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Abstract—Krylov subspace solvers are often the method of
choice when solving sparse linear systems iteratively. At the same
time, hardware accelerators such as graphics processing units
(GPUs) continue to offer significant floating point performance
gains for matrix and vector computations through easy-to-use
libraries of computational kernels. However, as these libraries
are usually composed of a well optimized but limited set of
linear algebra operations, applications that use them often
fail to leverage the full potential of the accelerator. In this
paper we target the acceleration of the BiCGSTAB solver for
GPUs, showing that significant improvement can be achieved
by reformulating the method and developing application-specific
kernels instead of using the generic CUBLAS library provided
by NVIDIA. We propose an implementation that benefits from
a significantly reduced number of kernel launches and GPU-
host communication events, by means of increased data locality
and a simultaneous reduction of multiple scalar products. Using
experimental data, we show that, depending on the dominance of
the untouched sparse matrix vector products, significant perfor-
mance improvements can be achieved compared to a reference
implementation based on the CUBLAS library. We feel that such
optimizations are crucial for the subsequent development of high-
level sparse linear algebra libraries.

I. INTRODUCTION

Modern research and development is often driven by virtual
simulations on computer systems. Partial differential equations
are utilized to generate a virtual model of the physical reality
and their discretizations are used to obtain linear systems
of equations that can then be solved numerically. Depending
on the problem and the discretization method, the obtained
matrices are often sparse and of large size, which makes
iterative solvers attractive for their solution. Among the most
efficient iterative methods are Krylov subspace solvers that
search for an approximate solution in a subspace. Besides the
well-known generalized minimum residual method (GMRES),
the BiCG algorithm is another Krylov subspace solver able
to handle non-symmetric indefinite systems. To improve the
stability and convergence of the original algorithm, H. A. van
der Vorst developed a stabilized version called biconjugate gra-
dient stabilized method, often abbreviated as BiCGSTAB [14].
Depending on the problem characteristics, BiCGSTAB can
outperform the GMRES method and be the method of choice
when solving a system of linear equations.
The latest hardware developments promote the use of accel-
erators when solving large linear systems. A straight forward

way to use accelerators in Krylov subspace solvers is to offload
all matrix and vector computations to the device using library
functions. These steps were taken in an implementation of the
BiCGSTAB method in a tutorial for educational purposes that
can be found at hpcforge.org [13], where CUBLAS functions
provided by NVIDIA are used to handle the matrix and vector
operations. Despite the appealing performance improvements
compared to CPU implementations, we argue that these steps
are not sufficient to leverage the full performance potential, but
it is necessary to reformulate the algorithm and implement
method-specific kernels to achieve higher performance on
GPU-accelerated systems. Prior work [1] took a similar ap-
proach to improve runtime and energy footprint of a Conjugate
Gradient method. This paper goes further by describing the
reformulation of a Krylov subspace solver using techniques
such as aggregation of multiple arithmetic operations into
a single kernel to reduce GPU memory traffic and CPU-
GPU communication. Moreover, simultaneous computation of
multiple dot products is introduced and a model is provided
to estimate the runtime improvements achieved by the modi-
fications. The BiCGSTAB method is chosen as representative
Krylov method because it strikes a balance between different
execution patterns, that are typical for this class of solvers. The
patterns include consecutive and isolated dot products, vector
updates, and matrix vector multiplications. The rest of the
paper is structured as follows: we begin with Section II, a brief
review of the BiCGSTAB algorithm and discuss the impor-
tance of the sparse matrix vector product in Krylov subspace
methods. The core of the paper (Section IV) is the redesign
of the BiCGSTAB algorithm, where we derive application-
specific kernels by merging multiple arithmetic operations
and we introduce a kernel capable of computing multiple dot
products simultaneously. We also address the topic of data
locality, GPU-host communication, and asynchronous stopping
check. Based on these modifications, in Section V we derive
a model quantifying the expected performance improvements
and use experimental results to validate the model, which show
the superior performance of the reformulated BiCGSTAB
algorithm.



1: x0 := 0 or any other initial guess
2: r0 := b−Ax0
3: r̂0 := r0 or any other initial guess s.t.r̂T0 r0 6= 0
4: ρ0 := ω0 := α0 := 0
5: v0 := 0 p0 := 0
6: k := 1
7: while (k < maxiter) && (res > τ)
8: k := k+1
9: ρk := r̂T0 rk−1 (dot)

10: βk+1 := ρk
ρk−1

αk−1
ωk−1

11: pk := rk−1 +β (pk−1−ωk−1vk−1) (scal + 2 axpy)
12: vk := Apk (SpMV)
13: αk := ρk

r̂0
Tv

(dot)
14: sk := rk−1−αvk (copy + axpy)
15: tk := Ask (SpMV)

16: ωk := sTk tk
tTk tk

(2 dot)

17: xk+1 := xk +αk pk +ωksk (2 axpy)
18: rk := sk−ωtk (copy + axpy)
19: res = rTk rk (dot)
20: end

Fig. 1. Algorithmic description of the BiCGSTAB method [2].

II. BICONJUGATE GRADIENT STABILIZED METHOD

The BiCGSTAB method was developed by H. A. van der
Vorst with the objective to improve stability and convergence
of the BiCG method [14]. It belongs to the class of Krylov
subspace solvers and can be used to solve linear systems
of equations that are not necessarily symmetric and positive
definite [12], unlike the CG method. BICGSTAB’s usually fast
convergence makes it an attractive candidate when targeting
the numerical solution of partial differential equations via
finite element or finite difference methods [4].

For the linear system Ax = b, where A ∈Rn×n, b ∈Rn, and
x ∈Rn is the sought-after solution, we outline the BiCGSTAB
method in Figure 1 where τ and maxiter set upper bounds,
respectively, on the relative residual for the computed ap-
proximation to the solution xk, and the maximum number of
iterations. Beside the two sparse matrix vector multiplications
(line 12 and 15), usually dominating the computational effort,
every BiCGSTAB iteration contains several vector operations
such as copy, axpy or dot product. The cost for one iteration
can be estimated by 4nnz+ 18n where nnz is the number of
nonzero entries in A and n is the number of unknowns.

An implementation of BiCGSTAB for GPU-accelerated
platforms [13] was originally drafted as an example for a
course on GPU-enabled libraries. In that implementation, all
matrix and vector operations are handled by the accelerator
using NVIDIA’s CUBLAS library. The essential operations
are given in Figure 2. Although the intention is to provide an
example of how the CUBLAS library can be employed instead
of providing highly tuned software, it shares the principles of
most implementations for GPU-accelerated systems, and we
will therefore take it as a reference CUBLAS implementation.

1 while ( ( k < maxi ter ) && ( res > eps i l on ) ){
2 rho new = cublas dot ( n , r hat , 1 , r . val , 1 ) ;
3 beta = rho new / rho old ∗ alpha / omega ;
4 cublasDscal ( n , beta , p , 1 ) ;
5 cublasDaxpy ( n , omega ∗ beta , v , 1 , p , 1 ) ;
6 cublasDaxpy ( n , 1 .0 , r , 1 , p , 1 ) ;
7 dSpMV <<<Gs, Bs>>> ( n , rowA , colA , valA , p , v ) ;
8 alpha = rho new / cublasDdot ( n , r hat , 1 , v , 1 ) ;
9 cublasDcopy ( n , r , 1 , s , 1 ) ;

10 cublasDaxpy ( n , −1.0 ∗ alpha , v , 1 , s , 1 ) ;
11 dSpMV <<<Gs, Bs>>> ( n , rowA , colA , valA , s , t ) ;
12 omega = cublasDdot ( n , t , 1 , s , 1 ) / cublasDdot ( n , t , 1 , t , 1 ) ;
13 cublasDaxpy ( dofs , alpha , p . val , 1 , x , 1 ) ;
14 cublasDaxpy ( dofs , omega , s . val , 1 , x , 1 ) ;
15 cublasDcopy ( n , s , 1 , r , 1 ) ;
16 cublasDaxpy ( n , −1.0 ∗ omega , t , 1 , r , 1 ) ;
17 res = cublasDnrm2 ( n , r , 1 ) ;
18 rho old = rho new ;
19 k++;
20 }

Fig. 2. CUBLAS implementation of the BiCGSTAB algorithm from Figure 1.

III. SPARSE MATRIX VECTOR PRODUCT

In the iterative solution of sparse linear systems via Krylov
methods, the matrix vector product generating the subspace is
usually dominating the overall computational cost of every
iteration. Hence, significant effort is spent on developing
storage formats along with kernels that are suitable for efficient
execution on the target architecture. While the widespread
compressed sparse row (CSR [2]) format usually provides
good performance on CPU architectures, the use of less
compact formats like ELLPACK or packet format [3] may
be beneficial when targeting accelerators like GPUs using
streams for the execution [10]. The underlying reason is that
introducing (storage and computational) overhead may allow
for coalesced memory access which is key for leveraging
performance on streaming processors. In addition to formats
for specific matrix patterns, hybrid storage formats have also
been developed, balancing fill for superior memory access
patterns and computational overhead [3]. However, it is in
general difficult to determine the optimal storage format a
priori, and without knowledge about the matrix characteris-
tics, only statistical information can be used. An extensive
comparison between different storage formats can be found
in [3]. As the focus of this paper is on the reformulation of
the BiCGStab algorithm, we refrain from optimizing the sparse
matrix vector kernel used in the algorithm, but stick to the CSR
format. The motivation is that we want to quantify the effect of
various optimization techniques and show how switching from
the straight forward implementation to a reformulated version
based on method-specific kernels improves the performance
(while changes to the used matrix format and respective
kernels would not be considered as algorithmic changes and
sophisticate a fair comparison).

IV. REFORMULATION OF THE BICGSTAB ALGORITHM

The reference implementation of BiCGSTAB using
CUBLAS functions as presented previously yields appealing
performance improvement compared to CPU code, but it
also misses some performance improvement opportunities. For
example, a better resource utilization can be achieved by



designing application-specific routines, reducing the number of
kernel calls, reducing the GPU-host communications, and ap-
plying power-saving mechanisms featured by the hardware [1].
To this end, a reformulation of the algorithm in Figure 1 is
inevitable. Gathering similar operations (e.g., component-wise
vector operations, dot products, and scalar operations) allows
the programmer to design algorithm-specific kernels with
higher computational intensity than the replaced CUBLAS
functions. Merging several arithmetic operations into one
kernel reduces the amount of kernel calls and memory access,
and handling the residual stopping criterion asynchronously
to the iteration process enables a better GPU utilization.
While Figure 3 provides a general overview about the original
CUBLAS reference implementation and the new implemen-
tation featuring these improvements, we discuss the distinct
modifications we propose to the classical formulation of the
algorithm in the following sections.

A. Experimental Setup

Our experiments were performed on a Tesla K20c GPU that
belongs to the Kepler line of NVIDIA’s hardware accelerators.
The GPU consists of 2496 streaming processors, and runs at
705 MHz. It provides 3520 Gflop/s in single precision and
1170 Gflop/s in double precision. The main memory is 5 GB
of GDDR5 and has a peak bandwidth of 208 GB/s, which is
sufficiently large to keep all the matrices and all the vectors
needed in the iteration process. We limit our analysis to double
precision, and to ensure the accuracy of the data, we usually
run every experiment 1000 times and either average the values
or report the total time.

The host processor was an Intel Xeon E5 (codename: Sandy
Bridge, model 0x2D, family 0x06) in a two-socket configu-
ration featuring 8 cores in each socket with HyperThreading
enabled and the nominal frequency was 2.6 GHz.

B. Merging multiple arithmetic operations into one kernel

When implementing complex arithmetic operations using
only CUBLAS functions, there are often several of the
CUBLAS calls that have to be combined together and the
set of calls to choose from is very limited. In fact, the
entire set attempts to establish close correspondence with
the Basic Linear Algebra Subprograms (BLAS) [11], [9],
[8], [6], [7], a software interface originally designed for
linear algebra operations on the CPU. But while on a CPU-
based system the memory hierarchy usually offers sufficient
performance when executing a series of these functions, this
is far from true on the GPU. The GPU architecture provides
small caches that are used by the CUBLAS routines, but
consecutive CUBLAS operations would not keep reusable data
locally. Also, the data streaming scheme, the key to achieving
high throughput and GPU performance, suffers when multiple
individual CUBLAS functions are invoked when the compiler
fails to detect dependencies. An example is the computation
pk := rk−1 +β (pk−1−ωk−1vk−1) in line 11 of Figure 1 that
results in three CUBLAS function calls (line 4-6 in Figure 2).
Every function reads the data from main memory, processes

1 global void
2 magma dbicgmerge p update ( in t n ,
3 double ∗skp , double ∗v ,
4 double ∗r , double ∗p ){
5 in t i = b lock Idx . x ∗ blockDim . x + th read Idx . x ;
6 double beta=skp [ 1 ] , omega=skp [ 2 ] ;
7 i f ( i<n )
8 p [ i ] = r [ i ] + beta ∗ ( p [ i ]−omega∗v [ i ] ) ;
9 }

Fig. 4. Algorithm-specific kernel for the operation in line 11 in Figure 1.
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Fig. 5. Performance comparison between the merged BiCGSTAB and the
reference implementation for the update of vector p (see line 11 of Figure 1).

the operation, and writes data back. As vector operations
(Level 1 BLAS) are bandwidth-bound, the 8n + 4 memory
transfers (5n+ 4 reads and 3n writes) limit the performance.
Significant improvements can be achieved by replacing the
CUBLAS functions with the kernel given in Figure 4, where
data movement is reduced down to 3n+4 reads and n writes.
Due to the 50% memory traffic reduction, we expect an
asymptotic speedup of 2, which is reflected in Figure 5 where
the update of p using CUBLAS functions reaches, for large
vector sizes, only 11.5 Gflop/s compared to 22.4 Gflop/s of the
magma_dbicgmerge_p_update kernel given in Figure 4.

Comparing the total GPU memory access in one
BiCGSTAB iteration, we conclude from Table I that the
savings in global memory reads are 13n reads and 5n writes.
Neglecting the sparse matrix vector multiplications (4nnz+6n
memory transfers in total), we remain with 34n memory
transfers in the CUBLAS reference implementation. In the
accelerated BiCGSTAB, we have merged the arithmetically
untouched matrix vector products with other vector operations.
Hence, as the vectors have to be transferred anyway, we remain
with 22n memory transactions when omitting the impact of
the matrix vector products. Depending on the dominance
of the aforementioned matrix vector product, we expect a
performance improvement of up to 35%.

C. Reduce GPU-host communication

Merging multiple arithmetic operations into a single GPU
kernel not only improves the computational intensity, but also
reduces the communication between GPU and host as less



while( ( k < maxiter ) && ( res_host > epsilon ) ){
      magma_dbicgmerge_p_update<<<Gs, Bs, 0>>>
                               ( n, skp, v, r, p );

      magma_dbicgmerge_spmv1<<<Gs, Bs, Ms1>>>
                            ( n, valA, rowA, colA, p, r, v, d1 );
      magma_zbicgmerge_reduce1( n, Gs, Bs, d1, d2, skp );

      magma_dbicgmerge_s_update<<<Gs, Bs, 0>>>
                               ( n, skp, r, v, s );

      magma_dbicgmerge_spmv2<<<Gs, Bs, Ms2>>>
                            ( n, valA, rowA, colA, s, t, d1 );
      magma_dbicgmerge_reduce2( n, Gs, Bs, d1, d2, skp);

      magma_dbicgmerge_xr_update<<<Gs, Bs, 0>>>
                                ( n, skp, rr, r, p, s, t, x, d1);
      magma_dbicgmerge_reduce3( n, Gs, Bs, d1, d2, skp);    
      magma_memcopy( 1, skp+5, res_host );
      k++;  
} 

while( ( k < maxiter ) && ( res > epsilon ) ){
      rho_new = cublas_dot( n, r_hat, 1, r.val, 1 );       
      beta = rho_new/rho_old * alpha/omega;               
      cublas_dscal( n, beta, p, 1 );                      
      cublas_daxpy( n, omega * beta, v, 1 , p, 1 );       
      cublas_daxpy( n, 1.0, r, 1, p, 1 );                 
      dSpMV <<<Gs,Bs>>> ( n, rowA, colA, valA, p, v );   
      alpha = rho_new / cublas_dot( n, r_hat, 1, v, 1 );  
      cublas_dcopy( n, r, 1 , s, 1 );                     
      cublas_daxpy( n, -1.0 * alpha, v, 1 , s, 1 );          
      dSpMV <<<Gs,Bs>>> ( n, rowA, colA, valA, s, t );   
      omega = cublas_dot( n, t, 1, s, 1 ) 
                / cublas_dot( n, t, 1, t, 1 );            
      cublas_daxpy( dofs, alpha, p.val, 1 , x, 1 );  
      cublas_daxpy( dofs, omega, s.val, 1 , x, 1 );  
      cublas_dcopy( n, s, 1 , r, 1 );                    
      cublas_daxpy( n, -1.0 * omega, t, 1 , r, 1 );           
      res = cublas_dnrm2( n, r, 1 );                  
      rho_old = rho_new;
      k++;                                
} 

Fig. 3. Visualizing the reformulation of the BiCGSTAB implementation. While all parameters remain in GPU memory, note the explicit transfer of the
residual back to the host in the last line.

CUBLAS BiCGSTAB merged BiCGSTAB
line1 read write merged into read write

4 n+O(1) n
p update 3n+O(1) n5 2n+O(1) n

6 2n+O(1) n
7 2nnz+2n+O(1) n spmv1+reduce1 2nnz+3n+O(1) n+O(1)8 2n+O(1) O(1)
9 n n s update 2n+O(1) n10 2n+O(1) n
11 2nnz+2n+O(1) n

spmv2+reduce2 2nnz+2n+O(1) n+O(1)12 2n+O(1) O(1)
13 2n+O(1) O(1)
14 2n+O(1) n

xr update+reduce3 6n+O(1) 2n+O(1)

15 2n+O(1) n
16 n n
17 2n+O(1) n
18 2n+O(1) O(1)
2 2n+O(1) O(1)

sum 4nnz+29n+O(1) 11n+O(1) sum 4nnz+16n+O(1) 6n+O(1)

TABLE I
COMPARISON OF GPU MEMORY ACCESS FOR THE CUBLAS REFERENCE IMPLEMENTATION (SEE FIGURE 2) AND THE MERGED VARIANT.

kernels are launched. This is particularly important when
running CUDA in blocking mode to improve the energy
efficiency [1]. Comparing the number of kernels launched
in one iteration, we realize that the number of kernels in
the BiCGSTAB-merge implementation is case-dependent, as
the kernel count in the iterative reduction procedure of the
scalar products depends on the system’s dimension (see
magma_dbicgmerge_reduce2, Figure ?? in the Ap-
pendix). In fact, for the applied block size of 256, each of the
three reduction operations launches k = dlog512

( n
256

)
e kernels.

However, this number is usually small, and k does not exceed 2
in any of the test matrices we consider in Section V. Summing
all kernels and the explicit copy of the residual, the total
kernels launch count in the BiCGSTAB-merge implementation
is, for the considered test matrices, less or equal eight, which
is a 50% reduction compared to the 16 CUBLAS function
invocations in the reference implementation.

A prerequisite for reducing the number of kernel launches
by merging multiple arithmetic operations into one kernel is
to keep parameters like scalar products in the device memory.
We achieve this by using an additional array skp of the form
[alpha|beta|omega|rho_o|rho_n|nom|t1|t2] in
GPU memory that contains the parameters and two entries
for temporary storage. This step comes with reduced memory
transfer between GPU and host. The CUBLAS reference
implementation transfers 13 double precision values between
host and GPU in every iteration, while the new algorithm only
needs the transfer of the residual to check the error stopping
criterion.

D. Handling the residual stopping process asynchronously

The developed algorithm should now be able to run a com-
plete iteration on the GPU while the only task remaining for
the CPU is to administer the kernel launch order. The sticking



point becomes checking the residual stopping criterion that is
handled by the CPU. While a classical implementation would
interrupt the iteration process on the GPU until the CPU has
validated the stopping criterion and instructed the continuation
of the execution, this may have severe performance impact
in the case of slow GPU-host communication. A workaround
is given by an asynchronous check of the stopping criterion.
The residual is copied to the host asynchronously, while
the GPU continues the iteration process. The CPU receives
residuals with some delay, and only interrupts once the residual
stopping criterion is met. Although the algorithm may at this
time already have started the next iteration, these additional
computations are not detrimental to the performance. Only in
the case of unstable convergence and a delay larger than the
time for one iteration may this scheme become dangerous, as
an oscillating residual may result in a ”bad breakdown” of the
iteration process. However, we never experienced this case in
our experiments.

E. From dot product to matrix vector multiply

NVIDIA’s CUBLAS library provides an efficient routine
to process dot products on the GPU. However, as soon as
multiple dot products need to be computed consecutively,
performance obviously suffers from memory access and the
fact that the reduction for each vector is handled one after
another. This motivates us to come up with a kernel able to
compute multiple dot products at once and reduce the vectors
simultaneously. Although the BiCGSTAB only requires the
parallel computation of two dot products, we aim for a general
analysis on this topic, as the computation of a set of dot
products with one vector being part in all of them can also be
seen as a matrix vector multiplication using a very column-
dominant matrix.

While parallel matrix vector multiplication implementations
usually assign a set of rows to each processing unit, this ap-
proach is very inefficient if a matrix consists of less rows than
processing units available. Especially when targeting GPUs,
handling rows by threads is not suitable for this matrix type,
as the typically used thread number will exceed the number
of rows by orders of magnitude. The MAGMA software
package developed at the Innovative Computing Lab (ICL)
at the University of Tennessee has overcome this challenge by
assigning one multiprocessor to each row, and splitting each
row into chunks that are then handled by different threads.
To have all multiprocessors working on a current hardware
architecture, the matrix needs at least 14 rows [5]. Each row
is then split into parts according to the block size, and each
thread strides over the complete row, handling one element
in every part. In the end, the partial sums computed by the
distinct threads are collected using fan in.

Using the ideas based on the dot product where comput-
ing units process in a tree-reduction fashion, we extend the
implementation proposed in [1] to process multiple vector
products simultaneously. The advantage of this algorithm is
that instead of only one, all multiprocessors are utilized to
compute the reduction of a single row, with the drawback
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of additional memory usage. Like in the MAGMA imple-
mentation, each thread of a thread block (handled by one
multiprocessor) strides over the complete row, but the usage of
all multiprocessors reduces the number of row chunks and the
computations of each thread considerably. The price for this
is that every multiprocessor, once the reduction for the thread
block is completed, has to write data to the global memory
and synchronize with the other multiprocessors after every
reduction step, as the partial sums computed by the different
thread blocks are used in the next reduction step.

The limited cache size in GPUs poses restrictions when
aiming for the simultaneous reduction of multiple vectors,
as the shared memory is the key to the efficiency of the
implementation. We overcome this bottleneck by processing
the data in chunks of vectors allowing for efficient cache
usage. Note that the number of vectors in every chunk is
dependent on the hardware characteristics, the block size, and
the precision format used, but independent of the vector length.

According to the performance shown in Figure 6 (see line
labelled MDOT) a chunk size of 4 seems reasonable for
our implementation. The obtained kernel (labelled MDGM)
shows minor performance loss when hitting the reload barrier,
but then stabilizes around 0.8 GFLOPS, outperforming the
sequence of CUBLAS dot products by a factor larger than
two. Interesting is the comparison with the matrix vector
product kernels. While NVIDIA’s implementation (CUGeMV)
is not at all able to keep up with the MDGM for short
and wide matrices, the matrix vector product provided by
MAGMA (MAGMA GeMV) keeps up as soon as all 14
multiprocessors are active. In Figure 7 we show the superi-
ority of the two implementations as a function of the vector
length. As expected, the more column-dominated a matrix
is, the more reasonable the usage of MDGM is where all
multiprocessors are used for every row. A direct comparison
of MDOT against NVIDIA’s dot product for different vector
sizes is given in Figure 8. The first observation is that, when
computing only one dot product, the MDGM outperforms the
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CUBLAS implementation for small lengths while CUBLAS
yields slightly higher performance as soon as the vector length
exceeds 106. Close inspection reveals that the performance
of MDOT decreases slightly around 200,000. This stems
from the iterative reduction procedure: for larger vectors one
reduction step is not sufficient, rather a second kernel is
needed (see line 62–72 in magma_dbicgmerge_reduce2,
Figure ?? in the Appendix). When adding a second dot product
with one vector shared by both operations (see data labelled
MDOT(2) and CUBLAS(2) in Figure 8) the performance of
MDOT increases by about one third due to reuse of one
vector and the simultaneous reduction of two vectors. For
CUBLAS we do not observe any performance improvement
when executing two consecutive dot products. Improvement
would only become possible by a compiler detecting the
reuse of one vector. By reordering the operations in the
BiCGSTAB method, we can gather two sets containing two
consecutive dot products using the same vector in both com-
putations. For efficient processing, the merged implementation
uses the vector q = [r_hat|r|p|v|s|t] containing the
distinct vectors of the reference implementation. In the ac-
celerated version of BiCGSTAB, we merge the computation
of (multiple) dot products with other arithmetic operations
where possible. As an example, we provide the code for

the kernel magma_dbicgmerge_spmv2 and the routine
magma_dbicgmerge_reduce2 in Figure ?? in the Ap-
pendix.

V. EXPERIMENTAL COMPARISON WITH PERFORMANCE
MODEL GUIDING THE OPTIMIZATIONS

In the previous sections, we have proposed different modi-
fications to the BiCGSTAB algorithm structure and its imple-
mentation on a GPU-accelerated system. In this section, we
aim for a theoretical model quantifying the improvements the
modifications are expected to achieve in experiments using a
set of test matrices taken from the University of Florida matrix
collection (UFMC)2. While the matrices were selected to cover
a broad spectrum with respect to dimension and sparsity, some
key characteristics are summarized in Table II. In Table III, we
profile the CUBLAS reference implementation for the different
test matrices.

Aiming for a general model providing estimations for the
savings rendered by the modifications we proposed in the
previous sections, we may consider the existence of two
factors determining the improvement when switching from the
reference implementation to the merged BiCGSTAB, where
we utilize the custom-designed kernels. One is the dominance
of the matrix-vector product that we did not change in the
optimization process (need to subtract 6n from the operation
count). According to the data given in Table I, we may expect
performance improvements of up to ηmemory = 13n+5n−6n

29n+11n−6n ≈
35% due to reduced memory transfers in the memory-bound
algorithm, however linearly decreasing with the dominance of
the SpMV. This already allows for the derivation of a very
simple model estimating the expected savings as:

Pmemory = 1− TMERGE

TCUBLAS
(1)

= (1−SpMV )×ηmemory.

The second factor is the dimension of the system. In
Section IV-E, we proposed MDOT, capable of computing
multiple dot products simultaneously. But as the improvements
when switching from CUBLAS to MDOT depends on the
vector size, we have to quantify these as well. For this purpose,
we run experiments on the sequence of dot products that
occur in the BiCGSTAB algorithm: two sets of consecutive
dot products sharing one of the vectors and one separate dot
product (see Figure 9). For the remainder of the paper we
use the following function (produced with a regression fit of
the experimental results) to approximate the runtime savings
(shown in Figure 10):

F (n) =
1

100

(
1

2×10−7×n+0.021
+12.5

)
. (2)

The impact of data transfer and kernel launch overhead
is application specific, which makes the reduced GPU-host
communication and the asynchronous check of the stopping
criterion difficult to integrate into a general model. Instead,

2UFMC; see http://www.cise.ufl.edu/research/sparse/matrices/
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we now combine the improvements due to data locality of
MDOT in Eq. (3), which models the expected improvement
that depends on the matrix size n, and the relative portion of
the sparse matrix-vector kernel (SpMV ), and the dot product
(dot) in one iteration, respectively.

Pmemory+dot = (3)
ηmemory× (1−SpMV)+(1−F (n))×dot.

Using the data from Table II and III, we visualize the
savings predicted by Pmemory+dot in Figure 11 as memory+dot
along with experimental data. We observe that in most cases
we are able, in general, to provide acceptable estimations,
better than the linear model based exclusively on the memory
improvement. However, in some cases, we still underesti-
mate the performance improvement. In particular, for the test
matrices AUDIKW 1 and BMW3 2 where the matrix-vector
kernel dominance should allow only negligible improvement,
about 20% of runtime reduction cannot be explained by any
of the aforementioned effects. Detailed analysis revealed a
phenomenon that needs further research to provide a satisfying
explanation: the matrix vector kernel using CSR format can be
accelerated on the GPU architecture used by adding additional

Matrix #nonzeros (nnz) Size (n) nnz/n
AIRFOIL 2D 259,688 14,214 18.27
APACHE 2 4,817,870 715,176 6.74
AUDIKW 1 77,651,847 943,645 82.28
BLOWEYBQ 49,999 10,001 5.00
BMW3 2 11,288,630 227,362 49.65
CAGE 10 150,645 11,397 13.22
ECOLOGY 2 4,995,991 999,999 5.0
FV1 85,264 9,604 8.88
G3 CIRCUIT 7,660,826 1,585,478 4.83
POISSON 3DA 352,762 13,514 26.10
PRES POISSON 715,804 14,822 48.29
TREFETHEN 2000 41,906 2,000 20.95
TREFETHEN 20000 554,466 20,000 27.72

TABLE II
DESCRIPTION AND PROPERTIES OF THE TEST MATRICES.

operations writing data to global memory. It may be assumed
that some scheduling internal to the GPU, and maybe a
superior cache use, is responsible for this effect, and we
will further investigate this issue. While we were not able
to reproduce similar behavior on NVIDIA’s previous GPU
architecture – the Fermi line – we observed savings of about
ηSpMV = 15% for the SpMV using large matrices on the
Kepler K20c. Tests on the Kepler K20x, to which we had
limited access, indicated that the effect remains, however it
became smaller. Motivated by this observation, we enhanced
the model given in (3) by a correction term reflecting the
acceleration of the SpMV due to unknown scheduling advan-
tages when merging it with the other operations. The resulting
improvement estimation, that was given in Equation (4) and
is labelled memory+dot+SpMV in Figure 11, predicts the
observed improvements in experiments with high accuracy.

Pmemory+dot+SpMV = Pmemory+dot +SpMV(n,nnz)×ηSpMV.
(4)

Beyond the successful validation of the derived model, we
observe that the main goal of our work was achieved as
well: the new BiCGSTAB implementation outperforms the
CUBLAS reference implementation for all test cases. Depend-
ing on the dominance of the matrix-vector kernel, which we
refrained from accelerating, the merged version achieves an
average runtime reduction close to 40%. For specific matrices,
where the impact of the matrix vector-kernel is small, we
achieve speedups as large as 3×.

VI. SUMMARY AND CONCLUSION

Taking the BiCGSTAB method as representative for a
Krylov subspace solver, we have investigated how to leverage
the performance potential of graphics processing units. The
optimized implementation reformulates the algorithm, merges
multiple arithmetic into algorithm-specific kernels to reduce
the memory traffic, keeps all data in GPU memory to remove



Matrix total [s] SpMV [s] dot [s] p update [s] s update [s] x+r update [s]
AIRFOIL 2D 0.79 0.43 (54%) 0.26 (33%) 0.03 ( 4%) 0.03 ( 3%) 0.04 ( 5%)
APACHE 2 3.94 2.37 (60%) 0.57 (15%) 0.33 ( 8%) 0.21 ( 5%) 0.45 (11%)
AUDIKW 1 190.92 188.94 (99%) 0.70 ( 0%) 0.42 ( 0%) 0.27 ( 0%) 0.58 ( 0%)
BLOWEYBQ 0.41 0.06 (15%) 0.25 (61%) 0.03 ( 7%) 0.02 ( 6%) 0.04 ( 9%)
BMW3 2 25.26 24.50 (97%) 0.38 (01%) 0.12 ( 0%) 0.08 ( 0%) 0.16 ( 1%)
CAGE 10 0.60 0.21 (36%) 0.28 (47%) 0.03 ( 5%) 0.02 ( 4%) 0.04 ( 6%)
ECOLOGY 2 4.30 2.24 (52%) 0.71 (16%) 0.45 (10%) 0.28 ( 7%) 0.61 (14%)
FV1 0.48 0.10 (21%) 0.28 (59%) 0.03 ( 6%) 0.02 ( 5%) 0.04 ( 9%)
G3 CIRCUIT 6.77 3.69 (55%) 0.98 (15%) 0.69 (10%) 0.44 ( 6%) 0.95 (14%)
POISSON 3DA 1.24 0.85 (69%) 0.28 (23%) 0.03 ( 2%) 0.03 ( 2%) 0.04 ( 3%)
PRES POISSON 1.63 1.27 (78%) 0.26 (16%) 0.03 ( 2%) 0.03 ( 2%) 0.04 ( 2%)
TREFETHEN 2000 0.51 0.15 (30%) 0.26 (52%) 0.03 ( 5%) 0.02 ( 4%) 0.03 ( 7%)
TREFETHEN 20000 1.45 1.03 (71%) 0.31 (21%) 0.03 ( 2%) 0.03 ( 2%) 0.04 ( 3%)

TABLE III
PROFILING OF THE CUBLAS REFERENCE IMPLEMENTATION, ALL TIMINGS ARE FOR 1000 BICGSTAB ITERATIONS.
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Fig. 11. Performance improvement by replacing the CUBLAS reference
implementation with the reformulated version depending on the matrix vector
kernel dominance in the original code.

pressure from the PCI connection, checks the stopping cri-
terion asynchronously to avoid performance-detrimental syn-
chronization points between CPU and GPU, and uses new
highly-efficient dot product kernels able to reduce multiple
dot products simultaneously. Compared to a reference imple-
mentation where the arithmetic operations of the mathematical
formulation are directly translated into CUBLAS function
calls, the new implementation yields appealing performance
improvement for matrices taken from the University of Florida
Matrix Collection. Furthermore, we have derived a model, that
succeeds in predicting the performance improvements. This
model is based on the reduced memory accesses and the faster
execution due to our new and optimized dot product. While
we focused on BiCGSTAB, the necessity of method-specific
kernels to achieve high performance on GPUs also applied to
other Krylov subspace methods, and deriving models similar
to ours may provide a-priori insight into whether a specific
solver is suitable for custom-designed GPU implementation.
Future research in this direction should focus on including
preconditioner techniques, as preconditioning is often the key
to efficiency when solving sparse linear systems via Krylov

subspace methods.
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