
LU Factorization with Partial Pivoting
for a Multicore System with Accelerators

Jakub Kurzak, Member, IEEE, Piotr Luszczek, Member, IEEE,

Mathieu Faverge, Member, IEEE, and Jack Dongarra, Life Fellow, IEEE

Abstract—LU factorization with partial pivoting is a canonical numerical procedure and the main component of the high performance

LINPACK benchmark. This paper presents an implementation of the algorithm for a hybrid, shared memory, system with standard CPU

cores and GPU accelerators. The difficulty of implementing the algorithm for such a system lies in the disproportion between the

computational power of the CPUs, compared to the GPUs, and in the meager bandwidth of the communication link between their

memory systems. An additional challenge comes from the complexity of the memory-bound and synchronization-rich nature of the

panel factorization component of the block LU algorithm, imposed by the use of partial pivoting. The challenges are tackled with the

use of a data layout geared toward complex memory hierarchies, autotuning of GPU kernels, fine-grain parallelization of memory-

bound CPU operations and dynamic scheduling of tasks to different devices. Performance in excess of one TeraFLOPS is achieved

using four AMD Magny Cours CPUs and four NVIDIA Fermi GPUs.

Index Terms—Gaussian elimination, LU factorization, partial pivoting, multicore, manycore, GPU, accelerator

Ç

1 INTRODUCTION

THIS paper presents an implementation of the canonical
formulation of the LU factorization, which relies on

partial pivoting for numerical stability. It is equivalent to
the DGETRF function from the LAPACK numerical library
[1]. Since the algorithm is coded in double precision, it can
serve as the basis for an implementation of the high
performance LINPACK benchmark (HPL) [13]. The target
platform is a system combining one CPU board with four
12-core CPUs and one GPU board with four 14-core GPUs,
for the total number of 104 hybrid cores. Here, GPU core
means a device that can independently schedule instruc-
tions, which in NVIDIA nomenclature is called a streaming
multiprocessor. It is not to be confused with a CUDA core.
The memory system of the CPUs, referred to as the host
memory is a cache-coherent nonuniform memory access shared
memory system. The GPUs have their private memories,
referred to as device memories. Communication between the
host memory and the device memories is handled by direct
memory access (DMA) engines of the GPUs and crosses the
PCI express bus.

Numerous challenges are posed both by the target
hardware and the target algorithm. Although presenting a
similar number of cores, the GPUs have an order of
magnitude higher floating-point peak performance. The
disproportion is exacerbated by the fact that GPUs are tasked
with regular, data-parallel and compute intensive work,
while CPU are tasked with irregular, synchronization-rich

and memory-bound work. The algorithm itself is challen-
ging, specifically the technique of partial pivoting, which
introduces irregular processing patterns and hard synchro-
nization points. These challenges are tackled with a
combination of both well established and novel techniques
in parallel dense linear algebra, such as:

. tile matrix layout,

. GPU kernel autotuning,

. parallel recursive panel factorization,

. the technique of lookahead,

. dynamic (superscalar) task scheduling,

. communication and computation overlapping.

Notably, the level of performance reported in this work
could be accomplished thanks to recently developed
capabilities, such as a GPU kernel autotuning methodology
and superscalar scheduling techniques.

1.1 Motivation

Two trends can be clearly observed in microprocessor
technology: steadily increasing number of cores and
integration of hybrid cores in a single chip. Current
commodity processors go as high as 16 cores (e.g., AMD
Interlagos) and all major microprocessor companies devel-
op hybrid chips (NVIDIA Tegra, AMD Fusion, Intel MIC). It
is to be expected, then, that in a few years hybrid chips with
O(100) cores will be the norm, which is why the platform of
choice for this paper is a system with 104 cores, 48 classic
superscalar cores and 56 accelerator (GPU) cores. At the
same time, accelerators are steadily gaining traction in
many areas of scientific computing [2], [19], [21], [32].

Although the HPL is commonly perceived as an
artificial benchmark, there are actually numerous examples
of applications relying heavily on the Gaussian elimination
for the solution of a large dense system of linear equations.
For instance, the electromagnetics community is a major
user of dense linear solvers. Of particular interest is the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 8, AUGUST 2013 1613

. The authors are with the Department of Electrical Engineering and
Computer Science, University of Tennessee, 1122 Volunteer Blvd, Ste 203
Claxton, Knoxville, TN 37996.
E-mail: {kurzak, luszczek, faverge, dongarra}@eecs.utk.edu.

Manuscript received 18 Jan. 2012; revised 1 Aug. 2012; accepted 5 Aug. 2012;
published online 22 Aug. 2012.
Recommended for acceptance by B. de Supinski.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-01-0038.
Digital Object Identifier no. 10.1109/TPDS.2012.242.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

computation of the radar cross section of an aircraft or a sea
vessel. The problem is commonly solved using the
boundary element method, sometimes also referred to as
the method of moments, which produces a large dense
system of linear equations, and employs the Gaussian
elimination for its solution.

The problem of achieving a self-sustaining fusion
reaction provides another good example. “... the All ORders
Spectral Algorithm (AORSA) simulation program, devel-
oped within the Scientific Discovery through Advanced
Computing (SciDAC) Numerical Computation of Wave
Plasma-Interactions in Multidimensional Systems project,
has demonstrated how electromagnetic waves can be used
for driving current flow, heating, and controlling instabil-
ities in the plasma” [6]. In the quoted article, Barrett et al.
describe how a complex version of the HPL benchmark
was used to double the performance of ScaLAPACK to
solve a system of equations with half a million unknowns
using 10,000 cores.

1.2 Original Contribution

The value of this work is in combining state-of-the-art
solutions in dense linear algebra to overcome the challenges
of producing a high speed implementation of the LU
factorization for a heterogeneous multicore system with
more than one hundred cores. Specifically, this work
leverages some very recent developments, such as the
parallel-recursive panel factorization [12], GPU kernel
autotuning [27], and dynamic (superscalar) scheduling
[18], [25]. At the same time, the solution follows the
principles of the PLASMA software library, by utilizing the
tile data layout and the superscalar scheduling subsystem,
which makes the code ready for software integration.

1.3 Block LU Factorization

The LAPACK block LU factorization is the main point of
reference here, and LAPACK naming convention is
followed. The LU factorization of a matrix M has the form
M ¼ PLU , where L is a unit lower triangular matrix, U is an
upper triangular matrix, and P is a permutation matrix. The
LAPACK algorithm proceeds in the following steps:
Initially, a set of nb columns (the panel) is factored and a
pivoting pattern is produced (DGETF2). Then, the elemen-
tary transformations, resulting from the panel factorization,
are applied to the remaining part of the matrix (the trailing
submatrix). This involves swapping of up to nb rows of the
trailing submatrix (DLASWP), according to the pivoting
pattern, application of a triangular solve with multiple
right-hand sides to the top nb rows of the trailing submatrix
(DTRSM), and finally, application of matrix multiplication
of the form C ¼ C �A�B (DGEMM), where A is the panel
without the top nb rows, B is the top nb rows of the trailing
submatrix, and C is the trailing submatrix without the top
nb rows. Then, the procedure is applied repeatedly,
descending down the diagonal of the matrix.

2 RELATED WORK

Seminal work on recursive dense linear algebra algorithms
was done by Gustavson [16], who published recursive
formulations of the Cholesky, LDLT, and LU factorizations.

Eventually, recursion was also applied to the QR factoriza-

tion by Elmroth and Gustavson [14]. Recently, Castaldo and

Whaley [7] developed fast implementations of LU and QR

panel operations using a technique referred to as parallel

cache assignment (PCA). PCA builds on the bulk synchronous

parallel model of parallelization [37], and relies on fork-and-

join execution with barrier synchronizations, but allows for

the preservation of data in caches in a sequence of multiple

BLAS 2 operations.
Work on GPU accelerated dense linear algebra routines

started before general-purpose programming environ-

ments, such as CUDA or OpenCL, were available. This

time period is often referred to, somewhat ironically, as the

general purpose GPU era. The earliest implementation of a

matrix factorization was reported by Galoppo [15], who

implemented the nonblocked LU decomposition without

pivoting, with partial pivoting, and with full pivoting.
More papers followed when CUDA became available,

largely thanks to the CUBLAS library (CUDA BLAS)

provided by NVIDIA. Implementations of dense matrix

factorizations were reported by Barrachina et al. [5],

Baboulin et al. [3], and Castillo et al. [8]. Seminal work

was done by Volkov and Demmel [38], where notably a

two-GPU implementation of the LU factorization was

reported, and one-dimensional block cyclic data distribu-

tion was used. It was followed by the work of Tomov et al.

[35], [36] in the context of the matrix algebra for GPUs and

multicore architectures (MAGMA) library.
An important part of these developments is the work

solely focusing on optimizing matrix multiplication. Early

work on tuning GEMMs in CUDA for NVIDIA GPUs

targeted the previous generation of GPUs, of the GT200

architecture, such as the popular GTX 280. Pioneering

work was done by Volkov and Demmel [38]. Similar

efforts followed in the MAGMA project [28]. The introduc-

tion of the NVIDIA Fermi architecture triggered the

development of MAGMA GEMM kernels for that archi-

tecture [30], [31], which recently evolved into a systematic

autotuning approach named automatic stencil TunerR for

accelerators (ASTRA) [27]. Other related efforts include the

compiler-based work by Rudy et al. [33] and Cui et al. [10],

and low-level kernel development by Nakasato [29] and

Tan et al. [34].
Dense linear algebra codes, including the Cholesky, LU,

and QR factorizations, have also been offloaded to the IBM

Cell B. E. accelerator [9], [22], [23], [24]. Two efforts are

specifically worth mentioning. Chen et al. [9] developed a

single precision implementation of the LINPACK bench-

mark for the QS20 system, which relied on tile matrix layout

and a cache-resident panel factorization. Kistler et al. [20]

developed a double precision implementation of the

LINPACK benchmark for the QS22 system, which em-

ployed a recursive panel factorization.
Bach et al. [4] reported an implementation of the

LINPACK benchmark for a system with AMD GPUs and

Deisher et al. [11] reported an implementation for the Intel

MIC architecture. Both implementations follow a very

different approach than the one presented in this paper.

1614 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 8, AUGUST 2013

3 SOLUTION

The solution follows the design principles of the PLASMA
numerical library by storing and processing the matrix by
tiles and using dynamic, dependency-driven, runtime task
scheduling. The same basic idea was previously applied to
the tile QR factorization [26]. This paper builds on previous
experiences to develop an implementation of a much harder
algorithm in a multi-GPU scenario. The sections to follow
outline the main hybridization idea, provide the motivation
for the use of a tile matrix layout, describe the development
of CPU and GPU kernels, explain the scheduling methodol-
ogy, and discuss the communication requirements.

3.1 Hybridization

The main hybridization idea is captured in Fig. 1 and relies
on representing the work as a directed acyclic graph (DAG)
and dynamic task scheduling, with CPU cores handling the
complex fine-grained tasks on the critical path and GPUs
handling the coarse-grained data-parallel tasks outside of
the critical path.

Some number of columns (lookahead) are assigned to the
CPUs and the rest of the matrix is assigned to the GPUs in a

one-dimensional block-cyclic fashion (Fig. 2). In each step of
the factorization, the CPUs factor a panel and update their
portion of the trailing submatrix, while the GPUs update
their portions of the trailing submatrix. After each step, one
column of tiles shifts from the GPUs to the CPUs (from
device memory to host memory).

The main advantage of this solution is the capability of
overlapping the CPU processing and the GPU processing
(and also overlapping of communication and computation).
The GPUs have to be idle while the first panel is factored.
However, the factorization of the second panel can proceed
in parallel with the application of the first panel to the
trailing submatrix. In practice, the level of overlapping is
much bigger, i.e., the panel factorizations are a few steps
ahead of updates.

3.2 Data Layout

The matrix is laid out in square tiles on the CPU side (host
memory), where each tile occupies a continuous region of
memory. Tiles are stored in column-major layout and
elements within tiles are stored in column-major layout.
This layout, referred to as column-column rectangular block
(CCRB) [17], is the native layout of the PLASMA library.
Here, only matrices evenly divisible into tiles are consid-
ered (Fig. 3). Inclusion in the PLASMA library would
require generalization of the code to matrices that are not
evenly divisible into tiles. Tiles are transposed on the GPU
side (device memory), i.e., the layout is translated to column-
row rectangular block (CRRB), which is critical to the
performance of the row swap (DLASWP) operation
(Section 3.5.1). This tilewise transposition is trivial to code
and fast to execute (Section 3.5.3).

3.3 Parallel Panel on Multicore CPUs

The canonical way of performing panel factorization in the
block LU algorithm is to use vector operations and matrix-
vector operations (Levels 1 and 2 basic linear algebra
subroutines (BLAS)). This is what the LAPACK DGETF2
routine does. Very low performance can be expected for
any realistic panel sizes, due to the memory-bound nature
of Level 1 and 2 BLAS. For instance, for panels of width 192
and height greater than 5,000, the DGETF2 routine barely
exceeds 2 Gflop/s of performance on a typical Intel or
AMD processor.

The panel factorization is in essence an LU factorization
of a narrow submatrix, commonly referred to as a tall and

KURZAK ET AL.: LU FACTORIZATION WITH PARTIAL PIVOTING FOR A MULTICORE SYSTEM WITH ACCELERATORS 1615

Fig. 1. The basic hybridization idea with fine-grained tasks on the critical
path being dispatched to individual CPU cores and coarse-grained tasks
outside of the critical path being dispatched to GPU devices.

Fig. 2. The splitting of work between the CPUs and the GPUs with a
number of columns on the left side (lookahead) processed by the CPUs
and the remaining columns on the right side processed by the GPUs.

Fig. 3. Left: The CCRB layout used by the PLASMA library (Here, the
A11 region defines the supported CPU layout). Right: The supported
GPU layout (the A11 region of the CRRB layout).

skinny matrix. Therefore, it can be subdivided into a
sequence of yet thinner panel factorizations and updates.
For instance, the standard panel width in LAPACK is 64,
so it makes sense to call the DGETRF function in LAPACK
to factorize a panel of width 192. This function will
internally perform three panel factorizations of width 64,
by calling DGETF2, and two trailing submatrix updated,
corresponding to the first two panels. Unfortunately, due
to the narrow shape of the submatrices involved, this
approach is only slightly more compute intensive, and the
performance only goes up to 3 Gflop/s. This is still
inadequate, considering that the GPUs can provide in
excess of 1 Tflop/s of performance.

The problem is that it takes much longer to factor the
panels than it takes to apply the corresponding updates. In

such a case, the panel factorizations completely dominate

the execution time, effectively nullifying the benefits of the
GPUs. Clearly, much faster panel factorization is needed. A

similar argument has been made for codes that do not

attempt to overlap panel factorizations and updates of
trailing submatrices [7].

The application of recursion allows for a decrease in

memory intensity by introducing some degree of level 3

BLAS operations [16] (Fig. 4). At the same time, tiles of the
panel are statically assigned to cores and each core

preserves the same set of tiles throughout all the steps of

the panel factorization. At some point in the LU factoriza-
tion, panels become short enough to fit in the aggregate

cache of the designated cores, i.e., panel operations become

cache resident, which at some level resembles the technique
of PCA [7] currently employed by automatically tuned

linear algebra software (ATLAS). The cores are forced to

work in lock step, but can benefit from a high level of cache
reuse. The ultrafine granularity of operations requires very

lightweight synchronization. Synchronization is implemen-

ted using busy waiting on volatile variables and works at the
speed of hardware cache-coherency.

Fig. 5 shows the scalability of the panel implementation for

panels of width 192, when using 6 cores, 12 cores (one socket),

and 24 cores (two sockets). Performance of 6 cores exceeds
12 Gflop/s, performance of 12 cores exceeds 21 Gflop/s, and

performance of 24 cores exceeds 28 Gflop/s. This is a

tremendous performance improvement over the baseline
DGETF2 and DGETRF functions.

3.4 CPU Update Kernels

The update is relatively straightforward and requires three
operations: row swap (DLASWP), triangular solve
(DTRSM), and matrix multiplication (DGEMM). In the case
of DLASWP, one core is responsible for swaps in
one column of tiles. The LAPACK DLASWP function
cannot be used, because of the use of tile layout, so
DLASWP with augmented address arithmetic is hand
coded. In the case of DTRSM and DGEMM, one core is
responsible for one tile. Calls to the Intel Math Kernel Library
(MKL) are used with layout set to column major.

3.5 GPU Kernels

The set of required GPU kernels includes the kernels to
apply the update to the trailing submatrix (DLASWP,
DTRSM, and DGEMM), and the kernel to translate the
panel between the CCRB layout, used on the CPU side, and
the CRRB layout, used on the GPU side. The DLASWP
kernel, the DTRSM kernel, and the transposition kernel are
simple to write and do not have much impact on the
runtime. These kernels are described first. They are followed
by a longer description of the DGEMM kernel, which
dominates the execution time and is the most complex.

3.5.1 DLASWP

The DLASWP routine swaps rows of the trailing submatrix
according to the pivoting pattern established in the panel
factorization. This operation only performs data motion,
and the GPUs are very sensitive to the matrix layout in
memory. In raw-major layout, threads in a warp can
simultaneously access consecutive memory locations. This
is not the case in column-major layout, where threads access
memory with a stride. In this case, each thread generates a
separate memory request, which is devastating to perfor-
mance. As a result, performance is two orders of magnitude
lower, and the swap operation dominates the update.

1616 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 8, AUGUST 2013

Fig. 4. Pseudocode for the recursive panel factorization.

Fig. 5. Performance results for panel of width 192 with different number
of cores.

This forces the use of the CRRB format, i.e., row-major
storage of elements within tiles. As soon as the CRRB
format is used, a straightforward implementation of the
DLASWP operation completely suffices. Each thread block
is tasked with swaps in one column of tiles and creates
NB threads to perform them, one thread per one column
of elements. This may not yet be the fastest possible way
of implementing the swap. However, at this point, the
impact of the swap operation on the overall performance
becomes negligible.

3.5.2 DTRSM

The DTRSM routine uses the lower triangle of the NB�
NB diagonal block to apply triangular solve to the block of
right-hand sides formed by the top NB rows of the trailing
submatrix. An efficient implementation of this routine on a
GPU is difficult due to the data-parallel nature of GPUs and
small size of the solve (32 � NB � 288).

In such a case, the standard procedure for GPUs is to
replace the in-place triangular solve operation with an out-
of-place multiplication of the block of right-hand sides by
the inverse of the triangle. After the panel factorization, one
CPU core applies the triangular solve to an NB�NB
identity matrix. In the update phase, the GPUs call the
DGEMM routine to apply the inverted matrix to the block
of right-hand sides in an out-of-place fashion, followed by a
copy of the result to the location of the original block of
right-hand sides.

This operation executes at the speed of the DGEMM
operation, with twice as many FLOPs as the standard
DTRSM function. This is the fastest way of implementing it,
known to the authors. Because it only affects a small portion
of the trailing submatrix, its execution time is negligible,
compared to DGEMM.

3.5.3 CCRB-CRRB Conversion

As already mentioned in Section 3.2, tile layout has
numerous advantages and is the layout of choice for the
PLASMA library. However, PLASMA lays out data in tiles

by columns, and the GPUs require data to be laid out by

rows. Otherwise, the DLASWP operation cannot perform

adequately. Therefore, an operation is needed which

internally transposes each tile, i.e., makes a conversion

between the CCRB and the CRRB formats.
A very simple implementation is used here. Each thread

block launches 1,024 threads arranged in a 32� 32 grid, and

each thread swaps two elements of the matrix to their

transposed locations. The submatrix (column) being trans-

posed is overlaid with a rectangular grid of blocks. Threads

with the first element below the tile’s diagonal perform the

swap. Threads with the first element above the diagonal

quit. At this point, the impact of the swap operation on the

overall performance is negligible.

3.5.4 DGEMM

The DGEMM kernels are produced using the ASTRA

system [27], which follows the principles of automated

empirical optimization of software, popularized by the ATLAS

[39]. The same process is currently used to produce

DGEMM kernels for the MAGMA project.
The kernel is expressed through a parametrized stencil,

creating a large search space of possible implementations.

The search space is aggressively pruned, using mostly

constraints related to the usage of hardware resources. On

NVIDIA GPUs, one of the main selection criteria is

occupancy, i.e., the capability of the kernel to launch a big

number of single instruction multiple threads threads. The

pruning process identifies a few tens of kernels for each tile

size. The final step of autotuning is benchmarking these

kernels to find the best performing ones.
There are two differences between the kernels used here

and the MAGMA kernels. MAGMA kernels operate on

matrices in canonical FORTRAN 77 column-major layout,

compliant with the BLAS standard. The kernels used here

operate on matrices in CRRB tile layout [17]. Also, MAGMA

kernels are tuned for the case where all three input matrices

are square, while the kernels used here are tuned for the

block outer product operation in the LU factorization,

i.e., C ¼ C �A�B, where the width of A and the height

of B are equal to the matrix tile size nb.
Fig. 6 shows the performance of the fastest kernels.

Table 1 also shows the corresponding values of the tuning

parameters. The performance is slightly above 200 Gflop/s

at K ¼ NB ¼ 32, reaches 250 Gflop/s at K ¼ NB ¼ 64 and

roughly 280 Gflop/s for K ¼ NB ¼ 128, 192, and 256.

KURZAK ET AL.: LU FACTORIZATION WITH PARTIAL PIVOTING FOR A MULTICORE SYSTEM WITH ACCELERATORS 1617

Fig. 6. Best asymptotic performance of the schur complement operation
for each tiling.

TABLE 1
Parameters of the Fastest Kernels

3.6 Scheduling

Manually, multithreading the hybrid LU factorization
would be nontrivial. It would be a challenge to track
dependencies without automation, given the three different
levels of granularity involved: single tile, one column, a
large block (submatrix). Here, the QUARK superscalar
scheduler [40] is used for automatic dependency tracking
and work scheduling. The LU factorization code is
expressed with the canonical serial loop nest (Fig. 7), where
calls to CPU and GPU kernels are augmented with
information about sizes of affected memory regions and
directionality of arguments (IN, OUT, INOUT). QUARK
schedules the work by resolving data hazards (RaW, WaR,
WaW) at runtime. Three important extensions are critical to
the implementation of the hybrid LU factorization: task
prioritization, variable-length list of dependencies, and
support for nested parallelism.

The first feature is task prioritization. It is essential that
CPUs aggressively execute the critical path, i.e., traverse the
DAG in a depth-first fashion. This guarantees that
the panels are executed quickly and sent to the GPUs. The
DAG, however, is never built in its entirety and the
scheduler has no way of knowing the critical path. Instead,
the critical path is indicated by the programmer, by using a
priority flag when queuing the tasks in the critical path:
panel factorizations and updates of the columns immedi-
ately to the right of each panel. Prioritized tasks are placed
in the front of the execution queue.

The second feature is variable-length lists of parameters.
CPU tasks, such as panel factorizations and row swaps,
affect columns of the matrix of variable height. For such
tasks, the list of dependencies is created incrementally, by
looping over the tiles involved in the operation. It is a
similar situation for the GPU tasks, which involve large
blocks of the matrix (large arrays of tiles). The only
difference is that, here, transitive (redundant) dependencies
are manually removed to decrease scheduling overheads,
while preserving correctness.

The third crucial extension of QUARK is support for
nested parallelism, i.e., superscalar scheduling of tasks,
which are internally multithreaded. The hybrid LU factor-
ization requires parallel panel factorization for the CPUs to
be able to keep pace with the GPUs. At the same time, the

ultrafine granularity of the panel operations prevents the
use of QUARK inside the panel. Instead, the panel is
manually multithreaded using cache coherency for syn-
chronization and scheduled by QUARK as a single task,
entered at the same time by multiple threads.

3.7 Communication

Communication is shown on Fig. 8. Each panel factorization
is followed by a broadcast of the panel to all the GPUs.
After each update, the GPU in possession of the leading
leftmost column sends that column back to the CPUs (host
memory). These communications are expressed as QUARK
tasks with proper dependencies linking them to the
computational tasks. Because of the use of lookahead, the
panel factorizations can proceed ahead of the trailing
submatrix updates and so can transfers, which allows for
perfect overlapping of communication and computation, as
further discussed in the following section.

4 RESULTS

This section includes a precise description of the hardware-
software environment, followed by the performance results
and a detailed discussion.

4.1 Hardware and Software

The system used for this work couples one CPU board with
four sockets and one GPU board with four sockets. The CPU
board is an NVIDIA Tesla S2050 system with four Fermi
chips, 14 multiprocessors each, clocked at 1.147 GHz. The
CPU board is a H8QG6 Supermicro system with 4 AMD
Magny Cours chips, 12 cores each, clocked at 2.1 GHz.

The theoretical peak of a single CPU socket amounts to
2:1 GHz� 12 cores� 4 ops per cycle ’ 101 Gflop=s, making
it � 403 Gflop/s for all four CPU sockets. The theoretical
peak of a single GPU amounts to 1:147 GHz� 14 cores �
32 ops per cycle ’ 514 Gflop=s, making it � 2; 055 Gflop/s
for all four GPUs. The combined CPU-GPU peak is
� 2459 Gflop=s.

The system runs Linux kernel version 2.6.35.7 (Red Hat
distribution 4.1.2-48). The CPU part of the code is built
using GCC 4.4.4. Intel MKL version 2011.2.137 is used for
BLAS calls on the CPUs. The GPU part of the code is built
using CUDA 4.0.

4.2 Performance

Fig. 9 shows the overall performance of the hybrid LU
factorization, and Table 2 lists the exact performance
number for each point along with values of tuning
parameters. Tuning is done by exhaustive search across
all parameters. Matrix size goes up to 34,560. Beyond that

1618 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 8, AUGUST 2013

Fig. 7. Simplified QUARK code for the LU factorization.

Fig. 8. CPU-GPU (host to device) communication.

point, the size of memory on all GPUs is exceeded. Each
GPU can provide 2.6 GB of error correcting code protected
memory. For comparison, the light gray line shows the
performance of a CPU-only run using all 48 CPU cores,
which is equivalent in behavior and performance to a call to
the DGETRF routine in PLASMA.

Fig. 10 shows a small fragment in the middle of a
23,040 run (the smallest size exceeding 1 Tflop/s perfor-
mance). In the CPU part, only the panel factorizations are
shown. The steps shown on the figure correspond to
factoring submatrices of size � 12;000. Due to the deep
lookahead, panel factorizations on the CPUs run a few steps
ahead of trailing submatrix updates on the GPUs. This
allows for perfect overlapping of CPU work and GPU work.
It also allows for perfect overlapping of communication
between the CPUs and the GPUs, i.e., between the host
memory and the device memories. Each panel factorization
is followed by a broadcast of the panel to the GPUs (light

gray DMA). Each trailing submatrix update is followed by
returning one column to the CPUs (dark gray DMA).

Fig. 11 shows the performance of the panel factorization
throughout the largest run (34,560), using different numbers
of cores, for panels of width 192. The jagged shape of the
lines reflects the fact that the panel cores have to compete for
main memory with the other cores, applying updates at the
same time. Generally, more cores provide higher perfor-
mance, due to more computing power and larger capacity of
their combined caches. However, 24 cores (two sockets)
provide only a small performance improvement over
12 cores (single socket) due to the higher cost of intersocket
communication over communication within the same sock-
et. In actual LU runs, the use of 12 cores turns out to always
be optimal, even for large matrices. While 12-core panel
factorizations are capable of keeping up with GPU updates,
the remaining cores can be committed to CPU updates.

Fig. 12 shows the performance of the GPU DGEMM
kernel throughout the entire factorization. The gray line
shows the DGEMM kernel performance on a single GPU.
The black line shows the performance of the 4-GPU
DGEMM task. The jagged shape of the line is due to the

KURZAK ET AL.: LU FACTORIZATION WITH PARTIAL PIVOTING FOR A MULTICORE SYSTEM WITH ACCELERATORS 1619

Fig. 9. Overall performance of the LU factorization.

TABLE 2
LU Performance and Values of Tuning Parameters

Fig. 10. A small portion in the middle of the 1 Tflop/s run.

Fig. 11. Performance of panel factorization in each step of matrix
factorization.

load imbalance among the GPUs. The high peaks corre-
spond to the calls where the load is perfectly balanced,
i.e., the number of columns updated by the GPUs is
divisible by 4. When this is not the case, the number of
columns assigned to different GPUs can differ by one. The
load imbalance can be completely eliminated by scheduling
the GPUs independently. Although, potential performance
benefits are on the order of a few percent.

5 CONCLUSIONS

The results reveal the challenges of programming a hybrid
multicore system with accelerators. There is a disparity in
the performance of the CPUs and the GPUs to start with. It
turns into a massive disproportion when the CPUs are
given the difficult (synchronization-rich and memory-
bound) task of panel factorization, and the GPUs are given
the easy (data-parallel and compute-bound) task of matrix
multiplication. While the performance of panel factorization
on the CPUs is roughly at the level of 20 Gflop/s, the
performance of matrix multiplication on the GPUs is almost
at the level of 1,200 Gflop/s (two orders of magnitude). The
same disproportion applies to the computational power of
the GPUs versus the communication bandwidth
between the CPU memory and the GPU memory (host to
device). The key to achieving good performance under such
adverse conditions is overlapping of CPU processing and
GPU processing, and overlapping of communication.

6 SOFTWARE

The code is available from the authors upon request. If
released, the code will be available under the modified
BSD license.

ACKNOWLEDGMENTS

The authors thank David Luebke, Steven Parker, and
Massimiliano Fatica for their insightful comments about
the Fermi architecture.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, L.S. Blackford, J.W. Demmel,
J.J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A.
McKenney, and D. Sorensen, LAPACK Users’ Guide. SIAM,
http://www.netlib.org/lapack/lug/. 1992.

[2] D.B. Kirk and W.W. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach, Applications of GPU Computing
Series. Morgan Kaufmann, 2010.

[3] M. Baboulin, J.J. Dongarra, and S. Tomov, “LAPACK Working
Note 200: Some Issues in Dense Linear Algebra for Multicore and
Special Purpose Architectures,” Technical Report UT-CS-08-615,
Electrical Eng. and Computer Science Dept., Univ. of Tennessee,
www.netlib.org/lapack/lawnspdf/lawn200.pdf" www.
netlib.org/lapack/lawnspdf/lawn200.pdf, 2008.

[4] M. Bach, M. Kretz, V. Lindenstruth, and D. Rohr, “Optimized HPL
for AMD GPU and Multi-Core CPU Usage,” Computer Science:
Research Development, vol. 26, nos. 3/4, pp. 153-164, 2011, DOI:
10.1007/s00450-011-0161-5.

[5] S. Barrachina, M. Castillo, F.D. Igual, R. Mayo, and E.S. Quintana-
Orti, “Solving Dense Linear Systems on Graphics Processors,”
Proc. 14th Int’l Euro-Par Conf. Parallel Processing, pp. 739-748, Aug.
2008, DOI: 10.1007/978-3-540-85451-7_79.

[6] R.F. Barrett, T.H.F. Chan, E.F. D’Azevedo, E.F. Jaeger, K. Wong,
and R.Y. Wong, “Complex Version of High Performance
Computing LINPACK Benchmark (HPL),” Concurrency Computa-
tion: Practice Experience, vol. 22, no. 5, pp. 573-587, 2009, DOI:
10.1002/cpe.1476.

[7] A.M. Castaldo and R.C. Whaley, “Scaling LAPACK Panel
Operations Using Parallel Cache Assignment,” Proc. ACM
SIGPLAN Symp. Principles and Practice of Parallel Programming
(PPoPP ’10), Jan. 2010, DOI: 10.1145/1693453.1693484.

[8] M. Castillo, E. Chan, F.D. Igual, R. Mayo, E.S. Quintana-Orti,
G. Quintana-Orti, R. van de Geijn, and F.G. Van Zee,
“FLAME Working Note 31: Making Programming Synon-
ymous with Programming for Linear Algebra Libraries,”
Technical Report TR-08-20, Computer Science Dept., Univ. of
Texas at Austin, www.cs.utexas.edu/users/flame/pubs/
flawn31.pdf, 2008.

[9] T. Chen, R. Raghavan, J.N. Dale, and E. Iwata, “Cell Broadband
Engine Architecture and Its First Implementation—A Perfor-
mance View,” IBM J. Research & Development, vol. 51, no. 5,
pp. 559-572, 2007, DOI: 10.1147/rd.515.0559.

[10] H. Cui, L. Wang, J. Xue, Y. Yang, and X. Feng, “Automatic Library
Generation for BLAS3 on GPUs,” Proc. Int’l Parallel and Distributed
Processing Symp., May 2011, DOI: 10.1109/IPDPS.2011.33.

[11] M. Deisher, M. Smelyanskiy, B. Nickerson, V.W. Lee, M.
Chuvelev, and P. Dubey, “Designing and Dynamically Load
Balancing Hybrid LU for Multi/Many-Core,” Computer Science
Research and Development, vol. 26, no. 3/4, pp. 211-220, 2011, DOI:
10.1007/s00450-011-0169-x.

[12] J. Dongarra, M. Faverge, H. Ltaief, and P. Luszczek, “LAPACK
Working Note 259: Achieving Numerical Accuracy and High
Performance Using Recursive Tile LU Factorization,” Technical
Report UT-CS-11-688, Electrical Eng. and Computer Science Dept.,
Univ. of Tennessee, http://www.netlib.org/lapack/lawnspdf/
lawn259.pdf, 2011.

[13] J.J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK
Benchmark: Past, Present and Future,” Concurrency Computation:
Practice Experience, vol. 15, no. 9, pp. 803-820, 2003, DOI: 10.1002/
cpe.728.

[14] E. Elmroth and F.G. Gustavson, “Applying Recursion to Serial
and Parallel QR Factorization Leads to Better Performance,” IBM
J. Research and Development, vol. 44, no. 4, pp. 605-624, 2000, DOI:
10.1147/rd.444.0605.

[15] N. Galoppo, N.K. Govindaraju, M. Henson, and D. Manocha,
“LU-GPU: Efficient Algorithms for Solving Dense Linear Systems
on Graphics Hardware,” Proc. ACM/IEEE Conf. Supercomputing,
Nov. 2005, DOI: 10.1109/SC.2005.42.

[16] F.G. Gustavson, “Recursion Leads to Automatic Variable
Blocking for Dense Linear-Algebra Algorithms,” IBM J. Research
Development, vol. 41, no. 6, pp. 737-756, 1997, DOI: 10.1147/
rd.416.0737.

[17] F.G. Gustavson, L. Karlsson, and B. Kågström, “Parallel and
Cache-Efficient in-Place Matrix Storage Format Conversion.”
ACM Trans. Math. Software, vol. 38, no. 3, article no. 17, 2012,
DOI: 10.1145/2168773.2168775.

1620 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 8, AUGUST 2013

Fig. 12. Performance of DGEMM in each step of matrix factorization.

[18] A. Haidar, H. Ltaief, A. YarKhan, and J.J. Dongarra, “Analysis of
Dynamically Scheduled Tile Algorithms for Dense Linear Algebra
on Multicore Architectures,” Concurrency Computation: Practice
Experience, vol. 24, pp. 305-321, 2011, DOI: 10.1002/cpe.1829.

[19] GPU Computing Gems Jade Edition, Applications of GPU Comput-
ing Series, W.W. Hwu, ed. Morgan Kaufmann, 2011.

[20] M. Kistler, J. Gunnels, D. Brokenshire, and B. Benton, “Program-
ming the Linpack Benchmark for the IBM PowerXCell 8i
Processor,” Scientific Programming, vol. 17, nos. 1/2, pp. 43-57,
2009, DOI: 10.3233/SPR-2009-0278.

[21] Scientific Computing with Multicore and Accelerators, J. Kurzak,
D.A. Bader, J. Dongarra, eds. Chapman & Hall, 2010.

[22] J. Kurzak, A. Buttari, and J.J. Dongarra, “Solving Systems of
Linear Equation on the CELL Processor Using Cholesky Factor-
ization,” Trans. Parallel Distributed System, vol. 19, no. 9, pp. 1175-
1186, 2008, DOI: TPDS.2007.70813.

[23] J. Kurzak and J.J. Dongarra, “Implementation of Mixed Precision
in Solving Systems of Linear Equations on the CELL Processor,”
Concurrency Computation: Practice Experience, vol. 19, no. 10,
pp. 1371-1385, 2007, DOI: 10.1002/cpe.1164.

[24] J. Kurzak and J.J. Dongarra, “QR Factorization for the Cell
Broadband Engine,” Scientific Programming, vol. 17, nos. 1/2,
pp. 31-42, 2009, DOI: 10.3233/SPR-2009-0268.

[25] J. Kurzak, H. Ltaief, J.J. Dongarra, and R.M. Badia, “Scheduling
Dense Linear Algebra Operations on Multicore Processors,”
Concurrency Computation: Practice Experience, vol. 21, no. 1,
pp. 15-44, 2009, DOI: 10.1002/cpe.1467.

[26] J. Kurzak, R. Nath, P. Du, and J.J. Dongarra, “An Implementation
of the Tile QR Factorization for a GPU and Multiple CPUs,” Proc.
State of the Art in Scientific and Parallel Computing Conf., pp. 248-257,
June 2010, DOI: 10.1007/978-3-642-28145-7.

[27] J. Kurzak, S. Tomov, and J. Dongarra, “LAPACK Working Note
245: Autotuning GEMMs for Fermi,” Technical Report UT-CS-11-
671, Electrical Eng. and Computer Science Dept., Univ. of
Tennessee, www.netlib.org/lapack/lawnspdf/lawn245.pdf, 2011.

[28] Y. Li, J. Dongarra, and S. Tomov, “A Note on Auto-Tuning GEMM
for GPUs,” Proc. Int’l Conf. Computational Science, pp. 884-892, May
2009, DOI: 10.1007/978-3-64 2-01970-8_89.

[29] N. Nakasato, “A Fast GEMM Implementation on a Cypress
GPU,” Proc. First Int’l Workshop Performance Modeling, Benchmark-
ing and Simulation of High Performance Computing Systems, http://
www.dcs.warwick.ac.uk/sdh/pmbs10/pmbs10/Workshop_
Programme_file s/fastgemm.pdf, Nov. 2010.

[30] R. Nath, S. Tomov, and J. Dongarra, “Accelerating GPU Kernels
for Dense Linear Algebra,” Proc. Int’l Meeting High Performance
Computing for Computational Science, pp. 83-92, June 2010, DOI:
10.1007/978-3-642-19328-6_10.

[31] R. Nath, S. Tomov, and J. Dongarra, “An Improved MAGMA
GEMM for Fermi Graphics Processing Units,” Int’l J. High
Performance Computing Applications, vol. 24, no. 4, pp. 511-515,
2010, DOI: 10.1177/1094342010385 729.

[32] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A.E.
Lefohn, and T.J. Purcell, “A Survey of General-Purpose Computa-
tion on Graphics Hardware,” Computer Graphics Forum, vol. 26,
no. 1, pp. 80-113, 2007, DOI: 10.1111/j.146 7-8659.2007.01012.x.

[33] G. Rudy, M.M. Khan, M. Hall, C. Chen, and J. Chame, “A
Programming Language Interface to Describe Transformations
and Code Generation,” Proc. 23rd Int’l Workshop Languages and
Compilers for Parallel Computing, pp. 136-150, Oct. 2010, DOI:
10.1007/978-3-642-19595-2_10.

[34] G. Tan, L. Li, S. Triechle, E. Phillips, Y. Bao, and N. Sun, “Fast
Implementation of DGEMM on Fermi GPU,” Proc. IEEE/ACM
Supercomputing Conf., Nov. 2011, DOI: 10.1145/2063384.2063431.

[35] S. Tomov, J. Dongarra, and M. Baboulin, “Towards Dense Linear
Algebra for Hybrid GPU Accelerated Manycore Systems,” Parallel
Computing, vol. 36, nos. 5/6, pp. 232-240, 2010, DOI: 10.1016/
j.parco.20 09.12.005.

[36] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense Linear
Algebra Solvers for Multicore with GPU Accelerators.” Proc. IEEE
Int’l Parallel and Distributed Processing Symp., pp. 1-8, Apr. 2010,
DOI: 10.1109/IPDPSW.201 0.5470941.

[37] L.G. Valiant, “A Bridging Model for Parallel Computation.”
Comm. ACM, vol. 33, no. 8, pp. 103-111, 1990, DOI: 10.1145/
79173.79181.

[38] V. Volkov and J.W. Demmel, “Benchmarking GPUs to Tune Dense
Linear Algebra,” Proc. ACM/IEEE Conf. Supercomputing, Nov. 2008,
DOI: 10.1145/1413370.1413402.

[39] R.C. Whaley, A. Petitet, and J. Dongarra, “Automated Empirical
Optimizations of Software and the ATLAS Project,” Parallel
Computing, vol. 27, nos. 1-20, pp. 3-35, 2001, DOI: 10.1016/
S0167-81 91(00)00087-9.

[40] A. YarKhan, J. Kurzak, and J. Dongarra, “QUARK Users’ Guide:
Queueing and Runtime for Kernels,” Technical Report ICL-UT-11-
02, Innovative Computing Laboratory, Univ. of Tennessee, http://
icl.cs.utk.edu/projectsfiles/plasma/pubs/56-quark_users_guide.
pdf, Apr. 2011.

Jakub Kurzak received the MSc degree in
electrical and computer engineering from the
Wroclaw University of Technology, Poland, and
the PhD degree in computer science from the
University of Houston. He is a research director
at the Innovative Computing Laboratory in
the Department of Electrical Engineering and
Computer Science, University of Tennessee,
Knoxville. His research interests include parallel
algorithms, specifically in the area of numerical

linear algebra, and also parallel programming models and performance
optimization for parallel architectures, multicore processors, and GPU
accelerators. He is a member of the IEEE.

Piotr Luszczek is a research director at the
University of Tennessee Knoxville’s Innovative
Computing Laboratory. His core research activ-
ity is centered around performance modeling
and evaluation. He has extensive experience
with high performance numerical linear algebra
and signal processing codes that achieve high
efficiency on a varied array of hardware archi-
tectures, including massively parallel high end
distributed memory machines, shared memory

servers, and mobile platforms that all feature specialized and general
purpose accelerators running on the major operating systems. His
research also revolves around long-term energy consumption and
performance trends in high performance and cloud computing. His
contributions to the scientific community include conference proceed-
ings, journals, book chapters, and patent applications that showcase his
main research agenda and expertize, as well as programming
paradigms, parallel language design and productivity aspects of high
performance scientific computing. He is a member of the IEEE.

Mathieu Faverge received the PhD degree in
computer science from the University of Bor-
deaux 1, France. He is a postdoctoral research
associate at the University of Tennessee Knox-
ville’s Innovative Computing Laboratory. His
main research interests are numerical linear
algebra algorithms for sparse and dense pro-
blems on massively parallel architectures, and
especially DAG algorithms relying on dynamic
schedulers. He has experience with hierarchical

shared memory, heterogeneous and distributed systems, and his
contributions to the scientific community include efficient linear algebra
algorithms for those systems. He is a member of the IEEE.

Jack Dongarra holds an appointment at the
University of Tennessee, Oak Ridge National
Laboratory, and the University of Manchester.
He specializes in numerical algorithms in linear
algebra, parallel computing, use of advanced-
computer architectures, programming methodol-
ogy, and tools for parallel computers. He
received the IEEE Sid Fernbach Award in 2004
for his contributions in the application of high
performance computers using innovative ap-

proaches; in 2008, he received the first IEEE Medal of Excellence in
Scalable Computing; in 2010, he was the first recipient of the SIAM
Special Interest Group on Supercomputing’s award for Career Achieve-
ment; and in 2011, he received the IEEE IPDPS 2011 Charles Babbage
Award. He is a fellow of the AAAS, ACM, and SIAM, and a member of
the National Academy of Engineering. He is a life fellow of the IEEE.

KURZAK ET AL.: LU FACTORIZATION WITH PARTIAL PIVOTING FOR A MULTICORE SYSTEM WITH ACCELERATORS 1621

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

