up to five, in the experiments we
observe improvements of up to four. The rule of thumb expectation for
the convergence rate of the async-(5) algorithm is based on the rate with
which values are updated and the rate of propagation for the updates. For
example, this is the observation that Gauss-Seidel often converges about
twice as fast as Jacobi [24]. In other words, four Jacobi iterations would be
expected (in general) to provide residual reduction approximating two Gauss-
Seidel iterations. The experiments show that the convergence of async-(5)
for CHEM97ZTZ is characteristic for the convergence of the synchronous
Jacobi iteration. This can be explained by the fact that the local matrices
for CHEM97Z71Z are diagonal and therefore it does not matter how many
local iterations would be performed. An improvement for this case could
potentially be obtained by reordering. The case for TREFETHEN_2000 is
similar — although there is improvement compared to Jacobi, the rate of
convergence for async-(5) is not twice as fast as Gauss-Seidel, and the reason
is again the structure of the local matrices (see Figure 1 for the structure of
the matrices and Figures 7a and 7f for the convergence results). Considering
the remaining linear systems of equations Fv1, FvV2 and Fv3, we obtain
approximately twice as fast convergence when replacing Gauss-Seidel by the
async-(5) algorithm (see Figures 7b, 7c, and 7d). Since for these cases most of
the relevant matrix entries are gathered on or near the diagonal and therefore
are taken into account in the local iterations on the subdomains, we observe

20

significant convergence gain when iterating locally. Hence, as long as the
asynchronous method converges and the off-block entries are “small”; adding
local iterations may be used to not only compensate for the convergence
loss due to the chaotic behavior, but moreover to gain significant overall
convergence improvements [1].

But the convergence rate alone does not determine whether an iterative
method is efficient or not. The second important metric that we must con-
sider is the time needed to process one iteration on the respective hardware
platform. While the time can be easily measured for the synchronous itera-
tion methods, the nature of asynchronous relaxation schemes does not allow
the straight forward determination of the time needed per iteration, since
not all components are updated at the same time. Especially, it may hap-
pen that some blocks were already iterated several times, while other blocks
were not processed at all. For this reason, only an average time per global
iteration can be computed by dividing the total time by the total number
of iterations. Therefore, we also use an average time for the CPU imple-
mentation. It should also be mentioned that, while the average timings for
one iteration on the CPU are almost constant, for the GPU implementations
the iteration time differs considerably. This stems from the fact, that all
timings include the data transfers between host and GPU. Hence, we have
considerable communication overhead when performing only a small num-
ber of iterations, while the average computation time per iteration decreases
significantly for cases where a large number of iterations is conducted. This
behavior is shown in Figure 8, where the average iteration timings for the test
matrix Fv3 are reported. For the other test matrices, the average timings for
the Gauss-Seidel implementation on the CPU and the Jacobi and async-(5)
iteration on the GPU are shown in Table 5 where we took the average of the
cases when conducting 10, 20, 30. .. 200 iterations for the GPU implementa-
tions. Note that the iteration time for Jacobi, due to the synchronization
after each iteration, is higher than the time for async-(5), despite the five
local updates in the asynchronous method.

Overall, we observe, that the average iteration time for the async-(5)
method using the GPU is only a fraction of the time needed to conduct one
iteration of the synchronous Gauss-Seidel on the CPU. While for small it-
eration numbers and problem sizes we have a factor of around 5, it rises to
over 10 for large systems and high total iteration numbers. The question is,
whether the faster component updates can compensate for the slower conver-
gence rate when targeting the matrices CHEM97Z7TZ and TREFETHEN_2000.

21

0.3 T

éauss—SeideI onICPU _
Jacobi on GPU -------

0.25 async-(1) on GPU -------- i

o)
Q
2,
c
S o2
©
2
g o015
© T
£ d
o 01f
D a
g H
o 4
S 005
. e ——
0 50 100 150 200

total number of iterations

Figure 8: Average iteration timings of CPU/GPU implementations depend-
ing on total iteration number, test matrix Fv3.

[Matrix name [G.-S. (CPU) [Jacobi (GPU) [async-(5) (GPU)]
CHEM97ZTZ 0.008448 0.002051 0.001742
javal 0.120191 0.019449 0.012964
FV2 0.125572 0.020997 0.014729
FV3 0.125577 0.021009 0.014737
SIRMT3M1 0.039530 0.006442 0.004967
TREFETHEN_2000 0.007603 0.001494 0.001305

Table 5: Average iteration timings in seconds per global iteration.

In this case, the block-asynchronous method using the GPU as accelerator
would still outperform the synchronous Gauss-Seidel on the CPU.

4.4. Performance of Block-Asynchronous Iteration

In [1] the block asynchronous iteration performance is compared to the
performance of Gauss-Seidel and Jacobi. Now, we extend the analysis by
comparing also to a highly tuned GPU implementation of the CG solver [32].
Also, instead of reporting only time-to-accuracy, we show the residual de-
crease over the computing time. This enables to determine the optimal solver
also for cases where low accuracy approximations are sufficient. Such scenar-
ios occur for example in the solution process of nonlinear equations where
only coarse solutions for the first linearization steps are required [23]. Due
to the results in Figure 7 it is reasonable to limit the performance analy-
sis to the matrices CHEM97Z7TZ, Fv1l, Fv3 and TREFETHEN_2000: The
matrix characteristics and convergence results for FvV2 are very similar to
FV1, and for the SIRMT3M1 problem we observed that neither Gauss-Seidel

22

' ' ' Giuss~$eidef — ' ' ' Gauss«Sei&eI —
Jacobi ---%--- Jacobi ---x---
1 async-(5) ---%--- 1 async-(5) ---%---
© ©
3 1e-05 - 3 1e-05
(73 73
1 o
[[
= =
k| s \
© 1e-10 © 1e-10 1
: X,
B .
1e-15 |- 1e-15 | BB e e e Semme X
1 1 1 1 1 " " " "
0 0.05 0.1 0.15 0.2 0.25 0.3 0 1 2 3 4 5
time [sec] time [sec]
(a) CHEM97ZTZ (b) FV1
T T T T T T T T
Gauss-Seidel —— Gauss-Seidel ——
i Jacobi ---x---
1% async-(5) ---*---
18 CG g
By
N B,
] . e © 8.,
3 1e-05 | T Tl] B 1e05 1
@ .""“x__\ g . -
o o o
2 2
k] k) \ 2]
e 2 1e-10 R .
1e-10 | N B %
X hN
____________ Heenem e enaenns N E
X B
1e-15 | R 1e-15 . “ M
K- - FeT e e
1 1 1 1 1 1 1 1
0 50 100 150 200 250 0 0.1 0.2 0.3 0.4 0.5
time [sec] time [sec]
(c) FVv3 (d) TREFETHEN_2000

Figure 9: Relative residual behavior with respect to solver runtime.

nor Jacobi or block-asynchronous iteration are suitable methods. In Figure
9 the time-dependent residuals for the different solver implementations are
reported (relative residuals in [?>-norm).

For the very diagonally dominant systems Fv1 and Fv3 the performance
improvement when switching from Jacobi to block-asynchronous iteration
are significant: The async-(5) method converges (with respect to computa-
tion time) almost twice as fast as Jacobi. At the same time, both methods
outperform the sequential (CPU-based) Gauss-Seidel solver by orders of mag-
nitude. Still, the performance of the CG method can not be achieved. This
was expected since the CG method belongs to the most efficient iterative
solvers for symmetric positive definite systems. In Figure 9b async-(5) con-
verges about twice as fast as Jacobi, significantly faster than Gauss-Seidel,

23

but the CG method still shows about one-third higher performance. For the
system Fv3 with considerably higher condition number, the differences are
even more significant (see Figure 9c): the time-to solution needed by the
synchronized CG is only a fraction of the computation time of Jacobi, async-
(5) or Gauss-Seidel. Only if the approximation accuracy is relevant, applying
async-(5) could be considered to post-iterate the solution approximation. For
strongly coupled problems, which results in matrix systems containing large
off-diagonal parts, the performance differences between Jacobi and block-
asynchronous iteration decrease. This stems from the fact that the entries
located outside the subdomains are not taken into account for the local itera-
tions in async-(5) [1]. Thus, it is expected that for the problem CHEM97ZTZ
the performance results for Jacobi and block-asynchronous iteration are very
similar. They are also almost equal to the performance of the, algorithmi-
cally very different, CG solver. Only the CPU-based Gauss-Seidel converges
slower with respect to computation time (see Figure 9a). Concerning the
three superior methods, the block-asynchronous iteration outperforms not
only the Jacobi method, but even the highly optimized CG solver. Probably
the most interesting results occur for the TREFETHEN_2000 problem (see
Figure 9d). The async-(5) method using the GPU does not reach the Gauss-
Seidel performance on the CPU for small iteration numbers, which may be
caused by the characteristics of the problem: As the linear system combines
small dimension with low condition number, both enabling fast convergence,
the overhead triggered by the GPU kernel calls is crucial for small iteration
numbers [1]. Going to higher iteration numbers, the async-(5) outperforms
the CPU implementation of Gauss-Seidel also for this matrix. Compared
to CG and Jacobi, the async-(5) method is superior for any approximation
accuracy.

4.5. Fault-Tolerance of Block-Asynchronous Iteration

This section is dedicated to the analysis of the block-asynchronous itera-
tion introduced in Section 3.3 with respect to error resilience. Particularly,
we want to analyze how hardware failure impacts the method’s convergence
and performance characteristics. The topic of fault resilient algorithms is
of significant importance, as we expect that the high complexity in future
hardware systems comes along with a high failure rate [11, 31].

Current High Performance systems consist of about one million processing
elements, but aiming for Exascale computing, this number must be increased
by about three orders of magnitude [8, 2]. This increase in component num-

24

ber is expected to be faster than the increase in component reliability, with
projections in the minutes or seconds for Exascale systems. From the current
knowledge and observations of existing large systems, it is anticipated that
especially a rise of the Silent Errors may take place. These are errors that
get detected after long time having caused serious damage to the algorithm,
or never get detected at all [2].

For most synchronized iterative solvers hardware failure is crucial, result-
ing in the breakdown of the algorithm. For implementations that do not
feature checkpointing or recovery techniques [10, 22, 26, 16, 17|, the com-
plete solution process must be restarted. While checkpointing strategies are
widespread used in today’s implementations, algorithms will no longer be
able to rely on checkpointing to cope with faults in the Exascale era. This
stems from the fact, that the time for checkpointing and restarting will ex-
ceed the mean time of failure of the full system [2]. Hence, a new fault
will occur before the application could be restarted, causing the application
to get stuck in a state of constantly being restarted. The nature of asyn-
chronous methods removes the need for checkpointing: the high tolerance
to update order and communication delay implies that, as long as all com-
ponents are updated at some point, they are resilient to hardware failure.
The inherent reliability with respect to detectable hardware failure makes
asynchronous methods suitable candidates for exascale systems based on a
high number of processing elements. In case of silent errors that do not get
detected, also the asynchronous methods will usually not converge to the
solution. This implies, that for problems where convergence is expected, a
convergence delay or non-converging sequence of solution approximations in-
dicates that a silent error has occurred. Especially a delay in the expected
convergence may portend that a temporal hardware failure has taken place,
e.g., the power-off of one component due to overheating. Hence, additionally
to the fault-tolerance with respect to detectable hardware errors, it is also
possible to imagine scenarios where asynchronous methods can be used to
detect silent errors.

To investigate the issue of fault tolerance experimentally, we consider the
following scenario: Block-asynchronous iteration is used on a system with a
high core number to solve a linear system of equations. At some point, a
certain number of the cores iterating the distinct components break down.
Within a certain time frame, the operating system detects the hardware
failure and may reconfigure the algorithm during runtime by assigning the
respective components to other (e.g., additional) cores or fix the corrupted

25

T T T T T
no failure —+— 1 no failure —+— |

recovery-(10) ---x--- recovery-(10) ---x---
1 recovery-(20) ---x--- § recovery-(20) ---%---
recovery-(30) & 0.01 recovery-(30) &

no recovery ---@:- no recovery ---@:-
o 0.0001
1e-05 [1e-06 -

1e-08 -

relative residual
relative residual

1e-10
1e-10

1e-12 |-
1e-14 -
1e-15 -
1e-16 -
0 20 40 60 80 100 0 10 20 30 40 50
global iters # global iters
(a) FV1 (b) TREFETHEN_2000

Figure 10: Convergence of async-(5) for hardware failure. The implementa-
tions either recover by reassigning the components to other cores after the
recovery time ¢, (denoted with recover-(t,)), or generate a solution approxi-
mation with significant residual error.

ones. This setup is realistic as it may occur due to several reasons. One
example is the failure of computing units of the different layers (cores, CPUs,
nodes), a common hardware error scenario [11]. Operating system software
may detect hardware breakdown after some time, and it is a question of the
implementation how these hard errors are handled.

In our experiments we simulate the introduced scenario the following way:
At a certain time tg, a preset number of randomly chosen components is no
longer considered in the iteration process. We report the residual behavior
of different implementations that either detect the failure and reassign the
components to other cores after a certain recovery time t,., or do not recover
at all. While we expect a delay in the convergence for the recovery case, the
algorithms not reassigning the components handled by broken cores may gen-
erate a solution approximation with significant residual error. We consider
the test matrices Fv1 and TREFETHEN_2000, that are suitable candidates
due to their very different characteristics (see Section 3.1). For all experi-
ments, we simulate the hardware breakdown of 25% of the computing cores
after about ¢ty = 10 global iterations. This implies, that one fourth of the
components (randomly chosen) is no longer updated. We implement differ-
ent versions, where the algorithm detects and reassigns the components after
t, = 10,20, 30 global iterations, or does not recover at all. In Figure 10 we
report the relative residual behavior for the different implementations and

26

recovering async-(5) [recover-(10) [recover-(20) [recover-(30) |

Fvl 8.16 19.50 31.66
TREFETHEN_2000 8.16 11.45 16.61

Table 6: Additional computation time in % needed for the async-(5) featuring
different recovery times ¢, to provide the solution approximation.

observe very similar results for both matrix systems. In the non-recovering
case, the algorithm generates a solution approximation that differs signifi-
cantly from the exact solution. Especially, continuing the iteration process
for the remaining components (handled by the working cores) has no influ-
ence on the generated values for the symmetric positive definite matrices. As
soon as the iteration process recovers by assigning the workload of the bro-
ken cores to other hardware components, the convergence is retrieved. With
some problem specific delay (see Table 6), the same solution approximation
is generated like for the case of no error. This reveals the high resilience of
block-asynchronous iteration with respect to hardware failure, and the high
reliability of the methods.

4.6. Ezxperiments of Block-Asynchronous Iteration on Multi-GPU Systems

Finally, we want to include numerical experiments on the different ap-
proaches to block-asynchronous iteration using multi-GPU systems (see Sec-
tion 3.4). Therefore, we apply the different multi-GPU block asynchronous
implementations to the test matrix TREFETHEN_20000 (see Section 3.1),
which is suitable for the experiment due to its size and structure. Since we can
assume that for all implementations, the solution approximation accuracy al-
most linearly depends on the run-time, for comparing the performance of the
different implementations it is sufficient to report the time-to-convergence. In
Figure 11 we subtracted the respective initialization overhead. For the case of
using only one GPU, the DC and DK approaches are slightly faster than the
asynchronous multicopy since the iteration vector resides in the GPU mem-
ory and is not transferred back and forth between CPU and GPU. Other
than that, the algorithms of asynchronous multicopy, GPU-direct memory
transfer, and GPU-direct memory kernel access do not differ when running on
only one GPU. As soon as we include a second GPU, the asynchronous mul-
ticopy performs considerably faster. The total run-time is almost cut in half,
while for the GPU-direct based implementations, only small improvements
can be observed. The reason for the excellent speedup of the AMC stems

27

{ GPU &xx=
2 GPUs baws

time to convergence [sec]

05

0

Figure 11: Time-to-solution for the different Multi-GPU implementations for
test matrix TREFETHEN_20000.

from the fact, that each GPU only handles half the components, and due to
the asynchronous data transfer using different PCI controller and different
PCI connections, the two devices can add their performance. Leveraging
the complete bandwidth of both PCI connections is essential since the ap-
plication is memory bound. Using the memory located in one of the GPUs,
like we do in the GPU-direct approaches, puts a lot of pressure on the PCI
connection of this GPU: all data must be transferred via this connection.
Unfortunately, for the specific architecture of the Supermicro system we tar-
get in the experiments the CUDA in version 4.0.17 does not yet support
GPU-direct between more than two GPUs as CUDA’s GPU-GPU commu-
nication is only supported for GPUs connected to the same CPU [30]. But
also for the AMC implementation, adding more GPUs is not beneficial for
this test case: Using three GPUs we iterate still faster than when using only
one GPU, we are about 20 % slower than for the dual-GPU case. This stems
from the fact that using more than two GPUs, the architecture implies data
transfers via the QPI connection between the two CPUs which limits the
performance [35]. Increasing the GPU number from three to four, we again
benefit from the reduced component number handled per device as he con-
figuration includes the communication via the QPI anyway. Although this
configuration outperforms the dual-GPU performance, the speedup is, due to
the additional communication overhead, considerably smaller than the factor
of two.

28

5. Conclusions

We developed block-asynchronous relaxation methods for GPU-accelerat
-ed clusters. The absence of synchronization points enables not only excellent
scalability on GPU or multi-GPU architecture, but also a high tolerance to
hardware failure. In experiments, we observed that the efficient hardware us-
age allows to overcompensate for the inferior convergence properties in many
test cases. Targeting multi-GPU platforms we have shown that the derived
algorithms allow for the efficient usage of asynchronous data transfers, while
for memory bound problems the performance suffers significantly from the
low throughput rates of the inter-device connection.

As the numerical properties of asynchronous iteration pose some restric-
tions on the usage, future research should investigate whether block-asyn
-chronous iteration is suitable for a specific partial differential equation dis-
cretization by analyzing the problem and method characteristics.

Another research field is related to the widespread use of component-wise
relaxation method as preconditioner or smoother in multigrid. However it is
still a subject of further research how to determine the optimal number for the
various parameters arising in the asynchronous methods, such as number of
local iterations, subdomain sizes, scaling parameters, etc., with respect to the
problem. This optimization may not only be dependent on the problem, but
also on the parameters in the multigrid framework like prolongation operator
and number of pre- and post-smoothing steps, and the used hardware system.

Acknowledgments

The authors would like to thank the National Science Foundation, the
Department of Energy, NVIDIA, and the MathWorks for supporting this
research effort. We would also like to thank the Karlsruhe House of Young
Scientists (KHY'S) for supporting the research cooperation.

References

[1] H. Anzt, S. Tomov, J. Dongarra, V. Heuveline, A block-asynchronous
relaxation method for graphics processing units, in: IPDPS Workshops,
2012, pp. 113-124.

[2] S. Ashby, et al., The opportunities and challenges of exascale comput-
ing, Summary Report of the Advanced Scientific Computing Advisory
Committee (ASCAC) Subcommittee (November 2010).

29

3]

[12]

[13]

[14]

U. Aydin, M. Dubois, Sufficient conditions for the convergence of asyn-
chronous iterations, Parallel Computing 10 (1) (1989) 83-92.

R. Bagnara, A unified proof for the convergence of Jacobi and Gauss-
Seidel methods, STAM Rev. 37 (1995) 93-97.

Z.-7. Bai, V. Migallon, J. Penadés, D. B. Szyld, Block and asynchronous
two-stage methods for mildly nonlinear systems, Numerische Mathe-
matik 82 (1999) 1-20.

A. H. Baker, R. D. Falgout, T. Gamblin, T. V. Kolev, S. Martin,
U. Meier Yang, Scaling algebraic multigrid solvers: On the road to

exascale, Proceedings of Competence in High Performance Computing
CiHPC.

A. H. Baker, R. D. Falgout, T. V. Kolev, U. Meier Yang, Multigrid
smoothers for ultra-parallel computing, ILNL-JRNL-435315 (2011).

K. Bergman, et al., Exascale computing study: Technology challenges
in achieving exascale systems (2008).

D. P. Bertsekas, J. Eckstein, Distributed asynchronous relaxation meth-
ods for linear network flow problems, Proceedings of IFAC ’87.

P. G. Bridges, M. Hoemmen, K. B. Ferreira, M. A. Heroux, P. Soltero,
R. Brightwell, Cooperative application/OS DRAM fault recovery, in:
Proceedings of the 2011 international conference on Parallel Processing
- Volume 2, Euro-Par’11, Springer-Verlag, Berlin, Heidelberg, 2012, pp.
241-250.

F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, M. Snir, Toward
exascale resilience, International Journal of High Performance Comput-
ing Applications 23 (4) (2009) 374-388.

D. Chazan, W. Miranker, Chaotic relaxation, Linear Algebra and Its
Applications 2 (7) (1969) 199-222.

A. T. Chronopoulos, A. B. Kucherov, A parallel Krylov-type method
for nonsymmetric linear systems (2001) 104-114.

I. Corporation, Intel C++ compiler options, document Number: 307776-
002US.

30

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J. Dongarra, et al., The international ExaScale software project
roadmap, Int. J. of High Performance Computing & Applications 25 (1).

P. Du, A. Bouteiller, G. Bosilca, T. Herault, J. Dongarra, Algorithm-
based fault tolerance for dense matrix factorizations, Tech. rep., Inno-
vative Computing Laboratory, University of Tennessee (2011).

P. Du, P. Luszczek, S. Tomov, J. Dongarra, Soft error resilient QR
factorization for hybrid system with GPGPU, Journal of Computational
Science.

A. Frommer, H. Schwandt, D. B. Szyld, Asynchronous weighted addi-
tive Schwarz methods, Electronic Transactions on Numerical Analysis 5
(1997) 48-61.

A. Frommer, D. B. Szyld, On asynchronous iterations, Journal of Com-
putational and Applied Mathematics 123 (2000) 201-216.

J. A. H. Courtecuisse, Parallel dense Gauss-Seidel algorithm on many-
core processors.

N. Henze, Stochastik fiir Einsteiger: Eine Einfithrung in die faszinierende
Welt des Zufalls; mit tiber 220 Ubungsaufgaben und Losungen,
Vieweg+teubner Verlag, 2010.

M. A. Heroux, M. Hoemmen, Fault-tolerant iterative methods via selec-
tive reliability, Tech. rep., Sandia National Laboratories (2011).

J. Hubbard, B. Hubbard, Vector Calculus, Linear Algebra, and Differ-
ential Forms: A Unified Approach, Matrix Editions, 2007.

G. Karniadakis, R. Kirby, Parallel Scientific Computing in C++ and
MPI: A Seamless Approach to Parallel Algorithms and Their Imple-
mentation, Cambridge University Press, 2003.

C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations,
STAM, 1995.

K. Malkowski, P. Raghavan, M. Kandemir, Analyzing the soft error
resilience of linear solvers on multicore multiprocessors (2010) 1 —12.

31

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

U. Meier Yang, On the use of relaxation parameters in hybrid smoothers,
Numerical Linear Algebra with Applications 11 (2011) 155-172.

NVIDIA Corporation, NVIDIA CUDA Compute Unified Device Archi-
tecture Programming Guide, 2nd ed. (August 2009).

NVIDIA Corporation, TESLA C2050 / C2070GPU Computing Proces-
sor (July 2010).

NVIDIA Corporation, CUDA Toolkit 4.0 Readiness forCUDA Applica-
tions, 4th ed. (March 2011).

M. D. Powell, A. Biswas, S. Gupta, S. S. Mukherjee, Architectural core
salvaging in a multi-core processor for hard-error tolerance, in: Proceed-
ings of the 36th annual international symposium on Computer architec-

ture, ISCA 09, ACM, New York, NY, USA, 2009, pp. 93-104.

Y. Saad, Iterative Methods for Sparse Linear Systems, Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA, 2003.

Y. Saad, M. H. Schultz, GMRES: A generalized minimal residual
method for solving nonsymmetric linear systems.

J. C. Strikwerda, A convergence theorem for chaotic asynchronous re-
laxation, Linear Algebra and its Applications 253 (1-3) (1997) 15-24.

Super Micro Computer, Inc., Supermicro X8DTG-QF User’s Manual,
revision 1.0a ed. (2010).

D. B. Szyld, The mystery of asynchronous iterations convergence
when the spectral radius is one, Tech. Rep. 98-102, Department
of Mathematics, Temple University, Philadelphia, Pa., available at
http://www.math.temple.edu/szyld (October 1998).

A. Uresin, M. Dubois, Generalized asynchronous iterations, in: CON-
PAR, 1986, pp. 272-278.

32

