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Abstract—

This paper presents a heterogeneous CPU-GPU algorithm
design and optimized implementation for an entire sparse iter-
ative eigensolver – the Locally Optimal Block Preconditioned
Conjugate Gradient (LOBPCG) – starting from low-level GPU
data structures and kernels to the higher-level algorithmic choices
and overall heterogeneous design. Most notably, the eigensolver
leverages the high-performance of a new GPU kernel developed
for the simultaneous multiplication of a sparse matrix and a
set of vectors (SpMM). This is a building block that serves
as a backbone for not only block-Krylov, but also for other
methods relying on blocking for acceleration in general. The
heterogeneous LOBPCG developed here reveals the potential of
this type of eigensolver by highly optimizing all of its components,
and can be viewed as a benchmark for other SpMM-dependent
applications. Compared to non-blocked algorithms, we show
that the performance speedup factor of SpMM vs. SpMV-based
algorithms is up to six on GPUs like NVIDIA’s K40. In particular,
a typical SpMV performance range in double precision is 20
to 25 GFlop/s, while the SpMM is in the range of 100 to 120
GFlop/s. Compared to highly-optimized CPU implementations,
e.g., the SpMM from MKL on two eight-core Intel Xeon E5-
2690s, our kernel is 3 to 5×. faster on a K40 GPU. For
comparison to other computational loads, the same GPU to CPU
performance acceleration is observed for the SpMV product, as
well as dense linear algebra, e.g., matrix-matrix multiplication
and factorizations like LU, QR, and Cholesky. Thus, the modeled
GPU (vs. CPU) acceleration for the entire solver is also 3 to 5×.
In practice though, currently available CPU implementations are
much slower due to missed optimization opportunities, as we
show.

I. INTRODUCTION

The main challenges often associated with numerical linear
algebra are the fast and efficient solution of large, sparse linear
systems, and the appertaining eigenvalue problems. While lin-
ear solvers often serve as a backbone of simulation algorithms
based on the discretization of partial differential equations,
eigensolvers play a central role, e.g., in quantum mechan-
ics, where eigenstates and molecular orbitals are defined by
eigenvectors, or principle component analysis. With increasing
system size and sparsity, dense linear algebra routines, usually
based on direct solvers like LU factorization, or, in the case
of an eigenvalue problem, Hessenberg decomposition [1],
become less suitable as the memory demand and computational
cost may exceed the available resources. Iterative methods
providing solution approximations often become the method
of choice. However, as their performance is, at least in case
of sparse linear systems, usually memory bound, leveraging

the computing power of today’s supercomputers, often accel-
erated by coprocessors like graphics processing units (GPUs),
becomes challenging.

While there exist numerous efforts to adapt iterative lin-
ear solvers like Krylov subspace methods to coprocessor
technology, sparse eigensolvers have so far remained out-
side the main focus. A possible explanation is that many
of those combine sparse and dense linear algebra routines,
which makes porting them to accelerators more difficult. Aside
from the power method, algorithms based on the Krylov
subspace idea are among the most commonly used general
eigensolvers [1]. When targeting symmetric positive definite
eigenvalue problems, the recently developed Locally Optimal
Block Preconditioned Conjugate Gradient method (LOBPCG,
see [2]) belongs to the most efficient algorithms. LOBPCG is
based on maximizing the Rayleigh Quotient, while taking the
gradient as the search direction in every iteration step. Iterating
several approximate eigenvectors, simultaneously, in a block
in a similar locally optimal fashion, results in the full block
version of the LOBPCG. Applying this algorithm efficiently
to multi-billion size problems served as the backbone of two
Gordon-Bell Prize finalists that ran many-body simulations on
the Japanese Earth Simulator [3], [4]. One of the performance-
crucial key elements is a kernel generating the Krylov search
directions via computing the product of the sparse system
matrix and a set of vectors. With the sparse matrix vector prod-
uct performance traditionally limited by memory bandwidth,
LOBPCG, depending on this routine, has for a long time been
considered unsuitable for GPU acceleration.

In this paper we present an LOBPCG implementation
for graphics processing units able to efficiently leverage the
accelerator’s computing power. For this purpose, we employ a
sophisticated sparse matrix data layout, and develop a kernel
specifically designed to efficiently compute the product of a
sparse and a tall-and-skinny dense matrix composed of the
block of eigenvector approximations. As this kernel also is an
integral part of other block-Krylov solvers, the significance
of its performance carries beyond the example integration
into LOBPCG we present in this paper. We benchmark the
routine against a similar implementation provided in Intel’s
MKL [5] and NVIDIA’s cuSPARSE [6] library, and analyze
the improvement it renders to the performance of the LOBPCG
GPU implementation. Finally, we also compare it to the state-
of-the-art multi-threaded CPU implementations of LOBPCG
based on the BLOPEX [7] code for which the software libraries
PETSc and hypre provide an interface [8]. For matrices taken



from the University of Florida Matrix Collection, we achieve
significant acceleration when computing a set of the respective
eigenstates.

The rest of the paper is structured as follows. We first revise
the LOBPCG algorithm that serves not only as a motivation
to develop a building block generating the product of a sparse
matrix and multiple vectors, but also as a framework revealing
the performance improvements. After listing some key char-
acteristics of the hardware platform and the test matrices we
target in Section IV, we provide a detailed description of the
sparse matrix storage format and the processing idea of the
kernel in Section V. We investigate the performance depending
on the number of vectors and compare against both the MKL
and cuSPARSE equivalent, and implementations based on
consecutive sparse matrix vector products. In Section VI we
compare the runtime of the LOBPCG GPU implementation
using either consecutive matrix vector products or the devel-
oped blocked variant. We also include a brief performance
comparison against the state-of-the-art CPU implementation
available in the BLOPEX software package. We conclude in
Section VII by summarizing the findings and listing algorithms
that can potentially be accelerated in a similar fashion.

II. RELATED WORK

Blocked sparse matrix vector product: As there exists
significant need for blocked sparse matrix vector products,
NVIDIA’s cuSPARSE library provides this routine for the
CSR format [6]. Aside from a straight-forward implementation
assuming the set of vectors being stored in column-major
order, the library also contains an optimized version taking
the block of vectors as row-major matrix as input, that can
be used in combination with a preprocessing step transposing
the matrix to achieve significantly higher performance [9]. The
blocked sparse matrix vector product we propose in this paper
not only outperforms the cuSPARSE implementations for our
test cases, but the detailed description also allows porting it to
other architectures.

Orthogonalizations for GPUs: Orthogonalization of vec-
tors is a fundamental operation for both linear systems and
eigenproblem solvers, and many applications. Therefore there
has been extensive research on both its acceleration and stabil-
ity. Besides the classical and modified Gram-Schmidt orthog-
onalizations [10] and orthogonalizations based on LAPACK
(xGEQRF + xUNGQR ) [11] and correspondingly MAGMA
for GPUs [12], [13], recent work includes communication-
avoiding QR [14], also developed for GPUs [15], [16]. For
tall and skinny matrices these orthogonalizations are in general
memory bound. Higher performance, using Level 3 BLAS
operations, is also possible in orthogonalizations like the
Cholesky QR or SVD QR, but they are less stable (error
bounded by the square of the condition number of the input
matrix). These were developed for GPUs in MAGMA, includ-
ing a mixed-precision Cholesky QR that removes the square by
selectively using higher than the working precision arithmetic
[17] (also applied to a CA-GMRES for GPUs).

For the LOPBPCG method, the most time consuming
operation after the SpMM kernel is the orthogonalization.
There are two sets of orthogonalizations of m vectors per
iteration (see Section III).

LOBPCG implementations: The BLOPEX software
package maintained by Andrew Knyazev may be considered as
state-of-the-art for CPU implementations of LOBPCG, as the
popular software libraries PETSc and hypre provide an inter-
face [8]. Also Scipy [18], octopus [19] and Anasazi [20] part
of the Trilinos library [21] feature LOBPCG implementations.
The first implementation of LOBPCG able to utilize a GPU’s
computing power by has been available since 2011 in the
ABINIT material science software package [22]. The imple-
mentation, realized in fortran90, benefits from utilizing the
generic linear algebra routines available in the CUDA [23] and
MAGMA [12], [13] GPU libraries. More recently, NVIDIA
anounced that LOBPCG will be included in the GPU-
accelerated Algebraic Multigrid Accelerator AmgX 1.

III. LOBPCG

LOBPCG stands for Locally Optimal Block Preconditioned
Conjugate Gradient method [2], [24]. It is designed to find m
of the smallest (or largest) eigenvalues λ and corresponding
eigenvectors x of a symmetric and positive definite eigenvalue
problem:

Ax = λx.

Similarly to other CG-based methods, this is accomplished by
the iterative minimization of the Rayleigh quotient:

ρ(x) =
xTAx

xTx
,

which results in finding the smallest eigenstates of the original
problem. In the LOBPCG method the minimization at each
step is done locally, in the subspace of the current approxi-
mation xi, the previous approximation xi−1, and the precon-
ditioned residual P (Axi− λixi), where P is a preconditioner
for A. The subspace minimization is done by the RayleighRitz
method. This is summarized by the pseudo-code on Figure 1.

1 do i=1, niter
2 R = P (AXi − λXi)
3 check convergence criteria
4 [Xi, λ] = Rayleigh-Ritz on span{Xi, Xi−1, R}
5 end do

Fig. 1: LOBPCG algorithm

Note that the operations in the algorithm are blocked
and therefore can be very efficient on modern architectures.
Indeed, the AXi is the SpMM kernel, and the bulk of the
computations in the Rayleigh-Ritz minimization are general
matrix-matrix products (GEMMs). The direct implementation
of this algorithm becomes unstable as the difference between
Xi−1 and Xi becomes small, and therefore special care
and modifications must be taken (see [2], [25]). While the
LOBPCG convergence characteristics usually benefit from
using an an application-specific preconditioner [26], [27], [28],
[29], [30], we refrain from including preconditioners as we
are particularly interested in the performance of the top-level
method. Our implementation is hybrid, using both the GPUs
and CPUs available. In particular, all data resides on the GPU

1https://developer.nvidia.com/amgx



memory and the bulk of the computation – the preconditioned
residual, the accumulation of the matrices for the Rayleigh-
Ritz method, and the update transformations – are done on
the GPU. The small and not easy to parallelize Rayleigh-
Ritz eigenproblem is done on the CPU using vendor-optimized
LAPACK. More specifically, to find

Xi+1 = argminy∈{Xi,Xi−1,R}ρ(y),

the Rayleigh-Ritz method first accumulates the matrices on the
GPU

Ã = [Xi, Xi−1, R]
TA [Xi, Xi−1, R]

B = [Xi, Xi−1, R]
T [Xi, Xi−1, R]

and solves the small generalized eigenproblem Ã φ = B φ on
the CPU, to finally find (computed on the GPU)

Xi+1 = [Xi, Xi−1, R] φ(1 : m).

For stability, various orthogonalizations are performed,
following the LOBPCG Matlab code from A. Knyazev 2. We
used our highly optimized GPU implementations based on
the Cholesky QR to get the same convergence rates as the
reference CPU implementation from BLOPEX (in HYPRE)
on all our test matrices from the University of Florida sparse
matrix collection (see Section VI). More stable versions, in-
cluding Cholesky/SVD QR iterations and the mixed-precision
Cholesky QR [17], as well as LAPACK/MAGMA based, CGS,
and MGS for GPUs are also an option that we provide.

IV. EXPERIMENT FRAMEWORK

The hardware we use in this paper is a two socket Intel
Xeon E5-2670 (Sandy Bridge) platform accelerated by an
NVIDIA Tesla K40c GPU with a theoretical peak performance
of 1,682GFLOP/s. The host system has a theoretical peak of
333GFLOP/s, main memory size is 64 GB, and theoretical
bandwidth is up to 51 GB/s. On the K40 GPU, 12 GB of
main memory are accessed at a theoretical bandwidth of 288
GB/s. The implementation of all GPU kernels is realized
in CUDA [23], version 5.5 [31], while we also include in
the performance comparisons routines taken from NVIDIA’s
cuSPARSE [6] library. On the CPU, Intel’s MKL [5] is used in
version 11.0, update 5. Note that the CPU-based implementa-
tions use the ”numactl –interleave=all” option when beneficial.

The matrix problems we target are taken from the Uni-
versity of Florida Matrix Collection (UFMC)3. With some
key characteristics collected in Table I, and sparsity plots for
selected matrices shown in Figure 2, we tried to cover a large
variety of systems common in scientific computing.

V. SPARSE MATRIX-VECTOR-BLOCK PRODUCT

A key building block for the LOBPCG algorithm and other
block-Krylov solvers is a routine generating the Krylov search
directions by computing the product of a sparse matrix and a
set of vectors. This routine can obviously be implemented as
a set of consecutive sparse matrix vector products; however,

2http://www.mathworks.com/matlabcentral/fileexchange/48-lobpcg-m
3UFMC; see http://www.cise.ufl.edu/research/ sparse/matrices/

matrix nonzeros (nnz) Size (n) nnz/n

AUDIKW 1 77,651,847 943,645 82.28
BMW3 2 11,288,630 227,362 49.65
BMWCRA 1 10,641,602 148,770 71.53
BONE 010 47,851,783 986,703 48.50
BONE S10 40,878,708 914,898 44.68
CANT 4,007,383 62,451 64.17
CRANKSEG 2 14,148,858 63,838 221.63
F1 26,837,113 343,791 78.06
FAULT 639 27,245,944 638,802 42.65
HOOK 1498 59,374,451 1,498,023 39.64
INLINE 1 36,816,170 503,712 73.09
LDOOR 42,493,817 952,203 44.63
PWTK 11,524,432 217,918 52.88
SHIPSEC1 3,568,176 140,874 25.33
STOC 1465 21,005,389 1,465,137 14.34
XENON 2 3,866,688 157,464 24.56

TABLE I: Description and properties of the test matrices.

the interpretation as a product of a sparse matrix and a tall-
and-skinny dense matrix composed of the distinct vectors
may promote a different approach (sparse matrix dense matrix
product, SpMM). In particular, already cached data of the
sparse matrix may be reused when processing multiple vectors
simultaneously. This would render performance improvement
to the memory-bound kernel. In the GPU implementation of
LOBPCG, we realize this routine by handling the sparse matrix
using the recently proposed SELL-P format (padded sliced
ELLPACK format [32]). In the following we first describe
the SELL-P format, provide details on how we implement the
SpMM kernel, and then analyze its performance by comparing
against the CSRSpMM taken from NVIDIA’s CUSPARSE
library [6].

Implementation of SpMM for SELL-P
While for dense matrices it is usually reasonable to store
all matrix entries in consecutive order, sparse matrices are
characterized by a large number of zero elements, and storing
those is not only unnecessary, but would also incur significant
storage overhead. Different storage layouts exist that aim to
reducing the memory footprint of the sparse matrix by storing
only a fraction of the elements explicitly, and anticipating all
other elements to be zero, see [33], [34], [35]. In the CSR
format [33], this idea is taken to extremes, as only nonzero
entries of the matrix are stored. In addition to the array values
containing the nonzero elements, two integer arrays colind
and rowptr are used to locate the elements in the matrix, see
Figure 3. While this storage format is suitable when computing
a sparse matrix vector product on processors with a deep
cache-hierarchy, as it reduces the memory requirements to a
minimum, it fails to allow for high parallelism and coalesced
memory access when computing on streaming-processors like
GPUs. On those, the ELLPACK-format, padding the different
rows with zeros for a uniform row-length, coalesced memory
access, and instruction parallelism may, depending on the ma-
trix characteristics, outperform the CSR format [36]. However,
the ELLPACK format incurs a storage overhead for the general
case, which is determined by the maximum number of nonzero
elements aggregated in one row and the average number of
nonzeros per row (see Table II). Depending on the associated
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Fig. 2: Sparsity plots of selected test matrices.

memory and computational overheads, using ELLPACK may
result in poor performance, despite that coalesced memory
access is highly favourable for streaming processors.

A workaround to reduce memory and computational over-
head is to split the original matrix into row blocks before
converting these into the ELLPACK format. In the resulting
sliced ELLPACK format (SELL or SELL-C where C denotes
the size of the row blocks [37], [38]), the overhead is no longer
determined by the matrix row containing the largest number of
nonzeros, but by the row with the largest number of nonzero
elements in the respective block. While sliced SELL-C reduces
the overhead very efficiently (i.e., choosing C=1 results in
the storage-optimal CSR format), assigning multiple threads
to each row requires padding the rows with zeros, such that
each block has a rowlength divisible by this thread number.
This is the underlying idea of the SELL-P format: partition the
sparse matrix into row-blocks, and convert the distinct blocks
into ELLPACK format [36] with the rowlength of each block
being padded a multiple of the number of threads assigned to
each row when computing a matrix vector or matrix multi-
vector product.

Although the padding introduces some zero fill-in, the
comparison between the formats in Figure 3 reveals that the
blocking strategy may still render significant memory savings
compared to ELLPACK (also see Table II), which directly
translate into reduced computational cost for the SpMV kernel.
For the design of the SpMM routine it is not sufficient to reduce
the computational overhead, as performance also depends on
the memory bandwidth. Therefore, it is essential to optimize
the memory access pattern, which requires the accessed data to
be aligned in memory whenever possible [23]. For consecutive
memory access, and with the motivation of processing multiple
vectors simultaneously, we implement the SpMM assuming
the tall-and-skinny dense matrix composed of the vectors
being stored in row-major order. Although this requires a
preprocessing step transposing the dense matrix prior to the
SpMM call, the more appealing aligned memory access to the
vector values may compensate for the extra work.

The SpMM kernel then arises as a natural extension of the
SpMV routine for the SELL-P format proposed in [32]. Like in
the SpMV kernel, the x-dimension of the thread block processes
the distinct rows of one SELL-P block, while the y-dimension
corresponds to the number of threads assigned to each row, see
Figure 4. Partial products are written into shared memory and
added in a local reduction phase. For the SpMM it is beneficial
to process multiple vectors simultaneously, which motivates
for extending the thread block by a z-dimension, handling the
distinct vectors. While assigning every z-layer of the block to
one vector would provide a straight-forward implementation,

keeping the set of vectors (respectively the tall-and-skinny
dense matrix), in texture memory, makes an enhanced approach
more appealing. The motivation is that in CUDA (version 5.5)
every texture read fetches 16 bytes, corresponding to two IEEE
double or four IEEE single precision floating point values. As
using only part of them would result in performance waste,
every z-layer may process two (double precision case) or four
(single precision case) vectors, respectively. This implies that,
depending on the precision format, the z-dimension of the
thread block equals half or a quarter the column count of the
tall-and-skinny dense matrix.

As assigning multiple threads to each row requires a
local reduction of the partial products in shared memory
(see Figure 4), the x- y- and z- dimensions are bounded by
the characteristics of the GPU architecture [23]. An efficient
workaround when processing a large number of vectors is
given by assigning only one thread per z-dimension to each
row (choose y-dimension equal 1), which removes the reduc-
tion step and the need for shared memory.

Performance of SpMM for SELL-P
In Figure 5, for different test matrices we visualize the per-
formance scaling of the previously described SpMM kernel
with respect to the number of columns in the dense matrix
(equivalent to the number of vectors in a blocked SpMV).
The results reveal that the SpMM performance exceeds 100
GFLOP/s as soon as the number of columns in the dense
matrix exceeds 30. The characteristic oscillation of the perfor-
mance can be explained by the more or less efficient memory
access, but in particular the cases where the column-count
equals a multiple of 16 provide very good performance. Using
SpMM kernel instead of a set of consecutive sparse matrix
vector products, that typically achieve less than 25 GFLOP/s
on this architecture [32], results in speedup factors of up to
5.4 on GPUs, see Table III. Similar performance improvement
(up to 6.1×) is observed on CPUs when replacing consecutive
MKL SpMV kernels by the MKL SpMM routine, see Table IV.

While these results are obtained by assuming the
performance-beneficial row-major storage of the tall-and-
skinny dense matrix, many applications and algorithms use
dense matrices stored in column-major format to benefit from
highly optimized BLAS implementations (available for matri-
ces in column-major format). For this reason, when comparing
the performance of the SELL-P implementation against the
cuSPARSE CSRSpMM [6], we include the preprocessing time
needed to transpose the tall-and-skinny dense matrix (see Fig-
ure 6). Aside from the standard CSRSpMM assuming column-
major storage, the cuSPARSE library also includes a highly
tuned version assuming, like the MAGMA implementation,
row-major storage [9]. Combining this with a preprocessing



ELLPACK SELL-P
Acronym Matrix #nonzeros (nz) Size (n) nz/n nrow

z nELLPACK
z overhead nSELL−P

z overhead

AUDI AUDIKW 1 77,651,847 943,645 82.28 345 325,574,775 76.15% 95,556,416 18.74%
BMW BMWCRA1 10,641,602 148,770 71.53 351 52,218,270 79.62% 12,232,960 13.01%
BONE010 BONE010 47,851,783 986,703 48.50 64 62,162,289 23.02% 55,263,680 13.41%
CRANK CRANKSEG 2 14,148,858 63,838 221.63 3423 218,517,474 93.53% 15,991,232 11.52%
F1 F1 26,837,113 343,791 78.06 435 149,549,085 82.05% 33,286,592 19.38%
INLINE INLINE 1 38,816,170 503,712 77.06 843 424,629,216 91.33% 45,603,264 19.27%
LDOOR LDOOR 42,493,817 952,203 44.62 77 73,319,631 42.04% 52,696,384 19.36%

TABLE II: Matrix characteristics and storage overhead for selected test matrices when using ELLPACK, or SELL-P format.
SELL-P employs a blocksize of 8 with 4 threads assigned to each row. nFORMAT

z refers to the explicitly stored elements (nz
nonzero elements plus the explicitly stored zeros for padding).
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3 7 2 0 0
7 5 0 0 0
0 0 0 0 0
0 0 0 0 0
8 0 0 0 0
3 0 0 0 0
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X X X X X
0 X X X X
6 X X X X
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Fig. 3: Visualizing the CSR, ELLPACK, SELL-C, SELL-P formats. The memory demand corresponds to the grey areas. Note
that choosing the block size 2 for SELL-C (SELL-2) and SELL-P requires adding a zero row to the original matrix. Furthermore,
padding the SELL-P format to a row length divisible by 2 requires explicit storage of a few additional zeros.

cuSPARSE MAGMA MAGMA
Matrix CSR HYB SELL-P SpMM speedup
AUDI 21.9 17.7 22.1 111.3 5.0
BMW 22.3 24.2 23.6 122.0 3.8
BONE010 15.5 25.2 22.3 121.6 4.1
F1 19.3 16.9 19.6 106.3 5.4
INLINE 20.7 19.1 21.1 108.8 3.8
LDOOR 14.9 19.3 20.7 111.2 5.4

TABLE III: Asymptotic DP performance [GFLOP/s] of sparse
test matrices and a large number of vectors with a set of con-
secutive SpMVs (cuSPARSE CSR, cuSPARSE HYB, MAGMA
SELL-P SpMV) vs. the SpMM kernel on GPUs. The last column
is the speedup of the SpMM kernel against the respective best
SpMV. See Table I for the respective matrix characteristics.

step of transposing the matrix provides the same functionality
at significantly higher GFLOP rates. While the standard SpMM
achieves between 20 and 60 GFLOP/s for most matrices, the
highly tuned row-major based implementation often gets close
to 100 GFLOP/s, sometimes even above (see results labelled as
“cuSPARSE CSRSpMM v2”in Figure 6). The developed SpMM
based on the SELL-P format outperforms both cuSPARSE
SpMM implementations. With significant speedup factors over
the standard SpMM, the performance improvement compared
to the highly tuned cuSPARSE SpMM ranges between 13% and
41% (see results for CANT and CRANK, respectively).

Figure 7 compares our SpMM kernel on a K40 with the
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of the SpMM kernel for selected matrices.

DCSRMM kernel from Intel’s MKL (routine mkl dcsrmm)
on two eight-core Intel Xeon E5-2690s for selected matrices
and number of vectors n. Both implementations assume the
vectors to be multiplied by the sparse matrix to be stored
in row-major data format. The row-major storage allows on
both architectures for significantly higher GFLOP rates. The
CPU runs are using the numactl --interleave=all
policy, which is well known to improve performance. The
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Fig. 4: Visualization of the SELL-P memory layout and the SELL-P SpMM kernel including the reduction step using the blocksize
b = 4 (corresponding to SELL-4), and always assigning two threads to every row (t = 2). Adding a z-dimension to the thread-
block allows to process multiple vectors simultaneously.

performance obtained is consistent with benchmarks provided
by Intel [39]. The results show a 3 to 5× acceleration from
CPU to GPU implementation, which is expected from the
compute and bandwidth capabilities of the two architectures.

VI. LOBPCG GPU PERFORMANCE

Finally, we want to quantify how the developed SpMM im-
proves the performance of the LOBPCG GPU implementation.
For this purpose, we benchmark two versions of the LOBPCG
implementation, one using a set of consecutive SpMVs to
generate the search directions, and one where we integrate the
developed SpMM kernel. Furthermore, we compare against the

multithreaded CPU implementation of LOBPCG provided by
Andrew Knyazev in the BLOPEX package [7]. As popular
software libraries like PETSc [40] and Hypre [41] provide
interfaces to this implementation [8], we may consider this
code as the state-of-the-art CPU implementation of LOBPCG.
For the benchmark results, we used the BLOPEX code via the
Hypre interface on the hardware platform listed in Section IV.
For optimal utilization of the Sandy Bridge architecture, we
enable hyperthreading and execute the eigensolver using 32
OpenMP threads.

The LOBPCG implementation in BLOPEX is matrix free,
i.e., the user is allowed to provide their choice of Sp-
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Fig. 7: Speedup of the developed SpMM kernel on a K40 vs.
the DCSRMM kernel provided by Intel’s MKL on two eight-
core Intel Xeon E5-2690s for selected matrices and number of
vectors n.

Matrix mkl dcsrmv mkl dcsrmm speedup
AUDI 7.24 22.5 3.1
BMW 6.86 32.2 4.7
BONE010 7.77 30.5 3.9
F1 5.64 20.1 3.6
INLINE 8.10 28.9 3.6
LDOOR 6.78 41.5 6.1

TABLE IV: Asymptotic DP performance [GFLOP/s] of sparse
test matrices and a large number of vectors with a set of
consecutive SpMVs vs. blocked SpMVs (SpMM) on CPUs using
MKL. The last column is the speedup of the SpMM kernel
against the SpMV.

MV/SpMM implementation. In these experiments we use the
Hypre interface to BLOPEX, linked with the MKL library.

The validity of the results is ensured as the convergence
of the eigenvectors is matching the BLOPEX convergence. In
Figure 8 we visualize the convergence of 10 eigenvectors for
the AUDI test matrix.

The number of operations executed in every iteration of
LOBPCG can be approximated by

2 · nnz · nv + 36 · n · n2v (1)

where nnz denotes the number of nonzeros of the sparse
matrix, n the dimension and nv the number of eigenvectors
(equivalent to the number of columns in the tall-and-skinny
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Fig. 8: Visualizing the convergence of 10 eigenvectors when
applying the developed GPU implementation of LOBPCG
based on the SpMM kernel to the AUDI test matrix.

dense matrix). The left part of the sum reflects the SpMM
operation generating the Krylov vectors, the right part contains
the remaining operations including the orthogonalization of
the search directions. Due to the n2v term, we may expect
the runtime to increase superlinearly with the number of
vectors, which can be observed in Figure 9 where we vi-
sualize the time needed to complete 100 iterations on the
AUDI problem using either the BLOPEX code via the Hypre
interface or the GPU implementation using either a sequence
of SpMVs or the SpMM kernel to generate the search directions.
Comparing the results for the AUDI problem, we are 1.3
and 1.2× faster when computing 32 and 48 eigenvectors,
respectively, using the SpMM instead of the SpMV in the GPU
implementation of LOBPCG. Note that although in this case
the SpMM performance is about 5× the SpMV performance,
the overall improvement of correspondingly 30% and 20%
reflects that only 12.5% and 8.7% of the overall LOBPCG
flops are in SpMVs for the 32 and 48 eigenvector problems,
respectively (see equation (1) and the matrix specifications
in Table I). While the BLOPEX implementation also shows
some variances for different numbers of vectors, the runtime
pattern of the GPU LOBPCG reflects the efficiency of the
orthogonalization routines favoring cases where 16, 32, or
48 vectors are processed. This characteristic pattern is even
amplified when replacing the consecutive SpMVs with the
SpMM, as this kernel also promotes certain column-counts of
the tall and skinny dense matrix, see Figure 10 showing the
runtime needed by the SpMM-based GPU implementation of
LOBPCG to complete 100 iterations for different test matrices.

To complete the performance analysis, we report in Fig-
ure 11 the speedup factors of the GPU LOBPCG vs. the
BLOPEX code via its Hypre interface. We observe that as soon
as 16 eigenvectors are needed, the GPU implementation using
the consecutive SpMVs outperforms the CPU code 5×, while
for the SpMM-based algorithm the acceleration is 10×. The 5×
speedup when using the consecutive SpMVs on the GPU indi-
cates that the Hypre interface to LOBPCG is not blocking the
SpMVs. Based on the kernels’ analysis, the expectation is that
an optimized CPU code (blocking the SpMVs) would achieve
about the same performance as the GPU LOBPCG without
blocking, and would be about 3 to 5× slower than the blocked
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LOBPCG GPU implementation based on SpMM.

version. Computing more vectors reduces the fraction of SpMV
flops to the total flops (see equation (1)), and thus making the
SpMV implementation less critical for the overall performance.
The fact that the speedup of the GPU vs. the CPU LOBPCG
continues to grow, reaching 20 and up to 35× for 48 vectors,
shows that there are other missed optimization opportunities in
the CPU implementation. In particular, these are the GEMMs
in assembling the matrix representations for the local Rayleigh-
Ritz minimizations and the orthogonalizations. These routines
are highly optimized in our GPU implementation, especially
the GEMMs, which due to the specific sizes of the matrices
involved – tall and skinny matrices A and B with a small
squere resulting matrices ATB – required modifications to
the standard GEMM algorithm for large matrices [42]. What
worked very well is splitting the ATB GEMM into smaller
GEMMs based on tuning the MAGMA GEMM [42] for the
particular small sizes, all grouped for execution into a single
batched GEMM, followed by addition of the local results [17].
The acceleration factor against a similarly optimized CPU
code, based on our performance analysis, must be in the range
of 3 to 5×.
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VII. SUMMARY AND OUTLOOK

In this paper we have presented a heterogeneous CPU-
GPU algorithm design and optimized implementation of the
LOBPCG eigensolver. The benefit of using blocking routines
like the LOBPCG is based on a more efficient use of hardware.
As opposed to running at the low performance of a SpMV
kernel, which is typical for Krylov subspace methods, the
LOBPCG runs at the speed of a SpMM kernel that is up
to 6× faster on GPUs such as the NVIDIA’s K40. Instead
of the standard Krylov subspace methods’ memory-bound
performance of 20 to 25 GFlop/s (in double precision on a
K40), the LOBPCG computes a small set of eigenstates at a
typical rate of 100 to 140 GFlop/s. We detailed the data struc-
tures, algorithmic designs, and optimizations needed to reach
this performance. Most notably, these were the designs and
optimizations for the SpMM kernel, the specific GEMM, and
orthogonalization routines needed. Compared to CPUs, one
K40 outperforms two eight-core Intel Sandy Bridge cores by 3
to 5×. In practice, our heterogeneous LOBPCG outperformed
the Hypre interface of the BLOPEX CPU implementation
by more than an order of magnitude when computing a
small set of eigenstates. This shows that even for multicore
CPUs, where the HPC software stack is considered to be
better established than the HPC software stack for the more
recent GPU architectures, there are many missed optimization
opportunities. There is a compelling need to build on this work
to provide users with the full potential of blocking algorithms.

The developed SpMM routine, the specific GEMMs, and
orthogonalizations, are building blocks that serve as the foun-
dation for not only block-Krylov, but also for many other

methods relying on blocking for acceleration in general. As
such, there is increasing interest in both the kernels and the
methods that can use them. For this reason, future research
will focus on how to efficiently integrate and further extend
these building blocks into other block-Krylov methods.
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