
Improving the Performance of CA-GMRES
on Multicores with Multiple GPUs

Ichitaro Yamazaki∗, Hartwig Anzt∗, Stanimire Tomov∗, Mark Hoemmen§, and Jack Dongarra∗
∗University of Tennessee, Knoxville, USA

§Sandia National Laboratory, New Mexico, USA

iyamazak@eecs.utk.edu, hanzt@icl.utk.edu, tomov@eecs.utk.edu, mhoemme@sandia.gov, and dongarra@eecs.utk.edu

Abstract—The Generalized Minimum Residual (GMRES)
method is one of the most widely-used iterative methods for
solving nonsymmetric linear systems of equations. In recent
years, techniques to avoid communication in GMRES have gained
attention because in comparison to floating-point operations,
communication is becoming increasingly expensive on modern
computers. Since graphics processing units (GPUs) are now
becoming crucial component in computing, we investigate the
effectiveness of these techniques on multicore CPUs with multiple
GPUs. While we present the detailed performance studies of a
matrix powers kernel on multiple GPUs, we particularly focus
on orthogonalization strategies that have a great impact on both
the numerical stability and performance of GMRES, especially
as the matrix becomes sparser or ill-conditioned. We present
the experimental results on two eight-core Intel Sandy Bridge
CPUs with three NDIVIA Fermi GPUs and demonstrate that
significant speedups can be obtained by avoiding communication,
either on a GPU or between the GPUs. As part of our study, we
investigate several optimization techniques for the GPU kernels
that can also be used in other iterative solvers besides GMRES.
Hence, our studies not only emphasize the importance of avoiding
communication on GPUs, but they also provide insight about the
effects of these optimization techniques on the performance of the
sparse solvers, and may have greater impact beyond GMRES.

I. INTRODUCTION

Many scientific and engineering simulations require solving

sparse linear systems of equations. A direct method provides

a numerically stable way to solve such a linear system with

a predictable number of floating point operations (flops).

However, for a large-scale linear system, the storage and/or

computational costs of a direct factorization may be unfea-

sibly expensive. A parallel computer with a large aggregated

memory and a high computing capacity may provide a remedy

to this large cost of direct factorization, but the per-CPU

memory requirement or the factorization time of a parallel

direct solver may not scale due to the extensive amount

of communication or the associated memory overhead for

the message buffers. As a result, an iterative method may

become more attractive or could be the only feasible alter-

native. Among the most widely-used iterative methods are

Krylov subspace methods [1], [2], because of their smooth

and well-studied convergence behaviors, and the Generalized

Minimum Residual (GMRES) method [3] is one of the popular

methods for a nonsymmetric linear system and converges with

monotonically non-increasing residual norms.

On modern computers, in comparison to flops, communi-

cation is becoming increasingly expensive in terms of both

required cycle time and energy consumption. To address

this challenge, in recent years, several techniques to avoid

communication in various algorithms, including GMRES [4],

have gained attention. While graphics processing units (GPUs)

have become crucial components in scientific and engineering

computing, the same challenge exists on the GPUs, where

the gap between the arithmetic and communication costs is

growing. In this paper, we study the potential of using such

communication-avoiding techniques for GMRES on multicore

CPUs with multiple GPUs, providing the detailed perfor-

mance studies of both a matrix powers kernel and several

orthogonalization procedures that often dominate the GMRES

iteration time. As part of our studies, we investigate several

optimization techniques for the GPU kernels that are required

for GMRES. Since these kernels are also needed for other

sparse solvers, the current studies not only emphasize the

importance of avoiding communication both on a GPU and

between the GPUs, but they also provide insights on the

effects of these optimization techniques on the performance

of a sparse solver.

The rest of the paper is organized as follows: in Section II,

we first survey related work. Then in Section III, we review

Communication-Avoiding GMRES (CA-GMRES) and provide

a high-level description of our implementation on multicore

CPUs with multiple GPUs. Next, in Sections IV and V, we

describe our implementations of the matrix powers kernel and

of various orthogonalization procedures, and demonstrate their

performance. Finally, in Section VI, we study the performance

of CA-GMRES with multiple GPUs, and in Section VII, we

provide final remarks. Throughout this paper, the i-th row and

the j-th column of a matrix V are denoted by vi,: and v:,j ,

respectively, while Vj:k is the submatrix consisting of the j-th

through the k-th columns of V , and V (i, j) is the submatrix

consisting of the rows and columns of V that are given by

the row and column index sets i and j, respectively. All of

our experiments were conducted on a single compute node of

the Keeneland system1 at the Georgia Institute of Technology.

It consists of two eight-core Intel Sandy Bridge (Xeon E5)

CPUs and three NVIDIA M2090 GPUs.

1https://www.xsede.org/gatech-keeneland

2014 IEEE 28th International Parallel & Distributed Processing Symposium

1530-2075/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPS.2014.48

382

x̂ := 0 and v:,1 := b/‖b‖2.
repeat (restart-loop)

Projection Subspace Generation (inner-loop):
for j = 1, 2, . . . ,m do

SpMV: Generate a new vector v:,j+1 := Av:,j .
Orth: Orthogonalize v:,j+1 against v:,1,v:,2, . . . ,v:,j .

end for
Projected Subsystem Solution (restart):
Compute the solution x̂ in the generated subspace,

which minimizes its residual norm.
Set v:,1 := r/‖r‖2, where r := b−Ax̂.

until solution convergence.

Fig. 1. Pseudocode of GMRES(m).

II. RELATED WORK

Chapter 3 of Hoemmen’s PhD dissertation [4] describes

CA-GMRES in detail. Chapter 7 explains the importance

of picking right basis in the matrix powers kernel (MPK).

Chapter 2 gives an extensive overview of the computational

kernels that CA-GMRES uses, including MPK with or without

preconditioning, the tall-skinny QR (TSQR) factorization with

an emphasis on the communication-avoiding QR (CAQR),

and its associated block orthogonalization (BOrth). The work

includes performance models that show how CAQR and MPK
reduce the number of memory movements and the parallel

communication latency. Demmel et al. [5] refine these models

for general dense QR factorization algorithms.

Mohiyuddin et al. [6] provide shared-memory parallel per-

formance results for CA-GMRES on a single compute node

of multicore CPUs. The authors show the importance of the

orthogonalization step for good CA-GMRES performance,

while a similar study is conducted for a CA-Lanczos on a

distributed-memory system in [7]. Anderson et al. [8] imple-

ment a version of a CAQR (used as the panel factorization

of a general QR factorization) on a single GPU. They then

apply it to solve optimization problems for image process-

ing. Hoemmen [9] describes a hybrid-parallel (MPI+threads)

implementation of CAQR and block Gram-Schmidt orthogo-

nalization in the Trilinos software framework. In his work, he

compares performance of CAQR and block Gram-Schmidt as a

combined orthogonalization procedure, against both the classi-

cal and modified Gram-Schmidt procedures. Finally, Demmel

et al. [10] recently describe a communication-avoiding rank-

revealing QR factorization with column pivoting.

There are several different GMRES implementations on

GPUs. CUSP [11] and PARALUTION [12] target a single

NVIDIA GPU using CUDA, while ViennaCL [13] provides

a more platform-independent support for a single GPU using

OpenCL. PETSc [14] and Trilinos [15] have growing supports

for multiple GPUs based on NDIVIA CUBLAS and CUS-

PARSE [16], in particular for iterative solvers.

III. COMMUNICATION-AVOIDING GMRES

Figure 1 shows the pseudocode of a standard GMRES for

computing an approximate solution x̂ to a linear system of

equations Ax = b. The j-th GMRES iteration first generates a

x̂ := 0 and v:,1 := b/‖b‖2.
repeat (restart-loop)

Projection Subspace Generation (inner-loop):
for j = 1, s+ 1, 2s+ 1, . . . ,m do

MPK: Generate new vectors v:,k+1 := Av:,k

for k = j, j + 1, . . . ,min(j + s,m).
BOrth: Orthogonalize Vj+1:j+s+1 against V1:j .
TSQR: Orthogonalize the vectors within Vj+1:j+s+1.

end for
Projected Subsystem Solution (restart):
Compute the solution x̂ in the generated subspace,

which minimizes its residual norm.
Set v:,1 := r/‖r‖2, where r := b−Ax̂.

until solution convergence.

Fig. 2. Pseudocode of CA-GMRES(s,m).

new Krylov basis vector v:,j+1 through a sparse matrix-vector

product (SpMV), followed by the orthonormalization (Orth)

of v:,j+1 against the previously-generated orthonormal basis

vectors v:,1,v:,2, . . . ,v:,j . To reduce both the computational

and storage requirements of computing a large projection

subspace, the iteration is restarted after computing a fixed

number m + 1 of basis vectors. Before restart, the ap-

proximate solution x̂ is updated by solving a least-squares

problem y := argminz ‖c−Hz‖, where c := V T
1:m+1r,

H := V T
1:m+1AV1:m, and x̂ := x̂ + V1:my. The matrix H ,

obtained as a by-product of the orthogonalization procedure

(see Section V), is in an upper Hessenberg form. Hence, the

least-squares problem can be efficiently solved, requiring only

about 3(m + 1)2 flops, while for an n-by-n matrix A with

nnz(A) nonzeros, SpMV and Orth require a total of about

2m·nnz(A) and 2m2n flops over the m iterations, respectively

(i.e., n� m).

Both SpMV and Orth require communication. This includes

point-to-point messages or neighborhood collectives for SpMV,

and global all-reduces in Orth, as well as data movements

between the levels of the local memory hierarchy (for read-

ing the sparse matrix and for reading and writing vectors,

assuming that they are not small enough to fit in cache).

CA-GMRES (see Figure 2 for its pseudocode) aims to reduce

this communication. It does so by redesigning the algorithm

to replace SpMV and Orth with three new kernels – MPK,

BOrth, and TSQR – that generate and orthogonalize a set of s
basis vectors all at once. In theory, this communicates no more

than a single GMRES iteration (plus a lower-order term), but

accomplishes the work of s iterations. In Sections IV and V,

we discuss these three computational kernels in detail.

To utilize GPUs, we distribute the matrix A and the basis

vectors v:,1,v:,2, . . . ,v:,m+1 in a block row format (in Sec-

tion IV, we discuss the distribution of A in more detail). We

then generate the basis vectors on the GPUs, while the least-

squares problem is solved on the CPUs. While our objective

of this paper is to compare the performance of CA-GMRES

with that of GMRES on the GPUs, Figure 3 compares the

performance of GMRES on the GPUs with that of our CPU

implementation of GMRES that uses a threaded version of

383

CPU +1GPU +2GPUs +3GPUs CPU +1GPU +2GPUs +3GPUs
0

2

4

6

8

10

12

14

16

18

20

To
ta

l S
ol

ut
io

n
Ti

m
e

(s
)

Rest
Orthgo
SpMV

G3_circuit

cant

Fig. 3. Performance of GMRES on 16-core Sandy Bridge CPUs with up to
three NDIVIA M2090 GPUs. CPU code is linked to MKL 2011 sp1.8.273,
and SpMV uses the CSR or ELLPACK format on CPU or GPUs, respectively.

MKL for SpMV and Orth. Clearly, this may not be a fair

comparison since MKL may not be optimized for the matrices

arising from GMRES. However, the figure provides a reference

point to our GMRES performance on the GPUs.

IV. MATRIX POWERS KERNEL

For SpMV on multiple GPUs, the communication of the

distributed vector elements through the PCI Express bus

could become a bottleneck. To reduce this bottleneck, given

a starting vector v:,j , MPK communicates all the required

vector elements at once so that each GPU can independently

compute the local components of the s matrix-vector prod-

ucts Av:,j , A
2v:,j , . . . , A

sv:,j without further communication.

Here, in Section IV-A, we first describe our MPK implementa-

tion on multiple GPUs, and then in Section IV-B, we measure

its performance for different test matrices. For our discussion,

we use A(d) and V (d) to denote the local matrices on the d-th

GPU, while ng is the number of available GPUs.

A. Implementation

Figure 4 shows the MPK pseudocode. Here, v(d,k) =
vi(d,k),k and i(d,k) is the index set of the rows of the k-th

vector v:,k, which are required to compute v
(d)
:,s+1 (for k =

1, 2, . . . , s). The row index set i(d,k) is the union of two

disjoint sets i(d,k+1) and δ(d,k), where i(d,s+1) is the row index

set of the d-th local submatrix
(
i.e., A(d) = A(i(d,s+1), :)

)
,

and δ(d,k) contains the remaining row indexes in i(d,k). In the

adjacency graph of A, the set i(d,k) is the set of the vertices

that are reachable through at most s−k+1 edges from a vertex

in i(d,s+1), and δ(d,k) is the set of the vertices whose shortest

path from a vertex in i(d,s+1) is of length s−k+1 (see Figure 5

for an illustration). In our implementation, before the iteration

begins, the k-th boundary set δ(d,k) is computed on the CPU

based on the following recursion for k = s, s− 1, . . . , 1:

δ(d,k) :=
⋃

i∈i(d,k+1)

str
(
a
(d,k+1)
i,:

)
\ i(d,k+1),

where str(a
(d,k+1)
i,:) is the column index set of the nonzeros

in the i-th row of the local submatrix A(d,k+1) which is

Setup: exchange elements of v:,1 to form v(d,1)

for d = 1, 2, . . . , ng do
compress elements of v

(d)
:,1 needed by other GPUs into w(d)

asynchronously send w(d) to CPU
end for
for d = 1, 2, . . . , ng do

expand w(d) into a full vector w on CPU
end for
for d = 1, 2, . . . , ng do

compress elements of w required by d-th GPU into w(d)

asynchronously send w(d) to d-th GPU

copy the local vector v
(d)
:,1 into z

(d,1)

i(d,1),:

expand w(d) into a full vector z(d,1)

end for

Matrix Powers: generate v
(d)
:,2 ,v

(d)
:,3 , . . . ,v

(d)
:,s+1

for k = 1, 2, . . . , s do
for d = 1, 2, . . . , ng do

SpMV: compute y(d) := A(d,k)z(d,k%2)

expand y(d) into a full vector z(d,(k+1)%2)

copy the local part y
(d)

i(d,1)
of y(d) into v

(d)
:,k+1

end for
end for
———————————————————————————————
Notations used for MPK:

A(d), v(d) : local matrix/vector on d-th GPU

i(d,s+1) : row index set of A(d), i.e., A(d) = A(i(d,s+1), :)

i(d,k) : row index set of v:,k needed for MPK, i.e., i(d,k+1) ⋃ δ(d,k)

δ(d,k:s) : k-th boundary set, i.e.,
⋃

k≤�≤s δ
(d,�) or i(d,k) \ i(d,s+1)

v(d,k) : rows of v:,k required by MPK, i.e., vi(d,k),k

Fig. 4. Pseudocode of Matrix Powers Kernel, MPK(s, v:,1).

Fig. 5. Illustration of Surface-to-Volume Dependencies.

the submatrix of A consisting of the rows given by i(d,k+1)(
i.e., A(d,k+1) = A(i(d,k+1), :)

)
.

MPK trades additional storage and computation, and poten-

tially greater communication volume, for communication la-

tency. It reduces the number of communication phases between

GPUs by a factor of s, but the d-th GPU requires additional

memory to store the boundary submatrix A(δ(d,1:s), :), where

δ(d,k:s) = i(d,k) \ i(d,s+1). Furthermore, at the k-th step

of MPK, in addition to multiplying a vector with the local

submatrix A(d), the d-th GPU must compute a multiplication

384

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

s

Su
rfa

ce
/V

ol
um

e
R

at
io

3 GPUs (natural)
2 GPUs (natural)
3 GPUs (RCM)
2 GPUs (RCM)
3 GPUs (KWY)
2 GPUs (KWY)

(a) G3_circuit matrix.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

1.2

s

Su
rfa

ce
/V

ol
um

e
R

at
io

3 GPUs (natural)
2 GPUs (natural)
3 GPUs (RCM)
2 GPUs (RCM)
3 GPUs (KWY)
2 GPUs (KWY)

(b) cant matrix.

Fig. 6. Surface-to-Volume Ratio in Matrix Powers Kernel.

with the k-th boundary submatrix A(δ(d,k:s), :). Finally, to

generate the m basis vectors over the GMRES restart-loop,

the d-th GPU must gather the total of O(ms |δ(d,1:s)|) vector

elements, where |δ(d,1:s)| is the size of the index set δ(d,1:s).
For s > 1, this total communication volume could be greater

than that required by SpMV. The amount of these storage,

computational, and communication overheads depend on the

sparsity structure of the matrix A. We study these in Sec-

tion IV-B for different matrices.

Generating the monomial basis vectors based on the above

MPK is often numerically unstable, leading to a stochastic

convergence of the CA-GMRES iterations. This is because

the generated basis vectors converge to the eigenvector cor-

responding to the most dominant eigenvalue of A with the

ratio |λ2/λ1|, where λ1 and λ2 are the dominant and the

second dominant eigenvalues of A, respectively. Hence, the

condition number of the monomial basis V1:k+1 increases

exponentially. To avoid this numerical instability, our MPK
can generate a Newton basis v:,k+1 = (A − θkI)v:,k, where

the k-th shift θk is an eigenvalue of the Hessenberg matrix H
from the first restart and approximates an extreme eigenvalue

of the matrix A [17]. To further improve the stability, these

shifts are ordered in a Leja ordering, such that the distance

between two consecutive shifts is maximized. If we encounter

a complex shift for a real-precision matrix A, we rearrange

the arithmetics so that the complex arithmetic is avoided [4,

Section 7.3.2]. Since these shifts are not available for the first

restart-loop, we use the standard GMRES iterations.

B. Performance Studies

The performance of MPK strongly depends on the spar-

sity structure of the matrix A. One of the performance-

impact factors is a so-called surface-to-volume ratio which

quantifies how the local diagonal block A(i(d,s+1), i(d,s+1))
is connected to the other diagonal blocks through the off-

diagonal submatrix A(i(d,s+1), δ(d,s)). Figure 6 plots the ratio

nnz(A(δ(d,1:s), :))/nnz(A(d)) to study the increase in this

surface-to-volume ratio with respect to the parameter s (see

Figure 12 for matrix properties). This ratio also quantifies

the additional memory needed to store the boundary subma-

trix A(δ(d,1:s), :) in comparison to the memory needed to store

the local matrix A(d). Since the natural matrix ordering in

some cases leads to the full index set i(d,1), even for a small

value of s, we tested using two matrix reordering algorithms,

the reverse Cuthill-McKee (RCM) [18] from HSL2 and a

k-way graph partitioning (KWY) of METIS3. We observe

that for G3_circuit, the matrix reordering significantly

reduces the surface-to-volume ratio, but the ratio still increases

superlinearly with respect to s. On the other hand, cant is

naturally banded, and the surface-to-volume ratio increases

almost linearly with all the ordering schemes.

For given A(d), Figure 6 also shows the additional computa-

tion W (d,s) required by MPK, which is the area between the

x-axis and plot
(

i.e., W (d,s) = 2
∑s

k=1 nnz(A(δ
(d,k:s), :))

)
.

Hence, the total computational overhead over the m it-

erations is given by m
s W

(d,s). For instance, if the sur-

face nnz(A(δ(d,1:s), :)) increases linearly with s, then W (d,s)

is a quadratic function of s and the total computational

overhead over a restart-loop increases linearly with s.

Next, in Figure 7, we show the total communication

volume required by MPK for different values of s:

i.e., m
s (|

⋃
d δ

(d,1:s)| +
∑

d |δ(d,1:s)|), where the first

term |⋃d δ
(d,1:s)| represents the communication to gather the

required vector elements from the GPUs to the CPU, while

the second term
∑

d |δ(d,1:s)| represents the communication

to scatter the required elements to the GPUs. In particular,

for cases where the index set size |δ(d,1:s)| increases linearly

with s, the total communication volume will stay constant

or even decrease with s. For both G3_circuit and cant,

though the increase in |δ(d,1:s)| slowed down for larger s, it

increased relatively fast for small s. Hence, for larger value

of s (e.g., s > 5), the communication volume grew slowly,

but in comparison to SpMV, MPK required a greater total

communication volume over the m iterations. For the naturally

2http://www.hsl.rl.ac.uk/catalogue/mc60.xml With either the natural or
RCM ordering, the matrix is distributed such that each GPU has about an
equal number of rows.

3http://glaros.dtc.umn.edu/gkhome/metis/metis/overview. We also tested us-
ing recursive bisection algorithms, but the k-way partitioning that minimizes
the edge-cut often gave smaller surfaces and better load balances.

385

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10
5

10
6

10
7

s

To
ta

l C
om

m
un

ic
at

io
n

Vo
lu

m
e

3 GPUs (natural)
2 GPUs (natural)
3 GPUs (RCM)
2 GPUs (RCM)
3 GPUs (KWY)
2 GPUS (KWY)

(a) G3_circuit matrix.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

4

s

To
ta

l C
om

m
un

ic
at

io
n

Vo
lu

m
e

3 GPUs (natural)
2 GPUs (natural)
3 GPUs (RCM)
2 GPUs (RCM)
3 GPUs (KWY)
2 GPUS (KWY)

(b) cant matrix.

Fig. 7. Communication Volume in Matrix Powers Kernel.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

s

Ti
m

e
(s

)

Matrix−power on 2 GPUs
Compuation on 2 GPUs
Matrix−power on 3 GPUs
Computation on 3 GPUs

(a) G3_circuit matrix with k-way partitioning.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.02

0.025

0.03

0.035

0.04

0.045

s

Ti
m

e
(s

)

Matrix−power on 2 GPUs
Compuation on 2 GPUs
Matrix−power on 3 GPUs
Computation on 3 GPUs

(b) cant matrix with natural ordering.

Fig. 8. Performance of Matrix Powers Kernel.

banded cant, KWY lead to greater communication volume

than using RCM. However, KWY computes partitioning

to minimize the edge cut and to balance the load among

the GPUs, and it often rendered smaller communication

volume for other matrices. For instance with G3_circuit,

though KWY and RCM required about the same amount of

communication for a large value of s, the communication

volume using KWY was smaller for a small s.

Finally, Figure 8 shows the performance of our MPK to

generate the total of one hundred vectors (i.e., m = 100).

In addition to the total run time including the communication

(solid line), we show the time spent in SpMV (dashed line).

As we discussed above (see Figure 6), the flop count increases

almost linearly with s for these two test matrices, and we see in

Figure 8 that the computation time with SpMV also increases

linearly. On the other hand, the communication time (the gap

between the solid and dashed lines) decreases significantly

compared to the standard algorithm (s = 1). This is because,

though the communication volume increases (see Figure 7),

the latency is reduced by a factor of s. As a result, the

communication time decreases quickly with a small value of

s, and then it starts to increase slightly as the communication

bandwidth becomes dominant for a larger value of s. This

indicates that the latency, together with the setups required

for calling MPK (e.g., gathering and scattering of the vector

elements) often has a greater impact on the performance of

MPK than the bandwidth does, especially on a small number

of GPUs.4 In the end, MKP reduces the run time by up to

16% and 11% using s > 1 for the cant and G3_circuit
matrices, respectively.

V. ORTHOGONALIZATION KERNELS

The orthogonalization process in GMRES may take as much

or more time than the sparse matrix-vector products. While in

Section IV, we focused on reducing communication of SpMV
between GPUs, in this section we consider the communication

of TSQR (and BOrth) both between the GPUs and on a

GPU. In Sections V-A through V-E, we first describe the

five orthogonalization procedures that we have implemented

on the GPUs. Then, in Section V-F, we study their TSQR
performance using random matrices. We defer investigation

of their numerical stability within CA-GMRES to Section VI.

A. Modified Gram-Schmidt Procedure

For TSQR, Modified Gram-Schmidt (MGS) orthogonalizes

each column v:,k of Vj+1:j+s+1 against the previously orthog-

onalized columns v:,j+1, v:,j+2, . . . , v:,k−1, one at a time: i.e.,

4Here, we compare the performance of MPK with that of MPK using
s = 1, which in comparison to SpMV, performs one extra copying of the
local vector v(d) at each step on the GPU. In Section VI, we compare the
performance of SpMV in GMRES with that of MPK in CA-GMRES.

386

for � = j + 1, j + 2, . . . , k − 1,

v:,k := v:,k − v:,�(v
T
:,�v:,k).

MGS was numerically stable for TSQR in our experiments.

However, to orthogonalize each v:,k, it requires the k− j − 1
dot products r�,k := vT

:,�v:,k, each of which requires a global

reduction between the GPUs. Specifically, for our implementa-

tion to orthogonalize v:,k against v:,�, the d-th GPU first forms

its local dot product r
(d)
�,k := v

(d)T
:,� v

(d)
:,k and asynchronously

sends the result to the CPU. Then, the CPU computes the

final product r�,k :=
∑ng

d=1 r
(d)
�,k and copies r�,k back to the

GPUs for the local orthogonalization v
(d)
:,k := v

(d)
:,k − r�,kv

(d)
:,� .

MGS can be used for BOrth to orthogonalize the set of

s+1 vectors Vj+1:j+s+1 against the previously orthogonalized

vectors V1:j : i.e., for � = 1, 2, . . . , j,

Vj+1:j+s+1 := Vj+1:j+s+1 − v:,�(v
T
:,�Vj+1:j+s+1).

Though the s + 1 vectors Vj+1:j+s+1 are orthogonalized

against v:,� at once, BOrth still communicates j times.

B. Classical Gram-Schmidt Procedure
For TSQR, Classical Gram-Schmidt (CGS) orthogonalizes

each column v:,k of Vj+1:j+s+1 against the previously or-

thogonalized columns v:,j+1, v:,j+2, . . . , v:,k−1, all at once:

i.e.,

v:,k := v:,k − Vj+1:k−1(V
T
j+1:k−1v:,k).

Hence, CGS aggregates all the communication to orthogo-

nalize each v:,k into a single message, and in comparison

to MGS, it reduces the communication latency by a factor

of k − j − 1. Namely, to orthogonalize v:,k, we first let the

GPUs independently compute their local matrix-vector prod-

ucts, rj+1:k−1,k := V
(d)T
j+1:k−1v

(d)
:,k . Then, the CPU accumu-

lates these local products, rj+1:k−1,k :=
∑ng

d=1 r
(d)
j+1:k−1,k. Fi-

nally, each GPU independently orthogonalizes its local vector,

v
(d)
:,k := v

(d)
:,k − V

(d)T
j+1:k−1rj+1:k−1,k. CGS relies on BLAS-2

matrix-vector products, in contrast to MGS that relies on

BLAS-1 dot products. As a result, in comparison to MGS,

CGS not only reduces the latency, but also improves the data

locality of accessing v
(d)
:,� on each GPU.5

Just like MGS, CGS can be used for BOrth:

Vj+1:j+s+1 := Vj+1:j+s+1 − V1:j(V
T
1:jVj+1:j+s+1).

Though it only requires a singe matrix-matrix product, in

practice, the previous vectors are not completely orthogonal,

and CGS results in a faster loss of orthogonality than when

MGS is used. Though restarting the GMRES iteration helps to

maintain orthogonality, a reorthogonalization is often required.

5We investigated a fused CGS that fuses the computation of the norm
‖v:,k‖2 with the matrix-vector product V T

1:k−1v:,k [19]. It replaces a reduc-
tion of CGS with a synchronization to check for the numerical stability on
the GPU. We have not seen a significant performance improvement from this
approach in our experiments. We have also studied a pipelined GMRES [19] to
overlap SpMV to compute v:,j+1 on the GPU with the matrix-vector product
to orthogonalize the previous vector v:,j on the CPU. The matrix-vector
product with tall skinny matrices on the GPU was more efficient than that on
CPU, and using the CPU often slowed down the procedure in our experiments.
MGS that computes rk,: at once would perform as well as CGS.

C. Cholesky QR Factorization

For TSQR, Cholesky QR (CholQR) orthogonalizes the set

of s + 1 vectors Vj+1:j+s+1 at once in three steps. It first

forms the Gram matrix B := V T
j+1:j+s+1Vj+1:j+s+1 on the

CPU through the local matrix-matrix product

B(d) := V
(d)T
j+1:j+s+1V

(d)
j+1:j+s+1

on the GPU, followed by the reduction B :=
∑ng

d=1 B
(d) on

the CPU. Then, the CPU computes its Cholesky factor R of B
(i.e., RTR := B). Finally, the GPU orthogonalizes Vj+1:j+s+1

by a triangular solve V
(d)
j+1:j+s+1 := V

(d)
j+1:j+s+1R

−1. This

orthogonalizes the set of s + 1 vectors with a single pair of

GPU-to-CPU and CPU-to-GPU communications, while MGS

and CGS would require (s+1)(s+2)/2 and s+1 reductions,

respectively. Furthermore, the computation of B(d) is based

on a BLAS-3 matrix-matrix product instead of BLAS-1 or

BLAS-2 products in MGS and CGS, respectively. Hence, the

data locality of accessing the previous columns V1:k−1 can be

optimized not only to orthogonalize v
(d)
:,k (like CGS) but also

to orthogonalize all the remaining columns V
(d)
k+1:s+1.

Unfortunately, the condition number of B is the square of

the condition number of Vj+1:j+s+1. This often causes numer-

ical instabilities, especially in CA-GMRES, where Vj+1:j+s+1

can be ill-conditioned (see Section VI).

D. Singular Value QR Factorization

When the matrix Vj+1:j+s+1 is ill-conditioned, or one

of the column vectors is a linear combination of the other

columns, the Cholesky factorization of its Gram matrix may

fail. To overcome this numerical challenge, the Singular

Value QR (SVQR) computes the upper-triangular matrix R
by first computing the singular value decomposition (SVD)

of the Gram matrix, UΣUT := B, and then the QR factor-

ization QR := Σ
1
2UT . Though computing the SVD and QR

factorization is more expensive than computing the Cholesky

factorization, the dimension of the Gram matrix is much

smaller than that of the original matrix A (i.e., s� n). Hence,

just like CholQR, SVQR performs most of its flops through

the BLAS-3 matrix-matrix product to form the Gram matrix,

and it requires only a pair of the CPU-GPU communications.

In some rare instances, CA-GMRES converged with

CholQR but not with SVQR. A reason for this could be that

the matrix Vj+1:j+k generated by MPK becomes increasingly

ill-conditioned as k increases, and the condition number of

the leading matrix B(1 : k, 1 : k) is the square of the

condition number of Vj+1:j+k. In the Cholesky factorization,

the matrix B is factorized from the top-left of the matrix to the

bottom-right, and the error introduced during the Cholesky fac-

torization of the trailing submatrix B(k+1 : s+1, k+1 : s+1)
is localized within itself. Furthermore, the Gram matrix from

MPK is graded, and this property seems to help maintain the

positive diagonals during the Cholesky factorization. Similarly,

in the first step of SVD to bidiagonalize the Gram matrix

through the Householder transformations, the numerical errors

are localized. However, during the SVD of the bidiagonal

387

Modified Gram-Schmidt
for k = 1, 2, . . . , s + 1 do

for � = 1, 2, . . . , k − 1 do
for d = 1, 2, . . . , ng do
r
(d)
�,k := v

(d)T
:,� v

(d)
:,k

end for
r�,k :=

∑
r
(d)
�,k

on CPU (comm)
for d = 1, 2, . . . , ng do

copy r�,k to GPU-d (comm)

v
(d)
:,k := v

(d)
:,k − v

(d)
:,k r�,k

r
(d)
k,k := v

(d)T
:,k v

(d)
:,k

end for
end for

rk,k :=
√∑

r
(d)
k,k

on CPU (comm)
for d = 1, 2, . . . , ng do

copy rk,k to GPU-d (comm)

v
(d)
:,k := v

(d)
:,k /rk,k

end for
end for

Classical Gram-Schmidt
for k = 1, 2, . . . , s + 1 do

for d = 1, 2, . . . , ng do
r
(d)
1:k−1,k := V

(d)T
1:k−1v

(d)
:,k

end for
r1:k−1,k :=

∑
r
(d)
1:k−1,k

on CPU (comm)
for d = 1, 2, . . . , ng do

copy r1:k−1,k to GPU-d (comm)

v
(d)
:,k := v

(d)
:,k − V

(d)
1:k−1r1:k−1,k

r
(d)
k,k := v

(d)T
:,k v

(d)
:,k

end for

rk,k :=
√∑

r
(d)
k,k

on CPU (comm)
for d = 1, 2, . . . , ng do

copy rk,k to GPU-d (comm)

v
(d)
:,k := v

(d)
:,k /rk,k

end for
end for

Cholesky QR
for d = 1, 2, . . . , ng do

B(d) := V
(d)T
1:s+1V

(d)
1:s+1

end for
B :=

∑
B(d) on CPU (comm)

R := chol(B) on CPU
for d = 1, 2, . . . , ng do

copy R to GPU-d (comm)

V
(d)
1:s+1 := V

(d)
1:s+1R

−1

end for

Communication-Avoiding QR
for d = 1, 2, . . . , ng do

[V
(d)
1:s+1, R

(d)] := qr(V
(d)
1:s+1)

copy R(d) to CPU (comm)
end for
[[Q(1);Q(2); . . . , Q(ng)], R] =

qr([R(1);R(2); . . . ;R(ng)])
on CPU

for d = 1, 2, . . . , ng do
copy Q(d) to GPU−d (comm)

V
(d)
1:s+1 := V

(d)
1:s+1Q

(d)

end for

Fig. 9. Pseudocodes of TSQR algorithms, where chol(B) and qr(V (d))
compute the Cholesky and QR factorization of B and V (d), respectively.

matrix, the errors from the bottom-right of the matrix may

propagate to the leading submatrix. In the end, though the

norm-wise errors of both SVQR and CholQR are relatively

small, its element-wise errors could be greater in SVQR,

especially on the top-right of the matrix. Fortunately, we

observe that this numerical issue of SVQR is often resolved by

scaling the Gram matrix such that its diagonals are one [20].

However, we have not identified a test case where CA-GMRES

converges with SVQR but not with CholQR. We study the

numerical behavior of CholQR and SVQR in Section VI.

E. Communication-Avoiding QR Factorization

Communication-avoiding QR (CAQR) orthogonalizes a set

of vectors Vj+1:j+s+1 against each other through a tree re-

duction of the local QR factorizations. Namely, each GPU first

computes the QR factorization of the local matrix V
(d)
j+1:j+s+1,

then the local R-factors are gathered on the CPU, and the

final QR factorization is computed on the CPU (see Figure 9

for a pseudocode). Just like CholQR, CAQR requires only a

single pair of the GPU-CPU communication to orthogonalize

Vj+1:j+s+1. However, the local QR factorizations are based

on BLAS-1 and BLAS-2 operations, which often obtain only

a fraction of the BLAS-3 performance in CholQR.6

6Currently, we explicitly form the orthogonal matrix Q. Though this makes
the interfaces to the rest of the routines (e.g., reorthogonalization) simpler, it
doubles the flop count. We plan to investigate the potential of storing Q as
the set of Householder transformations. We will also investigate the effects
of blocking [9] and a potential of using batched QRs on a GPU.

‖I − QTQ‖ # flops # GPU-CPU comm.

MGS [21] O(εκ) 2ns2, BLAS-1 xDOT (s + 1)(s + 2)
CGS [22] O(εκs) 2ns2, BLAS-2 xGEMV 2(s + 1)
CholQR [20] O(εκ2) 2ns2, BLAS-3 xGEMM 2
SVQR [20] O(εκ2) 2ns2, BLAS-3 xGEMM 2
CAQR [5] O(ε) 4ns2, BLAS-1,2 xGEQR2 2

Fig. 10. TSQR(Vj+1:j+s+1), κ is the condition number of Vj+1:j+s+1.

To summarize this subsection, Figure 9 shows the pseu-

docodes of our TSQR implementations, and Figure 10 lists

some of their properties.

F. Performance Studies

The performance of the orthogonalization procedures de-

pends strongly on the performance of the BLAS kernels (see

Figure 10). Figure 11(a) shows the performance of DGEMM

that is used for TSQR with CholQR and SVQR (and for

BOrth with CGS). Clearly, the standard implementation (i.e.,

CUBLAS 4.2) is not optimized for the typical tall-skinny ma-

trices in CA-GMRES (i.e., hundreds of thousands of rows, n,

and tens of columns, s). In fact, the performance of CUBLAS

DGEMM was lower than that of MKL or that of MAGMA

DGEMV, making CholQR based on CUBLAS slower than

CGS based on MAGMA. To improve the performance of

CholQR and SVQR, we investigated the performance of a

batched DGEMM, where we first divided the n-by-(s+1) ma-

trix Vj+1:j+s+1 into h-by-(s+1) submatrices, and then called

the CUBLAS batched DGEMM and performed a reduction

operation to sum up the results of all the DGEMMs. To align

the memory access within each DGEMM, we rounded up the

number of rows, h, to be a multiple of 32. Furthermore, since

the batched kernel assumes the sizes of all the DGEMMs to

be the same, we set the leading dimension to store Vj+1:j+s+1

to be a multiple of h and padded the bottom with zeros. This

routine has the same interface as the standard DGEMM. To

internally call the batched kernel, our routine uses an array of

pointers that point to the beginnings of the submatrices. We

clearly see that this batched DGEMM outperforms the other

implementations and we used it for our implementation of the

orthogonalization procedures.

Figure 11(b) shows the performance of DGEMV that is used

for TSQR based on CGS (and BOrth based on MGS). Similar

to DGEMM, the performance of the standard implementation

(i.e., CUBLAS 4.2) was poor. For instance, the performance

of CUBLAS DGEMV was lower than that of MKL or that

of CUBLAS DDOT, making CGS slower than MGS when

CUBLAS is used to implement these two procedures. We also

tried using the batched DGEMM to compute the matrix-vector

product with this tall-skinny matrix, but the performance was

improved only slightly. To improve the performance of CGS,

we developed an optimized MAGMA DGEMV kernel for tall-

skinny matrices, which computes V T
j+1:k−1v:,k based on dot-

products – each thread block in the new GPU kernel computes

a dot-product between a column of Vj+1:k−1 and v:,k. This

improves the performance of DGEMV by a factor of about

five over the other implementations and is used to implement

388

10K 30K 50K 70K 90K
0

10

20

30

40

50

60

70

Number of Rows (n)

G
flo

p
/s

Batched (h=100)
Batched (h=500)
Batched (h=1000)
MAGMA DGEMV
CUBLAS
MKL

(a) DGEMM to compute V T
1:s+1V1:s+1.

10K 30K 50K 70K 90K
0

5

10

15

20

25

Number of Rows (n)

G
flo

p
/s

MAGMA
Batched GEMM (k=1,h=1000)
CUBLAS DDOT
CUBLAS
MKL

(b) DGEMV to compute V T
1:s+1v.

100K 500K 1000K
0

50

100

150

200

250

300

Number of Rows (n)

E
ff
e
ct

iv
e
 G

flo
p
/s

3GPUs
2GPUs
1GPU
CholQR
SVQR
CGS
CAQR
MGS
LAPACK

(c) Performance of TSQR(V1:s+1).

Fig. 11. Performance of DGEMM, DGEMV, and TSQR for a tall-skinny matrix V1:s+1 (s+ 1 = 30).

our orthogonalization procedures.7

Finally, Figure 11(c) shows the performance of TSQR on

up to three GPUs, where “LAPACK” uses DGEQRF and

DORGQR of threaded MKL on 16-core SandyBridge, and

the effective Gflop/s is computed as the ratio of the total

flops required by DGEQRF and DORGQR over the orthog-

onalization time in second. On a single GPU, our routines

obtain the performance of the optimized BLAS kernels; i.e.,

MGS, CGS, and CholQR/SVQR obtain the performance of

DDOT, DGEMV, and DGEMM, respectively. The performance

of CAQR is close to that of MGS because TSQR on each GPU

is based on BLAS-1 and BLAS-2 operations. The figure also

shows that each routine scales well over the three GPUs.

VI. EXPERIMENTAL RESULTS OF CA-GMRES

Finally, in this section, we study the numerical behav-

ior of the different orthogonalization procedures within CA-

GMRES, and the performance of CA-GMRES on multiple

GPUs. One of the parameters that affects the performance

of GMRES is the number of iterations before each restart,

m (a small value of m helps maintain the orthogonality

of the basis vectors and reduces the cost of generating a

larger projection subspace, while too small m leads to slow

convergence or stagnation). Hence, for each test matrix, we use

the parameter m that obtained the shortest solution time on a

single GPU among the values of m = 30, 60, 90, . . . , 180. The

computed solution is considered to have converged when the

�2-norm of the initial residual is reduced by at least four orders

of magnitude. To improve the stability and the convergence,

before the iteration starts, the matrix is balanced; namely, the

rows are first scaled by their norms, and then the columns are

scaled by their norms. Our code was compiled using the GNU

gcc 4.4.6 compiler and CUDA nvcc 4.2 compiler with the

optimization flag -O3, and linked with MKL 2011 sp1.8.273.

7We are investigating other batched kernels (e.g., GEMV, SYRK, and
GEQRF) and the potential of using an auto-tuner to improve the performance
(see [23]). The performance of CholQR/SVQR also depends on the triangular-
solve on a tall-skinny matrix, where we use MAGMA DTRSM that is
developed for the Cholesky or LU factorization.

Name Source n/1000 nnz/n θ1/θ2 κ(B)

cant FEM Cantilever 62 64.2 7.5685
7.5682 3.26e16

G3 circuit Circuit simulation 1, 585 4.8 1.9964
1.9829 8.54e9

dielFilterV2real FEM in EM 1, 157 41.9 5.2766
5.1892 5.81e11

nlpkkt120 KKT optimization 3, 542 26.9 3.6554
3.6127 2.42e7

Fig. 12. Test Matrices, κ(B) is the condition number of the last Gram
matrix from the first restart-loop with the setups in Figure 14.

Figure 12 lists the test matrices from the University of Florida

Matrix Collection that were used for our experiments.

A. Numerical Studies of Orthogonalization Procedures

The bar graph in Figure 13(a) shows the average

TSQR error norms using different orthogonalization pro-

cedures in CA-GMRES(20, 30), where each TSQR com-

putes QR := V , and E./A is the element-wise division

(i.e., (E./V)i,j is ei,j/vi,j). The error bars show the mini-

mum and maximum errors. For this particular matrix, CA-

GMRES with CGS required reorthogonalization to converge,

which is indicated by “2×” in front of CGS in the figure,

and the white bars show the error norms after the first

orthogonalization. All the procedures obtained about the same

factorization errors and residual norm convergence. In term of

the orthogonality errors ‖I −QTQ‖, CholQR and SVQR had

greater errors than MGS due to the squared condition number

of the Gram matrix, while MGS had greater errors than CAQR

because the errors could be amplified by the condition number

of the basis vectors generated by MPK (see Table 10). Fig-

ure 13(b) shows the same error norms in CA-GMRES(30, 30).

The results were similar to those in CA-GMRES(20, 30),

except that the orthogonality errors of CGS were greater

than those of MGS even after reorthogonalization and that

the element-wise errors ‖(A − QR)./A‖ were significantly

greater using CholQR and SVQR, illustrating the effects of

the greater condition number. Some error bars were longer in

CA-GMRES(20, 30) than those in CA-GMRES(30, 30). This

is because with (s,m) = (20, 30), MPK generates 20 and then

10 basis vectors, and the condition number of the basis vectors

is much greater when 20 vectors are generated.

389

||I−Q^TQ||_1 ||V−QR||_1/||V||_1 ||(V−QR)./V||_max

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

MGS
2×CGS
CholQR
SVQR
CAQR

(a) CA-GMRES(20, 30).

||I−Q^TQ||_1 ||V−QR||_1/||V||_1 ||(V−QR)./V||_max

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

MGS
2×CGS
CholQR
SVQR
CAQR

(b) CA-GMRES(30, 30).

Fig. 13. Average TSQR Errors in CA-GMRES, G3_circuit (1 GPU).

Time (ms)

Ortho/Res

ng TSQR Rest. Total TSQR SpMV/Res Total/Res SpdUp

cant, natural ordering

GMRES(60)

1 MGS 7 167.1 − 36.3 204.3

1 CGS 7 25.7 − 35.7 62.9
2 CGS 7 17.1 − 22.9 40.0
3 CGS 7 14.3 − 21.4 37.1

CA-GMRES(1, 60)

1 – 7 76.3 14.2 36.8 114.7
CA-GMRES(15, 60)

1 CGS 7 20.2 11.2 35.2 58.2

1 2×CholQR 7 12.9 7.1 30.7 44.9 1.40
2 2×CholQR 7 8.2 4.3 21.0 30.3 1.32
3 2×CholQR 7 7.1 3.7 16.0 24.4 1.52

G3 circuit, k-way partitioning

GMRES(30)

1 MGS 16 855.0 − 54.8 931.9

1 CGS 16 193.8 − 56.3 256.3
2 CGS 16 100.0 − 31.3 143.8
3 CGS 16 68.8 − 25.0 100.0

CA-GMRES(1, 30)

1 – 16 568.8 151.9 55.4 631.3
CA-GMRES(15, 30)

1 2×CGS 16 296.3 253.1 49.9 352.5

1 CholQR 16 70.0 45.2 49.8 126.2 2.03
2 CholQR 16 38.4 24.9 30.6 75.0 1.92
3 CholQR 16 25.2 16.3 24.6 56.9 1.76

dielFilterV2real, k-way partitioning

GMRES(180)

1 MGS 176 20964.0 − 3437.5 24420.0

1 CGS 181 3765.2 − 3419.9 7202.8
2 CGS 168 1797.0 − 1732.2 3543.4
3 CGS 199 1223.2 − 1130.7 2366.4

CA-GMRES(1, 180)

1 – 202 9440.6 715.3 3455.0 12921.0
CA-GMRES(15, 180)

1 2×CGS 148 1891.9 1247.3 3386.5 5301.4

1 2×CholQR 181 1047.0 398.6 3391.2 4460.8 1.61
2 2×CholQR 139 431.8 176.8 2129.4 2688.2 1.31
3 2×CholQR 160 369.3 151.2 1989.3 2374.2 0.62

Fig. 14. CA-GMRES performance, where “Rest.” is the number of restarts,
“Ortho/Res” and “SpMV/Res” are the average Orth and SpMV time per
restart-loop, respectively, “Total/Res” is the average restart-loop time, and
“SpdUp” is the speedup over GMRES. BOrth is based on CGS.

B. Performance Studies of CA-GMRES

Finally, Figure 14 compares the CA-GMRES performance

with that of GMRES, both of which use the optimized GPU

kernels from Section V. Though CA-GMRES and GMRES

needed about the same number of restarts on one GPU, for an

ill-conditioned A, the round-off errors could lead to a different

restart counts on a different number of GPUs. Hence, in the

table, we show both the average time per restart and the

restart counts. The first observation is that the CA-GMRES

performance using s = 1 is much lower than that of GMRES.

This is because CA-GMRES relies on computational kernels

to orthogonalize multiple vectors at a time, and these kernels

are not optimized for orthogonalizing one vector at a time.8

For instance, with BOrth based on MGS or CGS, when s = 1,

BOrth computes the dot-product vT
:,�v:,k or the matrix-vector

product V T
j+1:j+s+1v:,� using a matrix-vector or matrix-matrix

multiplication routines, respectively. However, as soon as s
becomes larger (e.g., s = 10), the combination of BOrth and

TSQR reduces the communication both on a GPU and between

the GPUs, and shortens the orthogonalization time, obtaining

speedups of between 1.99 and 4.16 over Orth of GMRES.

On the other hand, due to the overheads associated with

MPK (see Section IV), obtaining the speedups in the sparse-

matrix vector product was more challenging. Depending on the

sparsity patterns, MPK could obtain a speedup of up to 1.33
over SpMV, but MPK can be slower. Figure 15 summarizes the

performance of CA-GMRES by showing the time per restart-

loop that is normalized by that of GMRES on one GPU. Here,

if SpMV is faster than MPK, then CA-GMRES uses SpMV. By

reducing the communication, CA-GMRES obtained speedups

of between 1.32 and 2.06 over GMRES.

VII. CONCLUSION

We surveyed the numerical behavior of different orthog-

onalization (Orth) procedures, and of their blocked variants

(BOrth) and tall-skinny QR (TSQR), in combination with a

sparse matrix-vector product (SpMV) and a matrix powers

kernel (MPK). We also showed that new optimizations, espe-

cially for tall skinny matrices, are needed to make Orth, BOrth,

and TSQR, and hence CA-GMRES or GMRES, perform well

on the GPUs. Since many existing GPU implementations of

GMRES rely on standard techniques (e.g., CUBLAS), these

optimizations may improve their performance. In addition,

such tall-skinny matrices appear in other sparse solvers (e.g.,

sparse factorization), and both SpMV and Orth are needed

in many solvers (e.g., subspace projection methods for linear

and eigenvalue problems). Hence, our studies may have greater

impact beyond GMRES. In the end, our performance results on

8We are investigating if an auto-tuner can reduce this performance gap.

390

cant/1GPU cant/2GPUs cant/3GPUs G3/1GPU G3/2GPUs G3/3GPUs V2/1GPU V2/2GPUs V2/3GPUs KT/1GPU KT/2GPUs KT/3GPUs
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No
rm

aliz
ed

 Ti
me

Total
SpMV
Orth
MPK
Bort
TSQR

1.40x

1.32x

1.52x

2.03x

1.92x

1.76x

1.60x

1.54x

1.49x

2.07x

1.94x

1.79x

Fig. 15. Performance of GMRES and CA-GMRES, nlpkkt120 required 746 GMRES(120) iterations and about 90 minutes on one GPU for the solution
convergence. For CA-GMRES, we used s = 10. For the timing results of other matrices, see Figure 14. CA-GMRES bars show the speedups over GMRES.

16-core Intel Sandy Bridge CPUs with three NDIVIA Fermi

GPUs showed that CA-GMRES can obtain a speedup of up

to 2.0 over GMRES.

Since the performance of CA-GMRES depends critically

on the performance of the GPU kernels, we are looking

to further optimize these kernels. We also plan to study

other partitioning algorithms (e.g., hypergraph partitioning),

other orthogonalization strategies (e.g., rank-revealing QR

with column pivoting [10] or the use of a mixed-precision

arithmetic [23]), and adaptive schemes to select or switch

orthogonalization strategies or to adjust input parameters (e.g.,

m and s [23]). Finally, our performance results demonstrated

that though MPK could obtain a speedup of up to 1.3 over

SpMV, it can be slower due to the overheads traded for

reducing the communication latency. We would like to study

the potential of reducing communication of MPK on a single

GPU, and the performance of CA-GMRES on a larger number

of GPUs, in particular, the GPUs distributed over multiple

compute nodes, where the communication is more expensive.

ACKNOWLEDGMENTS

This research was supported in part by NSF SDCI - National

Science Foundation Award #OCI-1032815, “Collaborative Re-

search: SDCI HPC Improvement: Improvement and Support

of Community Based Dense Linear Algebra Software for

Extreme Scale Computational Science,” DOE grant #DE-

SC0010042: “Extreme-scale Algorithms & Solver Resilience

(EASIR),” NSF Keeneland - Georgia Institute of Technol-

ogy Subcontract #RA241-G1 on NSF Prime Grant #OCI-

0910735, and Sandia National Laboratories is a multiprogram

laboratory managed and operated by Sandia Corporation, a

wholly owned subsidiary of Lockheed Martin Corporation, for

the U.S. Department of Energy’s National Nuclear Security

Administration under contract DE-AC04-94AL85000.

REFERENCES

[1] Y. Saad, Iterative methods for sparse linear systems, 3rd Edition, the
Society for Industrial and Applied Mathematics, Philadelphia, PA, 2003.

[2] H. van der Vorst, Iterative Krylov methods for large linear systems,
Cambridge University Press, Cambridge, MA, 2003.

[3] Y. Saad, M. Schultz, GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7
(1986) 856–869.

[4] M. Hoemmen, Communication-avoiding Krylov subspace methods,
Ph.D. thesis, University of California, Berkeley (2010).

[5] J. Demmel, L. Grigori, M. Hoemmen, J. Langou, Communication-
optimal parallel and sequential QR and LU factorizations, SIAM Journal
on Scientific Computing 34 (1).

[6] M. Mohiyuddin, M. Hoemmen, J. Demmel, K. Yelick, Minimizing
communication in sparse matrix solvers, in: the proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis (SC), New York, NY, USA, 2009, pp. 36:1–36:12.

[7] I. Yamazaki, K. Wu, A communication-avoiding thick-restart Lanczos
method on a distributed-memory system, in: the proceedings of Euro-Par
Workshops, 2011, pp. 345–354.

[8] M. Anderson, G. Ballard, J. Demmel, K. Keutzer, Communication-
avoiding QR decomposition for GPUs, Tech. Rep. UCB/EECS-2010-
131, University of California Berkeley (Oct 2010).

[9] M. Hoemmen, A communication-avoiding, hybrid-parallel, rank-
revealing orthogonalization method, in: the proceedings of IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), 2011,
pp. 966–977.

[10] J. Demmel, L. Grigori, M. Gu, H. Xiang, Communication avoiding rank
revealing QR factorization with column pivoting, LAPACK Working
Note 276 (May 2013).

[11] CUSP library, available at https://github.com/cusplibrary.
[12] D. Lukarski, PARALUTION - the library for iterative sparse methods

on CPU and GPU, available online: http://www.paralution.com/ (2013).
[13] P. Tillet, K. Rupp, S. Selberherr, C.-T. Lin, Towards performance-

portable, scalable, and convenient linear algebra, Talk: HotPar (2013).
[14] V. Minden, B. Smith, M. Knepley, Preliminary implementation of PETSc

using GPUs, the proceedings of the 2010 International Workshop of
GPU Solutions to Multiscale Problems in Science and Engineering.

[15] C. G. Baker, M. A. Heroux, Tpetra, and the use of generic programming
in scientific computing, Scientific Programming 20 (2) (2012) 115–128.

[16] NVIDIA CUBLAS library, https://developer.nvidia.com/cublas.
[17] Z. Bai, D. Hu, L. Reichel, A Newton basis GMRES implementation,

IMA Journal of Numerical Analysis 14 (1994) 563–581.
[18] E. Cuthill, J. McKee, Reducing the bandwidth of sparse symmetric

matrices, in: the proceedings of the 24th National Conference, 1969,
pp. 157–172.

[19] P. Ghysels, T. Ashby, K. Meerbergen, W. Vanroose, Hiding global
communication latency in the GMRES algorithm on massively parallel
machines, SIAM J. Scientific Computing 35.

[20] A. Stathopoulos, K. Wu, A block orthogonalization procedure with
constant synchronization requirements, SIAM J. Sci. Comput. 23 (2002)
2165–2182.

[21] A. Bjorck, Solving linear least squares problems by Gram-Schmidt
orthogonalization, BIT Numerical Mathematics 7 (1967) 1–21.

[22] N. Abdelmalek, Round off error analysis for Gram-Schmidt method and
solution of linear least squares problems, BIT Numerical Mathematics
11 (1971) 345–368.

[23] I. Yamazaki, S. Tomov, T. Dong, J. Dongarra, Mixed-precision orthog-
onalization scheme and adaptive step size for CA-GMRES on GPUs,
2014, submitted to the 11th international meeting on high-performance
computing for computational science (VECPAR).

391

