
 http://hpc.sagepub.com/
Computing Applications

International Journal of High Performance

 http://hpc.sagepub.com/content/28/2/196
The online version of this article can be found at:

DOI: 10.1177/1094342013502097

2013
 2014 28: 196 originally published online 30 AugustInternational Journal of High Performance Computing Applications

Azzam Haidar, Stanimire Tomov, Jack Dongarra, Raffaele Solcà and Thomas Schulthess
fine-grained memory aware tasks

GPU generalized eigensolver for electronic structure calculations based on−A novel hybrid CPU

Published by:

 http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing ApplicationsAdditional services and information for

 http://hpc.sagepub.com/cgi/alertsEmail Alerts:

 http://hpc.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://hpc.sagepub.com/content/28/2/196.refs.htmlCitations:

 What is This?

- Aug 30, 2013OnlineFirst Version of Record

- May 12, 2014Version of Record >>

 at UNIV OF TENNESSEE on June 9, 2014hpc.sagepub.comDownloaded from at UNIV OF TENNESSEE on June 9, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/content/28/2/196
http://www.sagepublications.com
http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://hpc.sagepub.com/content/28/2/196.refs.html
http://hpc.sagepub.com/content/28/2/196.full.pdf
http://hpc.sagepub.com/content/early/2013/08/29/1094342013502097.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://hpc.sagepub.com/
http://hpc.sagepub.com/

Regular Article

A novel hybrid CPU–GPU generalized
eigensolver for electronic structure
calculations based on fine-grained
memory aware tasks

Azzam Haidar1, Stanimire Tomov1, Jack Dongarra1,2,3,
Raffaele Solcà4 and Thomas Schulthess4,5

Abstract
The adoption of hybrid CPU–GPU nodes in traditional supercomputing platforms such as the Cray-XK6 opens accelera-
tion opportunities for electronic structure calculations in materials science and chemistry applications, where medium-
sized generalized eigenvalue problems must be solved many times. These eigenvalue problems are too small to effectively
solve on distributed systems, but can benefit from the massive computing power concentrated on a single-node, hybrid
CPU–GPU system. However, hybrid systems call for the development of new algorithms that efficiently exploit hetero-
geneity and massive parallelism of not just GPUs, but of multicore/manycore CPUs as well. Addressing these demands, we
developed a generalized eigensolver featuring novel algorithms of increased computational intensity (compared with the
standard algorithms), decomposition of the computation into fine-grained memory aware tasks, and their hybrid execu-
tion. The resulting eigensolvers are state-of-the-art in high-performance computing, significantly outperforming existing
libraries. We describe the algorithm and analyze its performance impact on applications of interest when different
fractions of eigenvectors are needed by the host electronic structure code.

Keywords
Eigensolver, generalized eigensolver, two-stage, multicore, GPU, hybrid, electronic structure calculations, high
performance

1. Introduction

Scientific computing applications, ranging from computing

frequencies that will propagate through a medium, to earth-

quake response of a bridge, or energy levels of electrons in

nanostructure materials, require the solution of eigenvalue

problems. There are many ways to mathematically formu-

late and numerically solve these problems (Demmel et al.,

2000). In this work we are interested in dense eigensolvers

for the generalized Hermitian-definite problems of the form

Ax ¼ lBx; ð1Þ

where A is a Hermitian dense matrix and B is Hermitian pos-

itive definite. These solvers are needed for electronic struc-

ture calculations in materials science and chemistry (Kent,

2008; Auckenthaler et al., 2011; Singh, 1994), where (1) must

be solved many times in the context of a parallel code. Modest

matrix dimensions of a few thousand to 10,000 or 20,000

seem to pose a challenge for most practical purposes, because

the matrices are too small for the eigensolver to effectively

scale on a large distributed memory system. The alternative,

which we target in this work, is to develop algorithms that will

effectively scale on massively parallel shared memory sys-

tems, and in particular hybrid multicore CPU–GPU systems.

Solving (1) requires the development of a number of

routines. First, the matrix B is decomposed using a Cho-

lesky factorization B ¼ LLH , next the L factors are used

to transform (1) to a standard eigenvalue problem

1 Electrical Engineering and Computer Science, University of Tennessee,

Knoxville, TN, USA
2 Computer Science and Mathematics Division, Oak Ridge National

Laboratory, Oak Ridge, TN, USA
3 School of Mathematics and School of Computer Science, University of

Manchester, Manchester, UK
4 Institut for Theoretical Physics, ETH Zurich, Switzerland
5 Swiss National Supercomputer Center, Lugano, Switzerland

Corresponding author:

Stanimire Tomov, Electrical Engineering and Computer Science, University

of Tennessee, Knoxville, 1122 Volunteer Boulevard, Knoxville, TN 37996,

USA.

Email: tomov@eecs.utk.edu

The International Journal of High
Performance Computing Applications
2014, Vol. 28(2) 196–209
ª The Author(s) 2013
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342013502097
hpc.sagepub.com

 at UNIV OF TENNESSEE on June 9, 2014hpc.sagepub.comDownloaded from

http://www.sagepub.co.uk/journalsPermissions.nav
http://hpc.sagepub.com
http://hpc.sagepub.com/

(~A ¼ L�1AL�H , ~Az ¼ lz). Finally, the eigenvectors of ~A
must be transformed back to x ¼ L�H z. The standard eigen-

value problem by itself can also be divided into subpro-

blems: first tridiagonalize ~A, next solve the tridiagonal

eigenproblem, and finally transform back the eigenvectors.

Although all of these routines of interest are available in a

number of standard libraries, hardware changes have moti-

vated their redesign (see Section 2) to more efficiently use the

underlying hardware. In particular, hybrid architectures based

on GPUs and multicore CPUs call for the development of new

algorithms that can efficiently exploit the heterogeneity and

the massive parallelism of not just the GPUs, but of the multi-

core/manycore CPUs as well. Hybrid CPU–GPU nodes are

already widely adopted in traditional supercomputing plat-

forms such as the Cray XK6. This has opened many new

acceleration opportunities in electronic structure calculations

for materials science and chemistry applications, where the

problems are too small to effectively scale on distributed

memory systems with standard libraries such as ScaLA-

PACK, but can benefit from the massive compute power con-

centrated on a single node of a hybrid CPU–GPU system.

The work that we present in this paper is concentrated on

addressing the high demand for accelerated eigensolvers on

a single node of a hybrid CPU–GPU system, as outlined

above. To address the challenges related to the new archi-

tectures, we designed a generalized eigensolver featuring

the following:

� novel algorithms of increased computational intensity

(compared with the standard algorithms) based on the

idea of successive band reduction factorizations;

� an innovative decomposition of the computation into

fine-grained memory aware tasks;

� an efficient scheduling mechanism for tasks’ execu-

tion over the hybrid CPU–GPU system (aimed at

reducing CPU–GPU data movements, overlapping

CPU–GPU communications with computation, and

mapping algorithmic task requirements to architec-

tural strengths of the system’s hardware components).

The resulting eigensolvers are breakthrough state-of-

the-art eigensolvers in high-performance computing, pro-

viding support for hybrid systems, and significantly

exceeding the performance of currently available solutions.

The rest of the paper is organized as follows. In Section

2 we present related work. Section 3 summarizes this

work’s contributions. Next, Sections 4 and 5 describe, cor-

respondingly, the new generalized and standard eigensol-

ver algorithms, giving detail on the overall design, as

well as the design of their main components. Each of these

two sections has a numerical results subsection. Finally,

Section 7 gives conclusions and future work directions.

2. Related work

The LAPACK (Anderson et al., 1999) and ScaLAPACK

(Blackford et al., 1997) libraries include a set of conventional

eigensolver routines for shared-memory and distributed-

memory systems, respectively. Vendor libraries such as

MKL1 and ACML2 provide highly tuned implementations for

these libraries correspondingly for Intel and AMD processors.

Recent algorithmic work on eigenvalue problems has

concentrated on accelerating the reduction to tridiagonal

form, which is the most time-consuming part of the

algorithm (see the Section 6). The standard approach from

LAPACK (Anderson et al., 1999) is to use a ‘‘single-

phase’’ (also referred to as a ‘‘one-stage’’) reduction.

Alternatives are two-(or more) stage approaches where the

matrices are first reduced to band form, and second, to the

final tridiagonal form.

One of the first uses of a two-step reduction occurred in

the context of out-of-core solvers for generalized sym-

metric eigenvalue problems (Grimes and Simon, 1988),

where a multi-stage method reduced a matrix to tridiago-

nal, bidiagonal, and Hessenberg forms (Lang, 1999). With

this approach, it was possible to recast the expensive

memory-bound operations that occur during the panel fac-

torization into a compute-bound procedure.

Consequently, a framework called Successive Band

Reductions (SBR) was created (Bischof et al., 2000), that

integrated some of the multi-stage work. The SBR toolbox

applies two-sided orthogonal transformations based on

Householder reflectors and successively reduces the matrix

bandwidth size until a suitable width is reached. The off-

diagonal elements are then annihilated column-wise, which

produces large fill-in blocks (or ‘‘bulges’’) that need to be

chased down toward the bottom right corner of the matrix.

The bulge chasing procedure may result in a substantial

increase in the floating point operation count when com-

pared with the standard single-phase approach from

LAPACK. If eigenvectors are required in addition to eigen-

values, then the transformations may be efficiently accu-

mulated using level 3 BLAS operations to generate these

vectors. SBR relies heavily on multithreaded BLAS that are

optimized to achieve satisfactory parallel performance.

However, such a parallelization paradigm incurs substan-

tial overheads on multicore processors (Luszczek et al.,

2011) as it fits the bulk synchronous parallelism (BSP)

model (Valiant, 1990). Communication bounds for such

two-sided reductions have been established under the Com-

munication Avoiding framework (Ballard et al., 2011). . A

multi-stage approach has also been applied to the Hessen-

berg reduction (Karlsson and Kågström, 2011) as well as the

QZ algorithm (Kågström et al., 2008) for the generalized

non-symmetric eigenvalue problem. These approaches, in

contrast to our own, are not for hybrid CPU–GPU systems.

Tile algorithms have recently seen a rekindled interest

when applied to the two-stage tridiagonal (Luszczek

et al., 2011) and bidiagonal reductions (Ltaief et al.,

2011). Using high-performance kernels combined with a

data translation layer to execute on top of the tile data lay-

out format, both implementations achieve a substantial

improvement compared with the equivalent routines from

the state-of-the-art numerical libraries. The off-diagonal

Haidar et al. 197

 at UNIV OF TENNESSEE on June 9, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

elements are annihilated column-wise during the bulge

chasing procedure, which engenders significant extra flops

due to the size of the bulges introduced. An element-wise

annihilation has then been implemented based on cache-

aware kernels, in the context of the two-stage tridiagonal

reduction (Haidar et al., 2011). Using the coalescing task

technique (Haidar et al., 2011), the performance achieved

is by far greater than any other available implementations.

With the emergence of GPUs, memory-bound and

compute-bound operations can be accelerated by an order

of magnitude or more. Tomov et al. (2010) presented novel

hybrid reduction algorithms for the two-sided factoriza-

tions, which in addition to the GPU’s high-performance

on compute-bound kernels, take advantage of the GPU’s

high bandwidth by offloading the expensive level 2 BLAS

operations of the panel factorizations to the GPU. Bienti-

nesi et al. (2010) accelerated the two-stage approach of the

SBR toolbox by offloading the compute-bound kernels of

the first stage to the GPU. The computation of the second

stage (reduction to tridiagonal form), though, still remains

on the host.

Vomel et al. (2012) extended the tridiagonalization

approach of Tomov et al. (2010) to the symmetric standard

eigenvalue problem.

A recent distributed-memory eigensolver library, devel-

oped for electronic structure codes, is ELPA (Auckenthaler

et al., 2011). ELPA is based on ScaLAPACK and does not

support GPUs. It includes new one-stage and two-stage

tridiagonalizations, the corresponding eigenvectors trans-

formation, and a modified divide and conquer routine that

can compute the entire eigenspace or a part of it.

The algorithms presented in this article are implemented

and included in MAGMA,3 a collection of next generation

LAPACK/ScaLAPACK-compliant linear algebra libraries

for hybrid CPU–GPU architectures.

3. Main Contributions

We developed new algorithms for the generalized eigenva-

lue problem as well as their highly efficient implementa-

tions for hybrid CPU–GPU systems. Some components of

the solver were leveraged (when sufficiently efficient) or

extended (when possible) from the MAGMA, PLASMA,4

LAPACK, and vendor-optimized BLAS libraries, which

will be specified through the presentation when applicable.

The main contributions of this work are the algorithmic

and computing innovations to solve (1) in an entirely

compute-bound computation that is task-parallelized and

efficiently executed on hybrid CPU–GPU systems. The

design highlights are described as follows.

3.1. Fine-grained memory aware tasks

Our approach to parallelism and efficient hardware use

relies on splitting the computation into tasks (of certain

granularity) as well as the task’s proper execution over the

available hardware components. Our particular choices, as

described in the algorithms of interest, are an essential

component for obtaining high performance.

3.2. Hybrid CPU–GPU execution/scheduling

A hybrid CPU–GPU task scheduling is another indispensa-

ble ingredient for obtaining high-performance. Indeed, task

scheduling may require CPU–GPU data movements: a

slow operation that can be minimized and possibly over-

lapped with CPU and GPU computations. Our scheduling

mechanisms, as described in the algorithms of interest,

reduce CPU–GPU communication, overlap CPU and GPU

computations, and moreover, map computational tasks to

the strengths of the heterogeneous hardware components

of the system.

3.3. Increased computational intensity

Finally, we extended the ideas of the two-stage reductions to

design a new hybrid tridiagonalization. The new algorithm is

compute-bound, versus the memory-bound conventional

algorithm, and efficiently uses both the multicore host and

the GPU.

4. Generalized eigensolver for hybrid
CPU–GPU architectures

The first step in solving (1), as described previously, is to

compute the Cholesky factorization of B ¼ LLH . Then, the

generalized eigenvalue problem is transformed to a stan-

dard eigenvalue problem according to

~Az ¼ lz; ð2Þ

where

~A ¼ L�1AL�H : ð3Þ

This transformation step can be computed by

LAPACK’s xHEGST routine. Our hybrid design and

implementation of this transformation step is described

below in Section 4.1. After solving the standard Hermitian

eigenproblem (2), as described in Section 5, the eigenvec-

tors X of the generalized problem (1) are computed by

back-solving LH X ¼ Z. This operation can be performed

easily on the GPU by applying L�H to Z using the xTRSM

routine from BLAS (CUBLAS or MAGMA).

4.1. Hybrid algorithm transforming the generalized to
standard eigenvalue problem

We developed a ‘‘magma_xhegst’’ hybrid routine to per-

form (3). To describe it, we start by outlining LAPACK’s

xHEGST in Algorithm 1. Here the matrices A and B are

correspondingly split into nt � nt submatrices Ai;j and Bi;j

of size nb� nb.

The hybrid version of this routine uses the GPU to

perform the level 3 BLAS operations. The resulting code

is illustrated in Algorithm 2, where dA and dB are the

198 The International Journal of High Performance Computing Applications 28(2)

 at UNIV OF TENNESSEE on June 9, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

corresponding A and B matrices stored into the device (GPU)

memory. The CPUs are responsible for computing the Ai;i

blocks using xHEGS2 (line 4 of Algorithm 2) while the GPU

is responsible for updating the rest of the matrix. To optimize

the code, we split this operation into two phases: (a) partially

compute a panel dAiþ1:nt;i (lines 6 and 7), then use it to

update the trailing matrix dAiþ1:nt;iþ1:nt (line 8) by a

xHER2K; and (b) continue the computation of the panel

dAiþ1:nt;i (lines 10 and 11). Since the result of phase (b) is not

needed by any of the subsequent steps iþ 1; iþ 2; . . . ; once

phase (a) is finished we copy the updated dAiþ1;iþ1 to the

CPU to allow its computation by xHEGS2 while the GPU

performs phase (b). This provides an overlap between the

CPU and GPU computation, and allows for hiding the

CPU–GPU communication.

5. Hybrid CPU–GPU standard eigensolver

To solve a Hermitian (symmetric) eigenproblem of the

form ~Az ¼ lz, finding its eigenvalues L and eigenvectors

Z so that ~A ¼ ZLZH , where H denotes conjugate-

transpose, the standard algorithm follows three steps

(Golub and Loan, 1989; Aasen, 1971; Parlett, 1980). First,

reduce the matrix to tridiagonal form, called the ‘‘reduction

phase’’, using an orthogonal transformation Q such that
~A ¼ QTQH , where T is a tridiagonal matrix. Note that the

eigenvalues of the tridiagonal matrix are the same as those

of the original matrix. Second, compute eigenpairs (L;E)

of the tridiagonal matrix (called the ‘‘solution phase’’).

Third, back transform eigenvectors of the tridiagonal

matrix to eigenvectors of the original matrix, Z ¼ QE,

called the ‘‘back transformation phase’’.

Owing to the computational complexity and data access

patterns, it is well known that the reduction phase is consid-

erably more time consuming than the other two phases

combined. Several approaches exist to compute the tridia-

gonalization of a dense matrix.

5.1. Standard one-stage tridiagonalization

There are two algorithmic approaches: the standard one-

stage approach from LAPACK (Anderson et al., 1992),

where block Householder transformations are used to

directly reduce the dense matrix to tridiagonal form, and

a second, two-stage (or more) approach (Bischof et al.,

2000; Bischof and Loan, 1987), where block Householder

transformations are used to first reduce the matrix to band

form, and a second, bulge chasing stage is used to reduce

the band matrix to tridiagonal (Haidar et al., 2011).

The one-stage tridiagonalization is characterized by iter-

ating two computational phases: panel factorization and

update of the trailing submatrix. The parallelism in this

approach resides primarily within the trailing submatrix

update phase. Synchronization points are required between

each panel factorization and trailing submatrix update, pre-

venting overlap of the two computational phases. The panel

factorization step is actually the critical phase because it

relies on symmetric matrix–vector multiplications involving

the trailing submatrix (50% of the flops). For that this

approach suffers from a lack of efficiency and is well known

to be memory bound. Standard software for reducing a sym-

metric dense matrix to tridiagonal form is available in

LAPACK (Anderson et al., 1999) and in MAGMA (Tomov

et al., 2010) through the xHETRD routine.

5.2. Two-stage tridiagonalization

The two-stage approach permits us to cast expensive mem-

ory operations occurring during the panel factorization into

faster, compute intensive ones. This is done by splitting the

original one-stage approach into a compute-intensive phase

(first stage) and a memory-bound phase (second stage or

bulge chasing stage). The first stage reduces the original

Hermitian (symmetric) dense matrix to a Hermetian band

form. The second stage applies the bulge chasing proce-

dure, where all of the extra entries are annihilated

column-wise.

Haidar et al. 199

 at UNIV OF TENNESSEE on June 9, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

5.2.1. First stage: the reduction to band. The first stage applies

a sequence of block Householder transformations to reduce

a Hermitian (symmetric) dense matrix to a Hermitian band

matrix. This stage uses compute-intensive matrix–matrix

multiplications and eliminates the memory-bound matrix–

vector products from the one-stage panel factorization. The

reduction to band has been shown to have a good data access

pattern and large portion of level 3 BLAS operations (Bis-

chof et al., 2000; Dongarra et al., 1989; Gansterer et al.,

1999). A hybrid version can be made very efficient as well

since the GPU is efficient on the level 3 BLAS, and more-

over, CPU–GPU communications can be overlapped with

computation. The technique used here is similar to that

developed for multicore (Haidar et al., 2011). However,

instead of tile techniques, we use block techniques since they

are better suited for GPU operations. Given a dense n� n

symmetric matrix ~A, the matrix is divided into nt ¼ n=nb

block-columns of size nb. The reduction to band proceeds

panel by panel, where for each panel a QR decomposition

is performed to generate the Householder reflectors V

required to zero out the elements below the nbth subdiago-

nal, as shown in Figure 1). The panel factorization is

followed by applying these reflectors from the left and the

right to the trailing symmetric matrix (the red triangle of

Figure 1), according to

~A ¼ ~A�WV H � VW H ; ð4Þ

where V and T define the block of Householder reflectors

and W is computed as

W ¼ X � 1
2
VTH V H X ; ð5Þ

where

X ¼ ~AVT :

The hybrid CPU–GPU algorithm is illustrated in Figure 1.

Since the matrix is symmetric, only the lower part is refer-

enced, and the upper part (gray color) stays untouched.

We first run the QR decomposition (xGEQRT kernel) of a

panel on the CPUs. Once the panel factorization of step i

is finished, we compute W on the GPU, as defined by equa-

tion (5). This kernel is called xPNCXW. Its computation

involves a matrix–matrix multiplication (xGEMM) to com-

pute VT , then a Hermitian matrix–matrix multiplication to

compute X ¼ AVT (xHEMM), which is the dominant cost

of computing W , and finally another inexpensive xGEMM.

Once W is computed, the trailing matrix update (applying

transformations on the left and right) defined by equation

(4) can be performed. However, to allow overlap of CPU and

GPU computation, this computation is split into two. The

first part, named xPNRFB, applies on the GPU the left and

the right updates to the next panel (i.e. panel of step iþ 1,

colored in green in Figure 1). Next, the remainder of the

trailing submatrix (represented by the orange triangle in Fig-

ure 1) is updated using a xHER2K. While the xHER2K is

executing, the panel for step iþ 1 is sent to the CPUs, the

CPUs perform the next panel factorization (xGEQRT), and

the resulting Householder reflectors Viþ1 are sent back to the

GPU. In this way, the factorization of panels i ¼ 2; . . . ; nt

and the associated communications are hidden by overlap-

ping them with the GPU computations, as demonstrated in

Figure 2. Figure 2 shows a snapshot of the execution trace

of the reduction to band form, where we can easily identify

the overlap between CPU and GPU computation. Note that

the high-performance GPU is continuously busy, either com-

puting W or updating the trailing matrix (xHER2K), while

the lower performance CPUs wait for the GPU as necessary.

The reduction to symmetric band tridiagonal form can

be easily derived for the upper case. All the operations will

Figure 1. Description of the reduction to band form, stage 1.

200 The International Journal of High Performance Computing Applications 28(2)

 at UNIV OF TENNESSEE on June 9, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

then be based on the LQ factorization numerical kernels, as

described by Ltaief et al. (2010). The first stage algorithm

is a compute intensive phase, based on the GPU kernel

which is a level 3 BLAS computation. Therefore, it is crit-

ical to supply a large enough block-panel size (e.g.

nb � 64) so that the level 3 BLAS can run close to the

theoretical peak performance of the GPU.

5.2.2. Second stage: the reduction from band to tridiagonal using
fine-grained memory aware tasks. The band form is further

reduced to the final condensed form using the bulge

chasing technique. This procedure annihilates the extra

off-diagonal elements by chasing the created fill-in ele-

ments down to the bottom right side of the matrix using

successive orthogonal transformations at each sweep. This

stage involves memory-bound operations and requires the

band matrix to be accessed from multiple disjoint locations.

In other words, there is an accumulation of substantial

latency overhead each time different portions of the matrix

are loaded into cache memory, which is not compensated

for by the low execution rate of the actual computations

(the so-called surface-to-volume effect). To overcome

these critical limitations, we developed a bulge chasing

algorithm, very similar to the bulge chasing techniques

developed by Haidar et al. (2011), but we differ from it

in using a column-wise elimination instead of an

element-wise elimination which allows us to have better

locality for computing or applying the orthogonal matrix

resulting from this phase.

Our bulge chasing algorithm is based on three new

kernels that are designed to considerably enhance the

data locality of the computation. The first is the

xHBCEU kernel. This kernel triggers the beginning of

each sweep by annihilating, using the xLARFG func-

tion, the extra non-zero entries within a single column,

as shown in Figure 3(a). It then applies the computed

elementary Householder reflector from the left and the

right to the corresponding symmetric data block (red tri-

angle) loaded into the cache memory. The second ker-

nel, xHBREL, continues the application from the right

derived from the previous kernel, either xHBCEU or

xHBLRU. This subsequently generates triangular bulges

as shown in Figure 3(b) (the black triangular), which

must be annihilated by an appropriate technique in order

to eventually avoid the excessive growth of the fill-in

structure. A classical implementation will eliminate the

whole triangular bulge. However, as an appropriate

study of the bulge chasing procedure, let us remark that,

the elimination of the column iþ 1 (the sweep iþ 1), at

the next step, creates a triangular bulge which will over-

lap this one by one column shift to the right and one row

to the bottom, as shown in Figure 3(d) where the reader

can see that the lower triangular portion of the cyan

block (the bulge created by sweep iþ 1) overlaps with

the lower triangular portion of the blue block (corre-

sponding to the bulges created by the previous sweep

i). As a result, we can reduce the computational cost and

instead of eliminating the whole triangular bulge created

for sweep i, we only eliminate the non-overlapped

region of it: its first column. The remaining columns can

be delayed to the upcoming annihilation sweeps. In this

way, we can avoid the growth of the bulges and reduce

the extra cost accrued when the whole bulge is elimi-

nated. Moreover, we designed a cache friendly kernel

that takes advantage of the fact that the created bulge

(the black block) remains in the cache and therefore it

directly eliminates its first column and applies the corre-

sponding left update to the remaining column of the blue

block. Talking about the third kernel, xHBLRU, it loads

the next block (the green block of Figure 3(c)) and it

applies the necessary left updates derived from the pre-

vious kernel (xHBREL). Since, the green block is

remaining in cache, hence the kernel proceeds with the

application from the right to the symmetric portion.

Figure 2. Execution trace of reduction to band form.

Haidar et al. 201

 at UNIV OF TENNESSEE on June 9, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Accordingly, the annihilation of each sweep can be

described as one call to the first kernel followed by a repe-

titive calls to a cycle of the second and the third kernels.

5.3. Modified divide and conquer

The standard divide and conquer algorithms compute all of

the eigenvalues and eigenvectors of a real tridiagonal

matrix. A detailed description of the algorithm is given

by Demmel (1997). To illustrate how our GPU implemen-

tation is designed, let us describe it for two subproblems.

Let the matrix T of size n be split into two subproblems,

T1 of size n1 and T2 of size n2 ¼ n� n1, as described in

(6). Let the eigensolution of those two sons be given by

T1 ¼ ~E1
~L1

~ET
1 and T2 ¼ ~E2

~L2
~ET

2 , where (~Li; ~Ei), i ¼ 1; 2
are the eigenvalues and eigenvectors pair of Ti. Assuming

that (~E0; ~L0) are the eigenpairs solution of the system inside

the bracket of (7) (that we call it the rank-one modified sys-

tem M), then L ¼ ~L0 and E ¼ ~Ei
~E0 are the eigenpairs of T .

T ¼ T1 0

0 T2

� �
þ rvvT ð6Þ

¼
~E1 0

0 ~E2

� �
~L1 0

0 ~L2

� �
þ ruuT

� �
~E1 0

0 ~E2

� �T

ð7Þ

¼
~E1 0

0 ~E2

� �
~E0

~L0
~ET

0

� � ~E1 0

0 ~E2

� �T

¼ ELET: ð8Þ

To find the eigensolution of each rank-one modified sys-

tem M requires solving its secular equation. This is a mem-

ory bound process computed by the xLAED4 routine that

requires only Oðn2Þ operations, and can be easily paralle-

lized over the different CPU cores. So in our implementa-

tion we keep this computation on the CPUs side, while the

GPUs perform the multiplication of the intermediate eigen-

vector matrices ~Ei, which can requires up to n3 flop.

5.4. The application of the orthogonal matrices
Q1 and Q2

In this section, we discuss the application of the House-

holder reflectors generated from the two stages of the

reduction to tridiagonal. The first stage reduces the original

Hermitian matrix ~A to a band matrix by applying a two-

sided transformation to ~A such that ~A ¼ Q1SQH
1 . Similarly,

the second stage (bulge chasing) reduces the band matrix S

to tridiagonal by applying the transformation from both the

left- and the right-hand side to S such that S ¼ Q2TQH
2 .

Thus, when the eigenvectors matrix Z of ~A are requested, the

eigenvectors matrix E resulting from the eigensolver needs

to be updated from the left by the Householder reflectors

generated during the reduction phase, according to

Z ¼ Q1Q2E ¼ ðI � V1t1V H
1 ÞðI � V2t2V H

2 ÞE; ð9Þ

where (V1; t1) and (V2; t2) represent the Householder reflec-

tors generated during the reduction stages one and two,

respectively.

In our implementation, to obtain the complete eigenvec-

tors of the matrix ~A, the matrix Z is updated by the V2

reflectors, and the resulting matrix is updated by the V1

reflectors. The application of the V2 reflectors is not as sim-

ple as the application of V1, and requires special attention.

We represent the V2 in Figure 4(a). Note that these reflec-

tors represent the annihilation of the band matrix, and thus

each is of length nb, where nb is the bandwidth size. A

naive implementation would take each reflector and apply

it to the matrix E. Such an implementation is memory

bound, relying on BLAS 2 operations and thus gives poor

performance. However, if we want to group them to take

advantage of the efficiency of BLAS 3 operations, we must

pay attention to the overlap between them and that their

application must follow the specific dependency order of

the bulge chasing procedure in which they were created.

Let us note that for sweep i (e.g. the column at position

S(i,i):S(i,iþnb)), its annihilation creates a set of k House-

holder reflectors vk
i , each of length nb represented in

column i of the matrix V2 depicted in Figure 4(a). We can

group the reflectors vk
i from sweep i with those from sweep

iþ 1; iþ 2; . . . ; iþ l to apply them together using a

blocked technique according to the diamond shape region

as defined in Figure 4(a). While each of those diamonds

is considered as one block, their application needs to follow

the chasing dependency order. For example, applying the

green diamond 4 and the red diamond 5 of the V2 in Figure

4(a) modifies the green block row 4 and the red block row

5, respectively, of the eigenvector matrix E drawn in Figure

0 5 10 15 20 25

0

5

10

15

20

25

(a) xHBCEU (red)

0 5 10 15 20 25

0

5

10

15

20

25

(b) xHBREL (blue)

0 5 10 15 20 25

0

5

10

15

20

25

(c) xHBLRU (green)

0 5 10 15 20 25

0

5

10

15

20

25

sweep 1

sweep 2

(d) Bulge overlap

Figure 3. Kernel execution of the TRD algorithm during the second stage.

202 The International Journal of High Performance Computing Applications 28(2)

 at UNIV OF TENNESSEE on June 9, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

4(b), where we can easily observe the overlapped region.

According to the chasing order, block 4 needs to be applied

before block 5. We have drawn a sample of those depen-

dencies by the arrows in Figure 4(a). We designed our par-

allelism based on the matrix E, where we split E by block

column over both the CPUs and the GPU as shown in Fig-

ure 4(b), where we can apply each diamond independently

to each portion of E.

The application of V1 to the resulting matrix from above,

G ¼ ðI � V2T2V T
2 ÞE, can be done easily. First, there is no

overlap between the different V1’s. Second, their applica-

tion is computing intensive and involves efficient BLAS

3 kernels and it is done by using the GPU function ‘‘mag-

ma_xunmtr’’, which is the GPU implementation of the

standard LAPACK function (xUNMTR).

5.5. Parallel implementation and task scheduling

Restructuring linear algebra algorithms as a sequence of

tasks that operate on blocks of data can remove certain

fork-join synchronizations and, moreover, can facilitate a

design that overlaps the CPUs and GPU computations. A

schematic trace representation of the execution of our algo-

rithm is depicted in Figure 5. The first stage, the reduction

from dense to band, is done on both CPUs and GPU, where

the CPUs compute the panel factorization while the GPU

computes the update. The implementation results show that

the CPUs’ computation is mostly overlapped by the GPU

operation. In contrast to the kernels of the first stage, the

kernels of the second stage are memory bound and rely

on level 2 BLAS operations involving small matrices. For

that, the second stage is fully scheduled on the CPUs using

a static runtime environment that we developed. The sec-

ond stage is the most challenging when it comes to tracking

data dependencies. The annihilation of the subsequent

sweeps generates tasks, which partially overlap data from

tasks from previous sweeps (see Figure 3(d)), and thus gen-

erating complex, inherent for the algorithm, data dependen-

cies that are challenging to schedule. We have used the data

dependency layer (DTL) and the function dependencies

proposed by (Luszczek et al., 2011; Haidar et al., 2011)

to handle those data dependencies and to provide crucial

information to the runtime to achieve the correct schedul-

ing. The first stage is, to an extent, oblivious to data local-

ity, while for the second stage (the bulge chasing), and for

the application of the Householder reflectors V2 resulting

from it, the data locality is of the utmost importance.

The performance of the latter on the CPUs is guided by the

memory bus speed, the scheduling sequence, and the cache

memory sizes, whereas on the GPU, performance is depen-

dent on the block size of the operations performed.

5.5.1. On CPUs. Although we optimized the CPU kernels for

cache reuse, a single kernel call cannot, on its own, take

advantage of running in-cache. Once the data is fetched

into the high-level caches and the registers, it needs to stay

there and be reused between computational tasks as much

as possible. Our idea to improve the locality, and hence the

cache reuse, is to store the matrix in one-dimensional block

cyclic fashion, and to aggregate computational tasks

together in an appropriate manner. The data storage allows

each CPU to work on its first block, then to move to its

second block and so on, increasing the cache reuse. By

aggregating tasks together into groups, we ensure that the

0 5 10 15 20 25

0

5

10

15

20

25

2

1

0 3

4

5

6

7

8

9

12

13

11

10

14

15

0 5 10 15 20 25

5

0

10

15

20

25

GPU CPUs

4

5

(a) Blockingfor V2 (b) Eigenvectors matrix

Figure 4. Blocking technique to apply the Householder reflectors V2 with a hybrid implementation on GPU and CPU.

Haidar et al. 203

 at UNIV OF TENNESSEE on June 9, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

data will be reused among the various tasks belonging to a

certain group. As a consequence, operations that are suppo-

sedly memory-bound, increase their ratio of computation to

off-chip communication and become compute-bound,

which renders them amenable to efficient execution on

multicore architectures.

5.5.2. On GPU. If the block size chosen during the compu-

tation of the first stage is too large, the application of Q2

resulting from the second stage may encounter difficulties

on the overlapped computation because having a large

amount of operations involving triangular blocks would

reduce the efficiency of their GPU execution. The chal-

lenge is the following: on the one hand, the block size

needs to be large enough to extract high performance from

the GPU, and on the other hand, it must be small enough to

minimize the use of low performance kernels on the GPU

(TRMM). This trade-off between the block size and the

kernel performance has been tackled by using two nested

levels of blocking where the initial block size, which is the

same as the band reduction size, is chosen as the minimum

size that gives good performance for the first stage, while

a new, smaller blocking is defined for the computation of

Q2 to avoid the use of a low-performance GPU kernel.

6. Environment setup

Heterogeneous CPU–GPU supercomputing systems can be

built from homogeneous CPU systems by replacing some

CPU sockets with GPUs. For example, the Cray XK6 sys-

tem is adapted from its XE6 counterpart by replacing one

CPU socket with a GPU socket on each node. To make a

fair comparison we compare our hybrid routines tested on

a system with 8-core Intel Xeon E5-2670 2.6 GHz CPUs

and an Nvidia K20c Kepler GPU (8 CPU threads and one

GPU), against non-GPU routines, tested on a system with

an 16-core (two sockets) Intel Xeon E5-2670 2.6 GHz

CPUs (16 threads for shared-memory routines, or 16 MPI

processes for distributed-memory solvers).

6.1. Standard eigensolver results

Figure 6 shows the standard eigensolver results using the

one-stage approach with different matrix sizes and different

percentages of eigenvectors computed. The overhead

observed for increasing the fraction of the eigenvectors

computed is small. The reason is that, as Figure 7 shows,

most of the time is spent in the tridiagonalization. Since the

tridiagonalization does not depend on the fraction of eigen-

vectors wanted, it limits the speedup that can be achieved

for computing a part of the eigenspace. Figure 8 presents

a breakdown for the time spent on the different routines for

computing the standard eigensolver using the two-stage

approach. We note that here the time for the tridiagonaliza-

tion is depicted by two routines, namely, the reduction to

band and the bulge chasing. Similarly, the time for the back

transformation of the eigenvectors is also reported in two

routines. Next, we compare the one- and the two-stage

approaches. Numerical experiments show that the two-

stage tridiagonalization process is around three or four

times faster than the one-stage approach. The back transfor-

mation, though, is faster in the one-stage approach. This is

due to the fact that in the two-stage approach we have two

back transformations to be applied (see equation (9)), and

the first back transformation (i.e. the application of V2) can-

not be implemented as efficiently as the second because of

the irregular, diamond-shaped blocks of V2 (Figure 4(a)).

Overall, however, the eigensolver using the two-stage

approach is always faster than that using the one-stage

approach, even if the computation of all the eigenvectors

is required. When reducing the number of eigenvectors

requested, the speedup observed by the two-stage approach

becomes larger. This is quantified in Figure 9 where we

show the time ratio for the symmetric eigensolver using the

one-stage versus the two-stage approach. Note that the two-

stage approach overcomes the one-stage approach in both

double and double complex precision when all or a fraction

of the eigenspace is requested.

Figure 10 presents a global comparison between our

MAGMA one- and two-stage eigensolvers, the eigensol-

vers available in MKL version 10.3, and ELPA when either

all or 10% (excluding MKL) of the eigenvectors are

requested. The comparison shows that we exceed the

performance of both the shared-memory (MKL) and the

distributed-memory (ELPA) libraries.

The electronic structure problem at hand requires a frac-

tion of the eigenvectors. In this case, the two-stage

approach becomes of great interest.

6.2. Generalized eigensolver results

Figure 11 summarizes our results of the one-stage approach

for the generalized Hermitian eigensolver with different per-

centages of eigenvectors computed. Similar to the standard

eigensolver results from Section 6.1, the overhead for

increasing the fraction of the eigenvectors computed is

small.

Figure 5. Schematic trace execution of our hybrid eigensolver.

204 The International Journal of High Performance Computing Applications 28(2)

 at UNIV OF TENNESSEE on June 9, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Figure 6. Time needed to solve a symmetric double precision eigenproblem (top) and a Hermitian double complex precision eigenproblem
(bottom) with the one-stage tridiagonalization approach on a system with eight-core Intel Xeon E5-2670 and an Nvidia K20c GPU.

Figure 7. Time needed by the different subroutines to solve a symmetric double precision eigenproblem, matrix size 14,000 (top) and a
Hermitian double complex precision eigenproblem, matrix size 10,000 (bottom) with the one-stage tridiagonalization approach on a
system with eight-core Intel Xeon E5-2670 and an Nvidia K20c GPU.

Figure 8. Time needed by the different subroutines for a symmetric double precision eigenproblem, matrix size 14,000 (top) and a
Hermitian double complex precision eigenproblem, matrix size 10,000 (bottom) with the two-stage tridiagonalization approach on a
system with eight-core Intel Xeon E5-2670 and an Nvidia K20c GPU.

Haidar et al. 205

 at UNIV OF TENNESSEE on June 9, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Figure 9. Ratio between time needed by the one-stage and two-stage eigensolver on a system with eight-core Intel Xeon E5-2670 and
an Nvidia K20c GPU.

Figure 10. Comparison between different divide and conquer routines for a symmetric double precision eigenproblem, matrix size
14,000 (top) and a Hermitian double complex precision eigenproblem, matrix size 10,000 (bottom) with both a one and two-stage
tridiagonalization approach. MAGMA runs are on a system 8-core Intel Xeon E5-2670 and an Nvidia K20c GPU, MKL and ELPA runs
are on a system with 16-core (two sockets) Intel Xeon E5-2670 CPUs.

206 The International Journal of High Performance Computing Applications 28(2)

 at UNIV OF TENNESSEE on June 9, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Figure 12 shows the comparison between the one- and

the two-stage approaches. The speedup observed grows

with reducing the number of eigenvectors requested. As a

result, we can claim that the two-stage approach always

achieves higher performance than the one-stage approach.

Figure 13 presents the comparison between the double

complex generalized eigensolvers of our (MAGMA) one-

and two-stage approaches, the eigensolvers available in

MKL version 10.3, and ELPA when either all or 10%
(excluding MKL) of the eigenvectors are requested. The

comparison shows that we overcome in time to solution the

shared-memory MKL library and the distributed-memory

ELPA library.

7. Conclusions and future directions

We developed a compute-bound approach to solve the

standard eigenvalue problem on hybrid CPU–GPU sys-

tems and compared it with other approaches. Both the

one- and the two-stage approaches, when used on a CPU

socket þ GPU, show a significant speedup with respect

to the best currently available shared-memory and

distributed-memory libraries using two CPU sockets.

We then extended the one- and two-stages standard eigen-

problem solvers to solve the generalized eigenproblem on

hybrid systems. Both the one-stage and two-stage

approaches showed a relevant speedup in comparison with

the shared-memory and distributed-memory libraries.

Also, our generalized eigensolver achieved a performance

speedup against the other libraries presented in the paper.

Finally, understanding the challenges in developing algo-

rithms for hybrid shared memory CPUs-GPU systems is

critical before tackling the distributed CPU–GPU envi-

ronment, since the routines developed for a hybrid

CPU–GPU node emulate to some extent the distributed

context, and can be used as building blocks in the devel-

opment. A future distributed implementation will eventu-

ally be developed.

Figure 13. Comparison between different divide and conquer routines for a Hermitian double complex precision general eigenproblem,
matrix size 10,000 with both a one- and two-stage tridiagonalization approach. GEVP! EVP (General eigenvalue problem to eigenvalue
problem) denotes both the Cholesky decomposition and the reduction to standard form. MAGMA runs are on a system with an 8-core Intel
Xeon E5-2670 and an Nvidia K20c GPU, MKL and ELPA runs are on a system with 16-core (two sockets) Intel Xeon E5-2670 CPUs.

Figure 11. Time needed to solve a Hermitian double complex
precision generalized eigenproblem on a system with eight-core
Intel Xeon E5-2670 and an Nvidia K20c GPU.

Figure 12. Ratio between time needed by the one-stage and two-
stage double complex generalized eigensolver on a system with
eight-core Intel Xeon E5-2670 and an Nvidia K20c GPU.

Haidar et al. 207

 at UNIV OF TENNESSEE on June 9, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Funding

This work was supported by the National Science

Foundation, the Department of Energy, NVIDIA, and

MathWorks.

Notes

1. Available at: http://software.intel.com/en-us/articles/

intel-mkl/

2. See http://developer.amd.com/tools/

3. See http://icl.cs.utk.edu/magma/

4. See http://icl.cs.utk.edu/plasma/

References

Aasen JO (1971) On the reduction of a symmetric matrix to tridia-

gonal form. BIT 11: 233–242.

Anderson E, Bai Z, Bischof C, et al. (1992) LAPACK Users’

Guide. Philadelphia, PA: Society for Industrial and Applied

Mathematics. Available at: http://www.netlib.org/lapack/lug/.

Anderson E, Bai Z, Bischof C, et al. (1999) LAPACK Users’

Guide, 3rd edition. Philadelphia, PA: Society for Industrial

and Applied Mathematics.

Auckenthaler T, Blum V, Bungartz HJ, et al. (2011) Parallel

solution of partial symmetric eigenvalue problems from elec-

tronic structure calculations. Parallel Computing 37: 783–794.

DOI: 10.1016/j.parco.2011.05.002.

Ballard G, Demmel J and Dumitriu I (2011) Communication-

optimal parallel and sequential eigenvalue and singular value

algorithms. Technical Report EECS-2011-14 (LAPACK

Working Note 237), EECS University of California, Berkeley,

CA, USA.

Bientinesi P, Igual FD, Kressner D and Quintana-Ortı́ ES (2010)

Reduction to condensed forms for symmetric eigenvalue

problems on multi-core architectures. In: Proceedings of

8th International Conference on Parallel Processing and

Applied Mathematics (PPAM’09). Berlin: Springer-Verlag,

pp. 387–395.

Bischof CH, Lang B and Sun X (2000) Algorithm 807: The SBR

Toolbox—software for successive band reduction. ACM

Transactions on Mathematical Software 26(4): 602–616. DOI:

10.1145/365723.365736.

Bischof CH and Loan CV (1987) The WY representation for

products of Householder matrices. SIAM Journal on Scientific

and Statistical Computing 8: s2–s13.

Blackford LS, Choi J, Cleary A, et al (1997) ScaLAPACK Users’

Guide. Philadelphia, PA: Society for Industrial and Applied

Mathematics.

Demmel J (1997) Applied Numerical Linear Algebra. Philadel-

phia, PA: Society for Industrial and Applied Mathematics.

Demmel J, Dongarra J, Ruhe A and van der Vorst H (2000)

Templates for the Solution of Algebraic Eigenvalue Problems:

A Practical Guide. Philadelphia, PA: Society for Industrial and

Applied Mathematics.

Dongarra JJ, Sorensen DC and Hammarling SJ (1989) Block

reduction of matrices to condensed forms for eigenvalue com-

putations. Journal of Computational and Applied Mathematics

27(1-2): 215–227.

Gansterer W, Kvasnicka D and Ueberhuber C (1999) Multi-sweep

algorithms for the symmetric eigenproblem. In: Vector and

Parallel Processing - VECPAR’98 (Lecture Notes in

Computer Science, vol. 1573). Berlin: Springer, pp. 20–28.

DOI: 10.1007/10703040_3.

Golub GH and Loan CFV (1989) Matrix Computations, 2nd edi-

tion. Baltimore, MD: The Johns Hopkins University Press.

Grimes RG and Simon HD (1988) Solution of large, dense

symmetric generalized eigenvalue problems using secondary

storage. ACM Transactions on Mathematical Software 14:

241–256. DOI: 10.1145/44128.44130.

Haidar A, Ltaief H and Dongarra J (2011) Parallel reduction to

condensed forms for symmetric eigenvalue problems using

aggregated fine-grained and memory-aware kernels. In: Pro-

ceedings of SC ’11. New York, NY: ACM Press, pp. 8:1–8:

11. DOI: 10.1145/2063384.2063394.

Kågström B, Kressner D, Quintana-Orti E and Quintana-Orti G

(2008) Blocked algorithms for the reduction to Hessenberg-

triangular form revisited. BIT Numerical Mathematics 48:

563–584.

Karlsson L and Kågström B (2011) Parallel two-stage reduction to

Hessenberg form using dynamic scheduling on shared-

memory architectures. Parallel Computing 37: 771–782. DOI:

10.1016/j.parco.2011.05.001.

Kent P (2008) Computational challenges of large-scale, long-

time, first-principles molecular dynamics. Journal of Physics:

Conference Series 125(1): 012058.

Lang B (1999) Efficient eigenvalue and singular value computa-

tions on shared memory machines. Parallel Computing 25(7):

845–860.

Ltaief H, Kurzak J and Dongarra J (2010) Parallel band two-

sided matrix bidiagonalization for multicore architectures.

IEEE Transactions on Parallel and Distributed Systems 21:

417–423.

Ltaief H, Luszczek P and Dongarra J (2011) High performance

bidiagonal reduction using tile algorithms on homogeneous

multicore architectures. ACM Transactions on Mathematical

Software 39(3): 16.

Luszczek P, Ltaief H and Dongarra J (2011) Two-stage tridiago-

nal reduction for dense symmetric matrices using tile algo-

rithms on multicore architectures. In: IPDPS 2011: IEEE

International Parallel and Distributed Processing Symposium,

Anchorage, AK, USA.

Parlett BN (1980) The Symmetric Eigenvalue Problem. Englewood

Cliffs, NJ: Prentice-Hall.

Singh DJ (1994) Planewaves, Pseudopotentials, and the LAPW

Method. Boston, MA: Kluwer.

Tomov S, Nath R and Dongarra J (2010) Accelerating the reduc-

tion to upper Hessenberg, tridiagonal, and bidiagonal forms

through hybrid GPU-based computing. Parallel Computing

36(12): 645–654. DOI: 10.1016/j.parco.2010.06.001.

Valiant LG (1990) A bridging model for parallel computation.

Communications of the ACM 33(8): 103–111. DOI: 10.1145/

79173.79181.

Vomel C, Tomov S and Dongarra J (2012) Divide and conquer on

hybrid GPU-accelerated multicore systems. SIAM Journal on

Scientific Computing 34(2): C70–C82.

208 The International Journal of High Performance Computing Applications 28(2)

 at UNIV OF TENNESSEE on June 9, 2014hpc.sagepub.comDownloaded from

http://www.netlib.org/lapack/lug/
http://hpc.sagepub.com/

Author biographies

Azzam Haidar received a Ph.D. in 2008 from CERFACS,

France. He is Research Scientist at the Innovative Comput-

ing Laboratory (ICL) at the University of Tennessee,

Knoxville (UTK). His research interests focus on the devel-

opment and implementation of parallel linear algebra

routines for scalable multi-core architectures, for large-

scale dense and sparse problems, as well as approaches that

combine direct and iterative algorithms to solve large linear

systems as well as eigenvalue problems.

Stanimire Tomov received a Ph.D. in Mathematics from

Texas A&M University in 2002. He is a Research Director

in ICL and Adjunct Assistant Professor in the EECS at

UTK. His research interests are in parallel algorithms,

numerical analysis, and high-performance scientific com-

puting (HPC). Currently, his work is concentrated on the

development of numerical linear algebra software for emer-

ging architectures for HPC.

Jack Dongarra received his Ph.D. in Applied Mathematics

from the University of New Mexico in 1980. He is a

University Distinguished Professor at UTK, Distinguished

Research Staff at Oak Ridge National Laboratory (ORNL),

Turing Fellow at Manchester University, Adjunct Professor

at Rice University, and director of the ICL at UTK. He spe-

cializes in numerical algorithms in linear algebra, parallel

computing, the use of advanced-computer architectures, pro-

gramming methodology, and tools for parallel computers.

His research includes the development, testing and

documentation of high-quality mathematical software. He

has contributed to the design and implementation of the

following open-source software packages and systems: EIS-

PACK, LINPACK, the BLAS, LAPACK, ScaLAPACK,

Netlib, PVM, MPI, NetSolve, Top500, ATLAS, and PAPI.

Raffaele Solca is a Ph.D. candidate at the Institute for

Theoretical Physics ETH, Zurich. His interests are in com-

putational physics, including numerical simulations of a

wide range of physical and interdisciplinary problems as

well as on the development of new object-oriented

parallel simulation codes, covering equilibrium and non-

equilibrium physics, augmented ab initio schemes, and

novel quantum simulation algorithms. Currently, he is con-

centrated on the development of innovative generalized

eigensolvers for large-scale electronic structure calcula-

tions on heterogeneous architectures.

Thomas Schulthess received his Ph.D. in physics from ETH

Zurich in 1994. He is a professor for computational physics

at ETH Zurich and Director of the Swiss National Super-

computing Center in Lugano, Switzerland. He holds a vis-

iting distinguished professor appointment at ORNL, where

he was group leader and researcher in computational mate-

rials science for over a decade before moving to ETH Zur-

ich in 2008. His current research interests are in

development of efficient and scalable algorithms for the

study of strongly correlated quantum systems, as well as

electronic structure methods in general. He is also engaged

in the development of efficient tools and simulations sys-

tems for other domain areas, such as meteorology/climate

and geophysics.

Haidar et al. 209

 at UNIV OF TENNESSEE on June 9, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

