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ABSTRACT
This paper presents the design and implementation of sev-
eral fundamental dense linear algebra (DLA) algorithms in
OpenCL. In particular, these are linear system solvers and
eigenvalue problem solvers. Further, we give an overview of
the clMAGMA library, an open source, high performance
OpenCL library that incorporates the developments pre-
sented, and in general provides to heterogeneous architec-
tures the DLA functionality of the popular LAPACK library.
The LAPACK-compliance and use of OpenCL simplify the
use of clMAGMA in applications, while providing them
with portably performant DLA. High performance is ob-
tained through use of the high-performance OpenCL BLAS,
hardware and OpenCL-specific tuning, and a hybridization
methodology where we split the algorithm into computa-
tional tasks of various granularities. Execution of those
tasks is properly scheduled over the heterogeneous hardware
components by minimizing data movements and mapping
algorithmic requirements to the architectural strengths of
the various heterogeneous hardware components.
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Categories and Subject Descriptors
G.4 [Mathematical software]: Algorithm design and anal-
ysis, Efficiency, Parallel implementations, Portability; G.1.3
[Numerical analysis]: Numerical linear algebra—linear
systems, matrix inversion, eigenvalues and eigenvectors

1. INTRODUCTION
Solving linear systems of equations and eigenvalue problems
is fundamental to scientific computing. The popular LA-
PACK library [5], and in particular its vendor optimized
implementations like Intel’s MKL [13] or AMD’s ACML [3],
have been the libraries of choice to provide these solvers
for dense matrices on shared memory systems. This pa-
per considers a redesign of the LAPACK algorithms and
their OpenCL implementation to add efficient support for
heterogeneous systems of multicore processors with GPU
accelerators and coprocessors. This is not the first time
that DLA libraries have needed a redesign to be efficient
on new architectures – notable examples being the move
from LINPACK [10] to LAPACK [5] in the 80’s to make
algorithms cache friendly, ScaLAPACK [8] in the 90’s to
support distributed memory systems, and now the PLASMA
and MAGMA libraries [1] targeting efficiency on multicore
and heterogeneous architectures, respectively.

The development of new high-performance numerical libraries
is complex, accounting for the extreme level of parallelism,
heterogeneity, and wide variety of accelerators and coproces-
sors available in current architectures. Challenges vary from
new algorithmic designs to choices of programming models,
languages, and frameworks that ease development, future
maintenance, and portability. This paper addresses these
issues while presenting our approach and algorithmic designs
in the development of the clMAGMA [9] library.

To provide a uniform portability across a variety of GPU ac-
celerators and coprocessors (e.g., Intel Xeon Phi), clMAGMA
uses OpenCL [14]. OpenCL is an open standard for off-
loading computations to accelerators, coprocessors, and multi/



manycore processors, and is maintained by the Khronos group
with the backing of major hardware and software computer
industry vendors. It offers portability across hardware and
OS software. Although the use of OpenCL provides program-
ming portability, cross-device performance portability is not
guaranteed; we specifically address this in Section 2.

To deal with the extreme level of parallelism and heterogene-
ity in current architectures, clMAGMA uses a hybridization
methodology, described in Section 3, where we split the
algorithms of interest into computational tasks of various
granularities, and properly schedule those tasks’ execution
over the heterogeneous hardware. Thus, we use a Directed
Acyclic Graph (DAG) approach to parallelism and schedul-
ing that has been developed and successfully used for dense
linear algebra libraries such as PLASMA and MAGMA [1],
as well as in general task-based approaches to parallelism,
such as runtime systems like StarPU [6] and SMPSs [7].

Besides the general cross-device considerations addressed in
Section 2, obtaining high performance in OpenCL depends
on a combination of algorithm and hardware-specific opti-
mizations, discussed in Section 4. The implication of this
on software, in order to maintain its performance portabil-
ity across hardware, is the need to build in it algorithmic
variations that are tunable, e.g., at installation time. This
is the basis of autotuning, an example of these advanced
optimization techniques.

A performance study on AMD hardware is presented in Sec-
tion 5. Besides verifying our approaches and confirming the
appeal of OpenCL and accelerators for high-performance
DLA, the results open up a number of future work opportu-
nities discussed in our conclusions.

2. CROSS-DEVICE CONSIDERATIONS
A recommended approach to developing a high-performance
and easy to maintain DLA library is to express the algorithms
of interest in terms of the BLAS standard. Performance
portability is then obtained through the use of architecture-
specific, highly tuned BLAS implementations (e.g., MKL
from Intel or ACML from AMD). LAPACK and ScaLAPACK
have demonstrated this over the years, and now we see it in
the new MAGMA and PLASMA libraries. The clMAGMA
library takes the same approach, and therefore performance
portability relies on the availability of portable OpenCL
BLAS, discussed in Section 2.1. Specifics related to OpenCL
and its implementation are also important for obtaining high-
performance and must be addressed while designing and
tuning OpenCL algorithms. Well designed microbenchmarks,
shown in Section 2.2, can be used to obtain these key OpenCL
specifics to achieving high performance.

2.1 Portable OpenCL BLAS
The Automatically Tuned Linear Algebra Software (ATLAS)
library [19] is a BLAS implementation for CPUs. ATLAS
achieves portable performance across CPUs mainly by relying
on empirical autotuning. Still, vendor libraries like MKL and
ACML, optimized for their specific architectures, provide
higher performance implementations. The same is true with
OpenCL BLAS implementations – OpenCL provides software
portability, but unless tuned for a particular architecture,
optimization opportunities can be missed.

Currently, the most complete OpenCL BLAS implementa-
tion is AMD’s clAmdBlas, provided through the AMD’s
Accelerated Parallel Processing Math Libraries (APPML)
[2]. It can be used on architectures other than AMD, but its
tuning, and therefore highest efficiency, is on AMD hardware.
The potential of OpenCL to express BLAS algorithms (vs.
other, lower level access to the hardware languages) while
obtaining high performance is evident through the clAmd-
Blas. Other implementations, e.g., from Nakasato et al. [16,
15], confirm this by obtaining impressive high performance
matrix-matrix multiplication (GEMM). In particular, the
highest performance that we are aware of has been demon-
strated by Matsumoto et al. [15] – their OpenCL DGEMM
reaches up to 848 Gflop/s, and SGEMM up to 2,646 Gflop/s,
which is 90% and 70% of the double and single precision
peak, respectively, of AMD’s Tahiti GPU (Radeon HD 7970).

In previous work, we evaluated OpenCL as a programming
tool for performance-portable BLAS [11]. Triangular solvers
(TRSM) and GEMMs were developed in OpenCL, tuned for
a specific device, and compared. The conclusion was that
OpenCL environment setup overhead is large and should
be minimized, e.g., by preprocessing or localized in library
initialization routines. More importantly, the performance re-
sults presented confirmed the conclusion above that OpenCL
is expressive enough for developing high performance BLAS,
so long as architectural specifics are taken into account in the
algorithm design. Even though good performance should not
be expected from blindly running algorithms on a new plat-
form, autotuning heuristics can help to improve performance
on a single platform.

Autotuning mechanisms are already provided in clAmdBlas
through a tuning tool that the user can run to produce
optimized OpenCL BLAS on the architecture of interest.
Thus, as performance portability of OpenCL BLAS can be
obtained, organizing higher-level libraries like clMAGMA
in terms of OpenCL BLAS can ensure their performance
portability as well.

2.2 Microbenchmarks
We developed a number of microbenchmarks to help us gain a
better understanding of OpenCL and to guide our algorithm
design and tuning. We describe two benchmarks that can be
key for performance – kernel launch overhead and CPU-GPU
data transfer. To add some context to the measurements
reported, we include comparisons with corresponding CUDA
measurements.

2.2.1 Kernel launch overhead
The average time to asynchronously invoke an OpenCL 1.2
AMD-APP (1016.4) kernel on an AMD Tahiti GPU (Radeon
HD 7900 Series) is 1.0–1.5µs. This was measured by asyn-
chronously launching an empty kernel a large number of
times and synchronizing at the end. The overhead increases
to 120µs when synchronizing after each kernel invocation.
(using a PCIe 2.0 CPU-GPU interface). Similar benchmarks
for CUDA 4.2 [18] showed an overhead of 3–7µs with no
synchronization between kernels, and 10–14µs with synchro-
nization between kernels.

We also benchmarked the kernel launch overhead for four
BLAS functions: DGEMM, DTRSM, DTRMM and DSYRK,
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Figure 1: GPU BLAS functions launch overhead
for clAmdBlas 1.8.286 with OpenCL 1.2 AMD-APP
(1016.4) on Radeon HD 7970 and CUBLAS 4.2 on
Tesla S2050, using PCIe 2.0 CPU-GPU interface.

which are used in the double precision LU, Cholesky and
QR factorizations. In order to compare with OpenCL, the
benchmark for CUDA was tested on a NVIDIA Fermi GPU
(Tesla S2050). Results for kernel launch overhead of OpenCL
and CUDA BLAS functions are shown in Figure 1. The
OpenCL BLAS functions are from AMD’s clAmdBlas 1.8.286
and the CUDA functions are from CUBLAS 4.2. The BLAS
functions in clAmdBlas have 6–9 µs asynchronous launch
overhead versus 4–5µs in CUBLAS. For synchronous launch
overhead, CUBLAS takes only 14–15µs, while clAmdBlas
increases hugely to 940–980µs. Both of these measurements
are using a PCIe 2.0 CPU to GPU interface. We can see that
the synchronous kernel launch overhead is very expensive in
OpenCL, especially for the BLAS functions.

2.2.2 CPU-GPU data transfer overhead
Transfer time for contiguous data between CPU and GPU
can be modeled as

time = latency +
bytes transferred

PCIe bandwidth
. (1)

On our system, an AMD Radeon HD 7970 card on a PCIe
2.0 interface, the measured PCIe bandwidth was 2.82 GB/s
from CPU to GPU and 3.29 GB/s from GPU to CPU. We
found that the latency was 50–60µs from CPU to GPU and
140–150µs from GPU to CPU. Benchmarks for CUDA [18]
showed that it had 10–17µs latency, which we verified on
our CUDA system (NVIDIA Tesla S2050 on the PCIe 2.0
interface) as 13–14µs latency in both directions, which is
much smaller than OpenCL.

3. DENSE LINEAR ALGEBRA IN OPENCL
3.1 Hybridization methodology
The hybridization methodology used in MAGMA [17] and
now in clMAGMA is an extension of the task-based approach
for parallelism and developing DLA on homogeneous multi-
core systems [1]. In particular,

• The computation is split into BLAS-based tasks of
various granularities, with their data dependencies, as
shown in Figure 2.

• Small, non-parallelizable tasks with significant control-
flow are scheduled on the CPUs.

• Large, parallelizable tasks are scheduled on GPUs.

Figure 2: DLA algorithm as a collection of BLAS-
based tasks and their dependencies. The algorithm’s
critical path is, in general, scheduled on the CPUs,
and large data-parallel tasks on the GPUs.

The difference with multicore algorithms is the task splitting,
which here are of various granularities to make different tasks
suitable for particular architectures, and the scheduling itself.
Specific algorithms using this methodology, and covering the
main classes of DLA, are described in the subsections below.

3.2 The clMAGMA design and functionality
The clMAGMA interface is similar to LAPACK. For ex-
ample, compare LAPACK’s LU factorization interface vs.
clMAGMA’s:

lapackf77_dgetrf(&M,&N, hA, &lda, ipiv, &info)

magma_dgetrf_gpu( M, N, dA,0, ldda, ipiv, &info, queue)

Here hA is the typical CPU pointer (double *) to the matrix
of interest in the CPU memory and dA is a pointer in the
GPU memory (magmaDouble_ptr). The last argument in every
clMAGMA call is an OpenCL queue, through which the
computation will be streamed on the GPU (magma_queue_t).

To abstract the user from knowing OpenCL, all OpenCL
data types and main functions, such as BLAS, CPU-GPU
data transfers, and memory allocations and deallocations,
are redefined in terms of clMAGMA data types and func-
tions. This design allows us to more easily port the MAGMA
library to clMAGMA, and eventually to merge them while
maintaining a single source. Also, the clMAGMA wrappers
are often simpler than the corresponding OpenCL functions,
and provide a complete set of functions for programming
hybrid high-performance numerical libraries. Thus, not only
users but application developers as well can opt to use the
clMAGMA wrappers without knowing OpenCL.

clMAGMA provides the standard four floating point arith-
metic precisions – single real, double real, single complex,
and double complex. There are routines for the so called
one-sided factorizations (LU, QR, and Cholesky), two-sided
factorizations (Hessenberg, bi-, and tridiagonal reductions),
linear system and least squares solvers, matrix inversions,
symmetric and nonsymmetric standard eigenvalue problems,



SVD, and orthogonal transformation routines, all described
in the subsections below.

As discussed in [11], compiling OpenCL kernel from source
file introduces significant amount of overhead. By caching
the Intermediate Representation (IR) resulting from clGet-
ProgramInfo to disk and loading at runtime, overhead can
be effectively reduced. AMD and NVIDIA’s OpenCL im-
plementations both allow such maneuver, which is essential
for the performance of clMAGMA since GPU kernels could
be repeated called in different routines. An efficient way
to handle the kernel compiling and catching is required. In
clMAGMA, a runtime system is implemented to fulfill this
task.

The runtime system, coded in C++ as a singleton class, pro-
vides two functionalities depending on usage phases: during
installation, runtime system compiles OpenCL source files
into IRs and stores them to disk; during execution time, the
runtime system loads IRs to memory and further builds them
into platform specific executables. At the beginning of user
level program, the runtime system compiles IR loaded from
disk and setups mapping between the name of the OpenCL
kernel and its platform specific executables through a series
of hashtables. This initialization process only executes once
to avoid repeated compiling and allow reusing executables
across different higher level routines.

3.3 LU, QR, and Cholesky factorizations
The one-sided factorizations routines implemented and cur-
rently available through clMAGMA are:

magma_zgetrf_gpu computes an LU factorization of a gen-
eral M-by-N matrix A using partial pivoting with row
interchanges;

magma_zgeqrf_gpu computes a QR factorization of a general
M-by-N matrix A;

magma_zpotrf_gpu computes the Cholesky factorization of
a complex Hermitian positive definite matrix A.

Routines in all standard four floating point precision arith-
metics are available, following LAPACK’s naming convention.
Namely, the first letter of the routine name (after the prefix
magma_) indicates the precision – z, c, d, or s for correspond-
ingly double complex, single complex, double real, or single
real. The suffix _gpu indicates that the input matrix and the
output are on the GPU memory.

The typical hybrid computation and communication pattern
for the one-sided factorizations (LU, QR and Cholesky) is
shown in Figure 3. At a given iteration, panel dP is copied
to the CPU and factored using LAPACK, and the result is
copied back to GPU. The trailing matrix, consisting of the
next panel T1 and submatrix T2, is updated on the GPU.
After receiving dP back from the CPU, T1 is updated first
using dP and the result is sent to the CPU (as being the
next panel to be factored there). While the CPU starts the
factorization of T1, the rest of trailing matrix, T2, is updated
on the GPU in parallel with the CPU factorization of panel
T1. In this pattern, only data to the right of the current

Figure 3: Typical computational pattern for the hy-
brid one-sided factorizations in clMAGMA.

panel is accessed and modified, and the factorizations that
use it are known as right-looking. The computation can be
organized differently – to access and modify data only to the
left of the panel – in which case the factorizations are known
as left-looking.

An example of a left-looking factorization, demonstrating a
hybrid algorithm implementation, is given in Figure 4 for
the Cholesky factorization. Copying the panel to the CPU,
in this case just a square block on the diagonal, is done on
line 4. The data transfer is asynchronous, so before we factor
it on the CPU (line 8), we synchronize on line 7 to enforce
that the data has arrived. Note that the CPU work from
line 8 is overlapped with the GPU work on line 6. This is
indeed the case because line 6 is an asynchronous call/request
from the CPU to the GPU to start a ZGEMM operation.
Thus control is passed to lines 7 and 8 while the GPU is
performing the ZGEMM. The resulting factored panel from
the CPU work is sent to the GPU on line 11 and used on
line 14, after making sure that it has arrived (the sync on
line 13).

Figure 4: Cholesky factorization in clMAGMA.



3.4 Orthogonal transformation routines
The orthogonal transformation routines implemented and
currently available through clMAGMA are:

magma_zungqr[_gpu] generates an M-by-N matrix Q with
orthonormal columns, which is defined as the first N
columns of a product of K elementary reflectors of order
M as returned by magma_zgeqrf_gpu;

magma_zunmqr[_gpu] overwrites a general complex M-by-
N matrix C with QC or CQ, where Q can also be
transposed or not.

The routines are available in all four precisions, and in both
CPU (input and output is on the CPU) and GPU interfaces.

Typical uses of the QR factorization require computing the
product QC for some matrix C (the zunmqr routine). For
efficiency, the matrix Q is represented implicitly as a product
of block Householder reflectors of the form I−ViTiV

T
i , for i =

1, . . . , k. Instead of forming Q explicitly and then performing
a matrix-matrix multiplication, it is cheaper to apply the
block Householder reflectors directly. Applying each reflector
requires three matrix-matrix multiplies, which clMAGMA
performs on the GPU. The V matrices are tall and skinny,
with the upper triangle logically zero, as shown in Figure 5.
In LAPACK, the upper triangle of each V contains of the
R matrix; in clMAGMA, when the V is copied to the GPU,
the upper triangle is explicitly set to zero. This allows
us to simplify the code and improve performance using a
single GEMM, instead of a less-efficient triangular multiply
(TRMM) and a GEMM. The only work on the CPU is
computing the Ti matrices when necessary.

If the Q matrix is needed explicitly, clMAGMA can com-
pute it (the zungqr routine) by multiplying the implicitly-
represented Q with identity matrix I. This is done in a
block-by-block fashion in order to be done in-place, over-
writing the implicit Q (the V Householder vectors) with the
explicit Q.

Similar routines are used by clMAGMA in the eigenvalue
and SVD problems, where orthogonal transformations are
applied to back transform eigenvectors and singular vectors.

3.5 Hessenberg, bi- and tridiagonal reductions
The two-sided factorizations routines implemented and cur-
rently available through clMAGMA are:

magma_zgehrd reduces a general matrix A to upper Hessen-
berg form H by orthogonal similarity transformations;

magma_zhetrd reduces a Hermitian matrix A to real symmet-
ric tridiagonal form T by orthogonal similarity trans-
formations;

magma_zgebrd reduces a general M-by-N matrix A to upper
or lower bidiagonal form B by orthogonal transforma-
tions.

The routines are available in all four precisions.

The Hessenberg, bidiagonal, and tridiagonal reductions are
two-sided factorizations used in the nonsymmetric eigenvalue,
symmetric eigenvalue, and SVD problem, respectively. The
standard one-stage approach to solving the nonsymmetric
eigenvalue problem applies an orthogonal transformation Q
on both sides of the matrix A to reduce it to upper Hessenberg
form, H = QAQT . QR iteration is then used to find the
eigenvalues and eigenvectors of H; the eigenvalues of H are
the same as the eigenvalues of A, while the eigenvectors can
be back-transformed using Q to find the eigenvectors of A.

Unlike the QR factorization, where the panel factorization
is independent of the trailing matrix, in the Hessenberg re-
duction, each column of the panel requires a matrix-vector
product (GEMV) with the trailing matrix. We take advan-
tage of the high bandwidth of GPUs to accelerate these
memory-bound GEMV operations during the panel factor-
ization. The algorithm is shown schematically in Figure 5.
A panel dPi is copied from the GPU to the CPU (step 1).
For each column j of the panel, a Householder vector vj is
computed (step 2) and the matrix-vector product yj = Ajvj
is computed with the trailing matrix on the GPU (step 3).
After the panel factorization, the block Householder reflec-
tor is applied with several GEMMs to update the trailing
matrix, and completed portions of the trailing matrix are
copied back to the CPU (step 4). Note that in this pattern
the communication-to-computation is in a surface-to-volume
ratio – sending a vector of length n is followed by 2n2 flops
(in the inner loop), and sending a panel of size n × nb is
followed by O(n2 × nb) flops (in the outer loop).

Similarly, the symmetric eigenvalue problem involves an
initial reduction to tridiagonal form, and the SVD involves an
initial reduction to bidiagonal form. The exact details differ
from the Hessenberg factorization, but the panel factorization
similarly involves matrix-vector products (GEMV or SYMV),
which clMAGMA performs on the GPU to take advantage
of its high memory bandwidth.

Recent success in MAGMA with two-stage algorithms for
the tridiagonal reduction [12] demonstrate that we can recast
it using compute-bound Level-3 BLAS SYMM operations,
instead of memory-bound Level-2 BLAS SYMV operations.
This provides a large speed boost compared to the traditional
one-stage algorithm. Future work for clMAGMA involves
porting these two-stage algorithms, where we expect a similar
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Figure 5: Typical communication pattern for the
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speed increase.

3.6 Linear system and eigenproblem solvers
The one- and two-sided factorizations are the major building
blocks for developing correspondingly linear system and eigen-
problem solvers. We have developed the following solvers:

magma_zpotrs_gpu solves a system of linear equations Ax =
B with a Hermitian positive definite matrix A using
the Cholesky factorization of A;

magma_zgetrs_gpu solves a system of linear equations with
general N-by-N matrix A using the LU factorization of
A;

magma_zgels_gpu solves the overdetermined least squares
problem, min ||Ax − B||, using the QR factorization
of A;

magma_zheevd computes all eigenvalues and, optionally, eigen-
vectors of a complex Hermitian matrix A. If eigenvec-
tors are desired, it uses a divide and conquer algorithm;

magma_zgeev computes the eigenvalues and, optionally, the
left and/or right eigenvectors for an N-by-N complex
nonsymmetric matrix A;

magma_zgesvd computes the singular value decomposition
(SVD) of a complex M-by-N matrix A, optionally com-
puting the left and/or right singular vectors.

The routines are available in all four precisions. The linear
solvers use the hybrid clMAGMA one-sided factorization
routines and triangular matrix solvers, as provided from
OpenCL BLAS implementations. The eigenproblem solvers
use the hybrid clMAGMA two-sided factorizations, which
are the most time consuming parts of the algorithms. The
rest is run on the CPUs, using vendor optimized LAPACK.

Related to the linear solvers, clMAGMA provides matrix
inversion routines as well. These are the:

magma_ztrtri_gpu for computing the inverse of a real upper
or lower triangular matrix;

magma_zgetri_gpu for computing the inverse of a matrix us-
ing the LU factorization computed by magma_zgetrf_gpu;

magma_zpotri_gpu for computing the inverse of a real sym-
metric positive definite matrix using its Cholesky fac-
torization computed by magma_zpotrf_gpu.

The triangular inverse routine is a hybrid, derived from
the corresponding block LAPACK algorithm. The diag-
onal blocks of the matrix are sent and inverted on the
CPU, and everything else is on the GPU. The LU inver-
sion uses magma_ztrtri_gpu to invert U and then com-
putes inv(A) by solving the system inv(A)L = inv(U) for
inv(A) (entirely on the GPU). The magma_zpotri_gpu also
uses magma_ztrtri_gpu to invert the upper (U) or lower
(L) factor of the Cholesky factorization, and a hybrid code
(magma_zlauum_gpu) to compute the product UU ′ or L′L.

4. ADVANCED OPTIMIZATIONS
We highlight three optimization techniques that are crucial
for obtaining high performance. The first one, overlapping
CPU-GPU communications with GPU computations, is im-
portant because of the slow CPU-GPU interconnect relative
to the GPU performance capabilities. For example, sending
O(1) bytes between the CPU and GPU without overlap can
result in losing the opportunity to compute O(100) double
precision flops on the GPU. The second one, overlapping
CPU and GPU work, allows us to use the entire system
more efficiently. Finally, autotuning is a technique that saves
tuning time and enables cross-device performance portability.

4.1 Overlapping CPU-GPU communications
with GPU computation

In Section 2, we saw that OpenCL can have higher CPU-
GPU data transfer latency overhead than CUDA, which can
reduce the effective bandwidth when a small size of data
is transferred between the CPU and GPU. Thus, this can
become a performance bottleneck, unless overlapped with
GPU work (or minimized with other optimization techniques).
Figure 6 shows part of the trace of a double precision LU
factorization in clMAGMA: the first row is the CPU work,
where the black color represents the time of panel factoriza-
tion; the second row is the GPU work, where the red color
represents DGEMM operations and green color represents
DTRSM. Yellow is copying data from GPU to CPU and grey
is copying data from CPU to GPU. Although computation
on the CPU has overlapped with the GPU, communication
and computation on the GPU are executed sequentially.

Figure 6: Partial CPU-GPU execution trace of a
hybrid LU factorization in clMAGMA. Yellow and
gray represent CPU-GPU communications that in
this case are not overlapped with GPU work.

In OpenCL, performing work with a device, such as execut-
ing kernels or moving data to and from the device’s local
memory, is done using a corresponding command queue [4].
A command queue is an interface for a specific device and
its associated work. A way to overlap CPU-GPU communi-
cation and GPU computation is by creating two command
queues. One queue is used for data transfers and the other
is used for kernel computations. Figure 7 shows part of the
trace of double precision LU factorization similar to Figure
6, but here we have applied the two queues optimization.
The first row is again the CPU work, the second row is the
computation work of queue 1 on the GPU, and the third
row is the communication work of queue 2. All color defini-
tions are the same as in Figure 7. Note that based on this
two queues technique, we made the communication overlap
with the GPU computation work. Experiments showed that
this approach lead to about 10% increase of performance for



double precision LU factorization.

Figure 7: Partial CPU-GPU execution trace of a
hybrid LU factorization in clMAGMA based on
the two command queues’ optimization, overlapping
CPU-GPU data transfers (the yellow and gray trans-
fers in GPU Queue 2) with GPU work (in GPU
Queue 1).

From the above two traces, we also notice that there are
some blank gaps between different kernels on the GPU. Those
represent overheads of kernel switching on the GPU.

4.2 Overlapping CPU and GPU work
In OpenCL, the host creates a data structure called a command-
queue to coordinate execution of the kernels on the devices.
The host places commands into the command-queue which
are then scheduled onto the devices. For example, in Fig-
ure 4, line 6 puts a ZGEMM in the command-queue queue.
The host still must submit the ZGEMM to the device for
execution, but this may not happen immediately. As a re-
sult, the CPU can start the computation at line 8 while the
device has not started the ZGEMM. Thus, although our high-
level algorithm is designed to overlap CPU and GPU work,
overlap may not happen in practice. In order to force the
command-queue to immediately submit the command queued
to the appropriate device, one must call clFlush(queue) [4].
Therefore, all clMAGMA BLAS wrappers first queue the cor-
responding OpenCL BLAS and immediately post a clFlush

on the queue.

The importance of overlapping CPU and GPU work is quan-
tified in Figure 8 for the case of LU factorization in double
precision (the dgetrf routine). The blue curve is the perfor-
mance of dgetrf without CPU and GPU work overlap. It
achieves up to 195 Gflop/s. The red curve is the perfor-
mance of dgetrf with overlapping CPU and GPU work, using
clFlush. It achieves up to 280 Gflop/s, i.e., getting about
1.4× speedup.

Figure 8: Advanced performance optimizations of
dgetrf in clMAGMA.

Figure 8 also shows the effect of further optimizations, and
in particular the techniques of using two queues to overlap
CPU-GPU communications with GPU computation (from
the previous subsection), and using pinned memory to get
higher transfer throughput between CPU and GPU. Putting
all these optimizations together, the performance of dgetrf
is shown by the purple curve. It achieves up to 326 Gflop/s,
which is almost 1.6× speedup compared to the original ver-
sion without any optimizations.

4.3 Autotuning
While functionality of OpenCL is portable, the resulting per-
formance often is not. Furthermore, it is commonly sufficient
to rely on highly optimized BLAS that are provided by the
vendor to guarantee transportable efficiency with respect
to the peak performance. This is clearly predicated on the
fact that the BLAS is of high quality and is capable of pro-
viding very efficient execution across a wide range of input
parameters including matrix dimensions and data-dependent
characteristics such as symmetry or transposition. In prac-
tice, this requirement is often not fulfilled and it is necessary
to use customized versions of some of the kernels or maybe
just one specific instance of the kernel for particular matrix
shapes.

5. PERFORMANCE STUDY
The performance results provided in this section use AMD’s
Radeon HD 7970 card and its multicore host, a single socket
six-core AMD Phenom II X6 1100T CPU running at 3.71
GHz. Kernels executed on the CPU use LAPACK and BLAS
from MKL 11.1, and BLAS kernels executed on the GPU
are from clAmdBlas 1.8. The OpenCL version is 1.2. We
installed AMD-APP 1016.4 as the OpenCL driver. Currently
the AMD OpenCL driver for Linux has a 512 MB maximum
limitation for a single memory allocation on the GPU, so in
our experiment we only tested matrix sizes of up to 8,000
(in double precision arithmetic).

The performance of double precision LU factorization in
clMAGMA is given in Figure 9. It achieves up to 326 Gflop/s,
getting about 5.7× speedup versus the CPU host.

Figure 9: Performance of clMAGMA’s LU factoriza-
tion in double precision vs. MKL 11.1

The performance of the double precision Cholesky factoriza-
tion in clMAGMA is shown in Figure 10. It achieves up to
344 Gflop/s, getting about 5.4× speedup versus the CPU
host.



Figure 10: Performance of clMAGMA’s Cholesky
factorization in double precision vs. MKL 11.1

The performance of the double precision QR factorization
in clMAGMA is shown in Figure 11. It achieves up to 347
Gflop/s, getting about 5.9× speedup versus the CPU host.

Figure 11: Performance of clMAGMA’s QR factor-
ization in double precision vs. MKL 11.1

The performance of the double precision Hessenberg factor-
ization in clMAGMA is shown in Figure 12. It achieves up
to 40 Gflop/s, getting about 5.5× speedup versus the CPU
host.

Figure 12: Performance of clMAGMA’s Hessenberg
factorization in double precision vs. MKL 11.1

The performance of the double precision matrix inversion in
clMAGMA (magma_zgetri_gpu) is shown in Figure 13. It
achieves up to 48 Gflop/s, getting about 1.2× speedup versus
the CPU host.

Figure 13: Performance of clMAGMA’s Matrix In-
version in double precision vs. MKL 11.1

6. CONCLUSIONS AND FUTURE WORK
We have presented high performance linear algebra routines
for a wide range linear transformation. The routines were
implemented efficiently on AMD’s Tahiti GPUs with the
use of the OpenCL standard and optimized BLAS routines
from the hardware vendor. Our optimization techniques
show a wide applicability and yield many-fold performance
improvement over highly tuned codes that constitute state-
of-the-art libraries for the current generation of multicore
CPUs. With the success we achieved in porting our high
performance kernels to OpenCL implementation on GPUs,
we are encouraged to look into extending our porting efforts
to the emerging platforms such as Intel Xeon Phi and ARM’s
Aarch64 as well as the supported editions of multicore x86
hardware that are targeted by CPU-oriented implementations
of OpenCL.
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