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Abstract—Numerical methods in sparse linear algebra typically
rely on a fast and efficient matrix vector product, as this usually
is the backbone of iterative algorithms for solving eigenvalue
problems or linear systems. Against the background of a large
diversity in the characteristics of high performance computer
architectures, it is a challenge to derive a cross-platform efficient
storage format along with fast matrix vector kernels. Recently,
attention focused on the SELL-C-σ format, a sliced ELLPACK
format enhanced by row-sorting to reduce the fill in when
padding rows with zeros. In this paper we propose an additional
modification resulting in the padded sliced ELLPACK (SELL-
P) format, for which we develop a sparse matrix vector CUDA
kernel that is able to efficiently exploit the computing power
of NVIDIA GPUs. We show that the kernel we developed out-
performs straight-forward implementations for the widespread
CSR and ELLPACK formats, and is highly competitive to the
implementations in the highly optimized CUSPARSE library.

I. INTRODUCTION

In the interest of solving sparse linear systems or eigenvalue
problems via iterative methods, there exists a significant need
for fast and efficient sparse matrix vector multiplications (Sp-
MVs), as these often dominate the computation. The challenge
of implementing fast SpMV kernels is directly connected
to the question of the data layout used to store the sparse
matrix in memory. With modern hardware platforms often
accelerated by GPUs or Intel MIC coprocessors, the storage
problem becomes even more challenging, as a certain layout,
suitable for one processor type, may fail to allow for effi-
cient matrix vector multiplication on a different architecture.
In particular, the overhead-reduced slim formats like CSR
(compressed sparse row [3]) that are suitable for cache-aware
CPU-dominated platforms, usually render poor performance
on streaming processors like GPUs that demand instruction
parallelism and coalesced memory access. In the past, different
authors proposed data layouts specifically designed for many-
core architectures that achieve higher performance, see [4],
[13], [17], and significant effort was spent on accelerating
sparse matrix vector kernels, see [5], [9], [10], [11], [16].
However, these GPU-optimized formats often fail to allow
for efficient sparse matrix vector products on CPU-centric
platforms. More recently, Kreutzer et. al. proposed a unified
sparse matrix data layout for modern processors with wide
SIMD units [12], which allows optimization for a certain hard-
ware architecture via parameters. In the proposed SELL-C-σ
format, the block size makes the connection between the slim
CSR format and the GPU-friendly ELLPACK [4] format by

trading off zero-padding of rows and parallelism against cache
usage. Furthermore, they introduce row-sorting to minimize
the storage overhead for any parameter choice. They argue
that this data layout is suitable for cross-platform usage and
show, in runtime experiments, that the format is competitive
to the formats optimized for the respective platforms. In this
paper we want to support the generality of the format proposed
in [12] by showing how minor modifications to the SELL-
C/SELL-C-σ format resulting in the padded sliced ELLPACK
(SELL-P) format, allow for the efficient implementation of
a sparse matrix vector product on GPUs, which is able
to achieve outstanding performance. For this purpose, we
structure the paper as follows: First we revise some of the
most commonly used data layouts when computing sparse
matrix vector products on different architectures, particularly
on GPUs. We then summarize some kernel characteristics that
are key to achieving high performance on GPUs and provide
a detailed description of how we implemented a sparse matrix
vector kernel for the modified SELL-P format using CUDA
for NVIDIA GPUs. We profile the kernel using NVIDIA’s
NVPROF analysis tool and compare for a set of test matrices
taken from the University of Florida matrix collection against
sparse matrix vector kernels based on other formats, as well
as the highly optimized in-house developed routines provided
by NVIDIA. We conclude by summarizing the results and
providing ideas for future research.

II. SPARSE MATRIX STORAGE FORMATS

While for dense matrices it is usually reasonable to store all
matrix entries in consecutive order, sparse matrices are charac-
terized by a large number of zero elements, and storing those
is not only unnecessary but would also result in significant
storage overhead. Different storage layouts exist, that aim for
reducing the memory footprint of the sparse matrix by storing
only a fraction of the elements explicitly, and anticipating all
other elements to be zero, see [3], [18], [6]1. In the CSR
format [3], this idea is taken to extremes, as only nonzero
entries of the matrix are stored. In addition to the array values
containing the nonzero elements, two integer arrays colind
and rowptr are used to locate the elements in the matrix, see

1We note that numerous ideas also exist on how to benefit from a certain
matrix characteristic like symmetry, tridiagonality, or a special sparsity pattern.
In this paper we address unstructured matrices not allowing for any storage
reduction due to special matrix properties.



Figure 1. While this storage format is suitable when computing
a sparse matrix vector product on processors with a deep
cache-hierarchy, as it reduces the memory requirements to a
minimum, it fails to allow for high parallelism and coalesced
memory access when computing on streaming-processors like
GPUs. On those, the ELLPACK-format padding the different
rows with zeros for a uniform row-length, coalesced memory
access, and instruction parallelism may, depending on the
matrix characteristics, outperform the CSR format [4]. This
approach removes the need for the rowptr, as every row
now contains the same number of elements in memory. The
storage overhead of ELLPACK is determined by the ”longest
row,” which is the maximum number of nonzero elements in
one row of the matrix, see Figure 1. While this is usually
compensated for by the more efficient hardware usage when
targeting streaming processors, it is not suitable for cache-
aware architectures as the explicitly stored zero elements all
have to be processed. One idea to reduce the storage overhead
is the introduction of the sliced ELLPACK format, splitting the
original matrix into blocks of rows, where each slice is then
stored using ELLPACK format, see Figure 1. The resulting
format is usually abbreviated as SELL or SELL-C, where C
denotes the blocksize [13], [12]. As the number of explicitly
stored elements in each row is then no longer determined by
the maximum of nonzero elements in one row of the matrix but
by the ”longest row” in this block of rows, some of the slices
may have less storage overhead compared to the ELLPACK
format. The blocksize becomes the parameter controlling the
fill-in, i.e., using a blocksize of 1 (SELL-1), would result in
the CSR format, using a blocksize of the matrix dimension
n (SELL-n), would result in the basic ELLPACK format.
However, an additional integer array pointing to the start of
each slice is needed. In [7] the idea of a blocking ELLPACK is
applied to block matrices where structured matrices are stored
by using a grid of small ELLPACK blocks of auto-tuned size.
The idea of the sliced ELLPACK format is enhanced in [12]
by adding row sorting such that rows with similar number
of nonzero elements are gathered in one block. While this
obviously reduces the fill-in furthermore, the authors mention
it is important to trade-off the cost of sorting against the
acceleration of the sparse matrix vector product. They also
propose a trimmed sliced ELLPACK format that arises as
hybrid combination of SELL-C-σ and CSR, but refrain from
showing performance results for this. In the remainder of their
paper they argue that the SELL-C-σ format is suitable for
cross-platform usage and show, in benchmark experiments, its
capability to compete with other storage layouts on different
architectures.
Another approach to reducing not the storage overhead but
the computational overhead involves storing the number of
nonzero elements in each row in an additional array, and
computing the partial products only for the nonzero elements.
In [17] this idea was proposed in combination with assigning
multiple threads to one row of the matrix, and benchmark
results showed the superiority of this idea over the plain
ELLPACK format on GPUs.

In the following sections we show how to integrate the idea
of assigning multiple threads to one row into an optimized
hardware-aware implementation of the sparse matrix vector
product for the SELL-C/SELL-C-σ matrix format. For this
purpose we modify the SELL-C/SELL-C-σ layout to the
SELL-P format (P for ”padded”), by padding rows with zeros
such that the rowlength of each block becomes a multiple
of the number of threads assigned to each row, see Figure 1
for the t = 2. We refrain from applying any sorting as we
consider this a significant change in the matrix characteristics,
and it may be difficult to account for the overhead due to the
additional pre-/postprocessing step in a complex algorithm.
However, the benchmark results for the SpMV kernel using
the non-sorted SELL-P format underpin the cross-platform
suitability of the SELL-C/SELL-C-σ storage format for un-
structured sparse matrices, and the efficiency of the SELL-P
matrix vector product implementation on GPUs.

III. SPMV KERNEL FOR THE SELL-P FORMAT

Numerous implementation aspects exist, that can influence
the efficiency of a SpMV CUDA kernel on NVIDIA GPUs.
Among the most important ones are:

• Memory accesses;
• Thread- and instruction-level parallelism;
• Shared memory usage.

To take them into account, our implementation has
parametrized the various choices that can influence perfor-
mance to ease the process of tuning.

The sparse matrix vector product kernel we propose for
the SELL-C/SELL-C-σ storage format assigns t threads to
each row in one slice with blocksize b. For this purpose it
is necessary to convert the SELL-C/SELL-C-σ format into
SELL-P by zero-padding the rows to a length divisible by t.
While the number of rows in one slice as well as t may be
adapted to the respective matrix, we want to ensure that the
total number of threads assigned to one block (i.e., t · b) is
suitable for the GPU architecture used, and enables the usage
of shared memory2. To allow coalescent memory access, we
arrange the threads in a b × t 2D thread grid, see Figure 3.
For each slice, the kernel computes the number, max , of
necessary multiply-add that each thread has to compute, and
the threads proceed over the data. We noticed that the perfor-
mance can be improved by unrolling this loop into chunks of
two. Once all data is processed, the partial products are written
into shared memory, and a fan-in algorithm with an increment
of the thread count computes the sum for each row in shared
memory. Accounting for the parameters α and β in the SpMV
operation y = α ·Ax+ βy, the result is written back into the
global memory. The grid necessary to launch the threadblocks
has to cover the complete matrix, i.e., the number of blocks
is equal to s, the number of slices the matrix is blocked into.
As this number is typically large, a 2D grid of thread blocks,
with both grid dimensions close to

√
s, is suitable for efficient

2We will set t = b = 8 for the implementation used in the benchmark
section.
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Fig. 1: Dense and sparse matrix storage format representation, partly taken from [2]. The memory demand corresponds to the
grey areas. Notice that using SELL-C with the blocksize b = 2 (SELL-2), requires adding one row to the original matrix.
Furthermore, padding the SELL-P format to a rowlength divisible by 2 (t = 2), requires explicit storage of some additional
zeros.

processing. While the pseudo-code for the kernel is provided
in Figure 2, the underlying data layout, the memory access
pattern and the reduction step is visualized in Figure 3.

IV. PERFORMANCE ANALYSIS OF THE SELL-P SPMV

In this section we want to analyze the performance of the de-
veloped matrix vector kernel. In a first step, we use NVIDIA’s
in-house profiler, which provides information about compute-
intensity, memory usage, occupancy, cache misses etc. Second,
we compare against several commonly-used sparse matrix-
vector kernels taken from open-source libraries. The hardware
we use for our benchmark experiments is a two socket Intel
Xeon E5-2670 (Sandy Bridge) platform accelerated by an
NVIDIA Tesla K40c GPU with a theoretical peak performance
of 1,682 GFlop/s. The host system has a theoretical peak of
333 GFlop/s, main memory size is 64 GB, and theoretical
bandwidth is up to 51 GB/s. On the K40 GPU, 12 GB of
main memory are accessed at a theoretical bandwidth of 288
GB/s. The GPU implementation of the SELL-P SpMV, and
the straight forward CSR and ELLPACK kernels, is realized in
CUDA [15], version 5.5 [8], where the reference CUSPARSE-
CSR and CUSPARSE-HYB implementations are also taken
from [14]. On the CPU, the CSR SpMV is taken from Intel’s
MKL [1] version 11.0, update 5.

The matrices we use for our benchmarks are taken from the
University of Florida Matrix Collection (UFMC)3. With some
key characteristics collected in Table I, and sparsity plots for
selected matrices are shown in Figure 4, we tried to cover a
large variety of systems common in scientific computing.

A. Performance Analysis using NVIDIA’s NVPROF Profiler

NVIDIA provides a useful tool to analyze the execution
characteristics of a CUDA kernel [8]. This enables, to deter-
mine whether the objectives listed in Section III have been

3UFMC; see http://www.cise.ufl.edu/research/ sparse/matrices/

matrix nonzeros (nnz) Size (n) nnz/n

AUDIKW 1 77,651,847 943,645 82.28
BONE 010 47,851,783 986,703 48.50
BONE S10 40,878,708 914,898 44.68
BMW3 2 11,288,630 227,362 49.65
BMWCRA 1 10,641,602 148,770 71.53
CAGE 10 150,645 11,397 13.22
CANT 4,007,383 62,451 64.17
CRANKSEG 2 14,148,858 63,838 221.63
CUBE COUP DT0 124,406,070 2,164,760 57.47
DIELFILTERV2REAL 48,538,952 1,157,456 41.94
F1 26,837,113 343,791 78.06
FAULT 639 27,245,944 638,802 42.65
HOOK 1498 59,374,451 1,498,023 39.64
INLINE 1 36,816,170 503,712 73.09
LDOOR 42,493,817 952,203 44.63
M T1 9,753,570 97,578 99.96
ML GEER 110,686,677 1,504,002 73.59
PWTK 11,524,432 217,918 52.88
SHIPSEC1 3,568,176 140,874 25.33
TREFETHEN 20000 554,466 20,000 27.72

TABLE I: Description and properties of the test matrices.

achieved. In Table II we list some of the most important char-
acteristics we collected using the NVPROF kernel execution
analysis.

B. Performance comparison between different SpMV kernels

Finally, we compare the performance of the developed
kernel against other matrix vector product implementations.
All kernels use the same hardware platform. While some
libraries feature auto-tuning, the parameters of the developed
SELL-P matrix vector kernel are set to the default values
t = b = 8 (remind that b = 8 is equivalent to zero-padded
SELL-8). In particular, we compare against the following
implementations:

• MKL-CSR. Intel’s Math Kernel Library provides a very
efficient CPU-based sparse matrix vector product based



1 void sellp_spmv( i n t n, i n t b, i n t t, double alpha,
2 i n t *rowptr, i n t *colind, double *values,
3 double *x, double beta, double *y ) {
4
5 // t threads assigned to each row
6 i n t idx = threadIdx.x ; // thread in row
7 i n t idy = threadIdx.y; // local row
8 i n t ldx = idy * blocksize + idx; // first element to be accessed
9 i n t bdx = blockIdx.y * gridDim.x + blockIdx.x; // global block index

10 i n t row = bdx * blocksize + idx; // global row index
11
12 e x t er n shared double shared[];
13
14 i f (row < n ){
15 double dot = 0.0;
16 i n t offset = rowptr[ bdx ];
17 i n t block = blocksize * t; // total number of threads
18
19 // number of elements each thread handles
20 i n t max_ = ( rowptr[ bdx+1 ]-offset ) / block;
21
22 // partial product loop unrolled to blocks of two
23 i n t kk, i1, i2;
24 double x1, x2, v1, v2;
25 d_colind += offset + ldx ;
26 d_val += offset + ldx;
27 f o r ( kk = 0; kk < max_-1 ; kk+=2 ){
28 i1 = colind[ block*kk ];
29 i2 = colind[ block*kk + block ];
30 x1 = x[ i1 ];
31 x2 = x[ i2 ];
32 v1 = values[ block*kk ];
33 v2 = values[ block*kk + block ];
34
35 dot += v1 * x1;
36 dot += v2 * x2;
37 }
38 // maybe one additional step
39 i f (kk<max_){
40 x1 = d_x[ d_colind[ block*kk ] ];
41 v1 = d_val[ block*kk ];
42 dot += v1 * x1;
43 }
44
45 // write result to shared memory
46 shared[ ldx ] = dot;
47
48 // reduction
49 sync threads();
50 i f ( idy < 4 ){
51 shared[ ldx ]+=shared[ ldx+blocksize*4 ];
52 sync threads();
53 i f ( idy < 2 ) shared[ ldx ]+=shared[ ldx+blocksize*2 ];
54 sync threads();
55 i f ( idy == 0 ) {
56 y[ row ] =
57 ( shared[ ldx ]+shared[ ldx+blocksize*1 ] ) * alpha
58 + beta * y [ row ];
59 }
60
61 }
62
63 }
64 }

Fig. 2: SpMV kernel implementation for the SELL-P sparse matrix format for t = 8.
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Fig. 3: Visualization of the SELL-P memory layout and the SELL-P SpMV kernel procedure including the reduction step using
the blocksize b = 4 (corresponding to SELL-2), and t = 2.

on the CPU-optimal CSR format. We use the library’s
version 11.0, update 5.

• CSR. For the CSR format we include a straight-forward
GPU implementation in the comparison. This reveals that
the CSR format usually results in poor performance on
GPUs.

• ELLPACK. We also compare against a straight-forward
SpMV implementation of the ELLPACK format which
is, in general, more suitable for GPU computing. The
implementation is according to [4].

• SELL-P. The SPMV kernel developed in Section III may
be used in combination with row-sorting like proposed
in [12] and be optimized for a certain matrix test-case.
We, however, refrain from applying these optimizations
and assume no information about the matrix character-

istics. As the default configuration, we set the block-
size and the number of threads assigned to each row to
b = t = 8.

• CUSPARSE-CSR. Within the CUSPARSE library,
NVIDIA provides a highly optimized SpMV kernel for
CSR format. This kernel assigns multiple threads to each
row and uses static as well as dynamic shared memory.

• CUSPARSE-HYB. NVIDIA’s CUSPARSE library also
features a sparse matrix vector kernel for a hybrid format
based on the idea of storing the major part of the matrix
in ELLPACK format and using CSR for the remaining
part.

• ELLRT. The open source library SpMVELLRT4 pro-

4SpMVELLRT; see https://sites.google.com/site/mcfastsparse/



(a) AUDIKW 1 (b) BMW3 2 (c) BMWCRA 1

(d) BONE 010 (e) CAGE10 (f) CRANKSEG 2

(g) DIELFILTERV2REAL (h) INLINE 1 (i) LDOOR

Fig. 4: Sparsity plots of selected test matrices.

execution time 7.02 ms
grid size 343× 344× 1
block size 8× 8× 1
registers/thread 40
shared memory 512 kB
device memory throughput (read) 212.59 GB/s
device memory throughput (write) 1.34 GB/s
shared memory throughput (load) 25.78 GB/s
shared memory throughput (store) 17.19 GB/s
L2 throughput (read) 24.36 GB/s
L2 throughput (write) 1.07 GB/s
L2 hit rate 30.34 %
shared memory efficiency 100%
warp execution efficiency 100 %
instructions per warp 250,053
issued instructions per cycle (IPC) 1.30
executed instructions per cycle (IPC) 0.75
achieved occupancy 0.47
multiprocessor activity 99.8 %

TABLE II: Some of the important kernel execution character-
istics of the SELL-P SpMV kernel applied to the test matrix
AUDIKW 1.

vides an optimized version of a sparse matrix vector
kernel based on a modified ELLPACK format. The idea is
to store the length of each row in addition to the values
and the column-indices, and to assign multiple threads
to each row [17]. Although publications exist showing
performance superior to the CUSPARSE SpMV kernels,
we were unable to generate correct results using the
SpmvELLRT library, and therefore refrain from showing
results for this library.

The runtime results, averaged over 1000 kernel executions,
are listed in Table III with their respective performance visu-
alized in Figure 5.

As expected, the CSR format achieves low FLOP rates
when used on GPUs. On the other hand, Intel’s MKL is
able to exploit the computing power of the 16 cores of
Intel’s Sandy Bridge processor very efficiently, sometimes
even outperforms the ELLPACK kernel on the GPU, see
results for BMW3 2, CRANKSEG 2, F1, and INLINE 1. This



matrix MKL-CSR CSR ELLPACK SELL-P CUSPARSE-CSR CUSPARSE-HYB

AUDIKW 1 4.55e-02 8.94e-02 3.56e-02 7.02e-03 7.08e-03 8.79e-03
BONE 010 2.45e-02 5.10e-02 5.50e-03 4.28e-03 6.15e-03 3.80e-03
BONE S10 1.32e-02 4.16e-02 5.45e-03 3.93e-03 5.21e-03 3.43e-03
BMW3 2 4.70e-03 1.19e-02 6.62e-03 9.93e-04 1.50e-03 9.86e-04
BMWCRA 1 4.60e-03 1.19e-02 4.63e-03 9.01e-04 9.53e-04 8.79e-04
CAGE 10 4.72e-05 7.45e-05 3.72e-05 3.35e-05 3.45e-05 6.44e-05
CANT 1.48e-03 4.61e-03 4.56e-04 3.44e-04 5.51e-04 3.94e-04
CRANKSEG 2 5.25e-03 1.60e-02 2.23e-02 1.12e-03 1.23e-03 1.48e-03
CUBE COUP DT0 4.87e-02 1.39e-01 1.22e-02 9.77e-03 1.68e-02 9.18e-03
DIELFILTERV2REAL 2.06e-02 4.45e-02 1.05e-02 6.14e-03 6.46e-03 5.99e-03
F1 1.31e-02 3.08e-02 1.63e-02 2.73e-03 2.77e-03 3.18e-03
FAULT 639 1.08e-02 2.92e-02 1.51e-02 2.53e-03 3.48e-03 2.12e-03
HOOK 1498 2.41e-02 5.71e-02 1.25e-02 6.60e-03 7.52e-03 6.46e-03
INLINE 1 1.41e-02 4.15e-02 3.01e-02 3.49e-03 3.55e-03 3.85e-03
LDOOR 1.78e-02 4.43e-02 6.75e-03 4.11e-03 5.71e-03 4.39e-03
M T1 3.67e-03 1.03e-02 2.10e-03 8.27e-04 8.64e-04 1.02e-03
ML GEER 4.23e-02 1.29e-01 9.62e-03 8.60e-03 9.62e-03 8.19e-03
PWTK 4.47e-03 1.30e-02 3.37e-03 9.31e-04 1.53e-03 8.94e-04
SHIPSEC1 1.15e-03 2.49e-03 8.74e-04 4.74e-04 4.52e-04 4.48e-04
TREFETHEN 20000 1.15e-04 5.12e-04 5.29e-05 6.47e-05 8.12e-05 6.71e-05

TABLE III: Runtime in seconds of the different matrix vector kernels.

happens, in particular, for unstructured matrices where large
variances in the number of nonzeros in the distinct rows results
in significant zero fill-in when using ELLPACK (compare
sparsity plots in Figure 4). For other matrices, the computing
power of the GPU compensates for the additional zero entries,
and the ELLPACK matrix vector routine is superior to Intel’s
MKL. As the SELL-C/SELL-C-σ formats, which the SELL-
P is based on, control the fill-in via the blocksize, and, in
the case of SELL-C-σ, via row sorting, the overhead due to
padding rows with zeros is reduced. Although the SELL-P
introduces some zeros for the rowlength being divisible by
the thread number t (in our experiments we chose t = 8),
the SELL-P kernel on the GPU is superior to the ELLPACK
kernel for all test cases except for the very small and very
sparse TREFETHEN 20000. This test matrix is, like CAGE10,
very small and sparse, and although we included it for
completeness, we should not put too much emphasis on the
respective results. For the other cases, switching from the
ELLPACK to the SELL-P kernel results in speedup factors
between 1.1 and 9. Compared to the CSR implementations,
the SELL-P is superior to the MKL-CSR using the CPU,
and outperforms the straight-forward CSR on GPU by almost
an order of magnitude. As we refrained from applying any
sorting of the rows and any matrix-specific optimization of
the kernel configuration, this already shows the suitability of
the SELL-P storage format for GPU computing. The obviously
more challenging part is to match the performance of the in-
house developed sparse matrix vector kernels from NVIDIA,
as these are not only highly tuned, but also apply some
dynamic adaptation to the specific test matrix. We observe
that the SELL-P SpMV is able to match the CUSPARSE-
CSR and CUSPARSE-HYB performance for all test cases,

in particular, the performance of SELL-P is often inferior
to one, and superior to the other CUSPARSE routine. For
about 40% of the test cases, SELL-P even outperforms both
CUSPARSE routines, e.g., AUDIKW 1, CANT, CRANKSEG 2,
F1, INLINE 1, LDOOR and M T1. Only for the very structured
matrices like BONE010 or BONES10 (see Figure 4d), where
the plain ELLPACK already provides very good performance,
the CUSPARSE-HYB is always superior. Being able to keep
up with the highly tuned sparse matrix vector products featured
by NVIDIA’s CUSPARSE library revels the suitability of the
SELL-C/SELL-C-σ - based SELL-P storage format for GPU
computing and the high efficiency of the developed kernel.
While already applying problem-specific optimizations like
choosing t and/or b would improve the performance even
further, techniques like reordering rows to minimize the fill-
in in a preprocessing step have shown to be very useful to
reducing the runtime of the SpMV [12]. We refrain from
applying these steps not only because we aim for a generic
matrix vector kernel, but also because it might be difficult to
account for the overhead of an optimization phase in a complex
algorithm.

V. SUMMARY AND FUTURE WORK

We have accepted the challenge of deriving an efficient im-
plementation of a sparse matrix vector product for the SELL-
C/SELL-C-σ format on NVIDIA GPUs. For this purpose we
modified the input format to the padded sliced ELLPACK
format (SELL-P) that allows to assign multiple threads to
each matrix row. Following a detailed description, we have
shown in runtime experiments that the developed kernel is
highly competitive to the CUSPARSE library and outperforms
straight-forward implementations of matrix vector kernels for
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Fig. 5: Performance of the different sparse matrix vector kernels using either the CPU (MKL-CSR) or the GPU.

other formats. While this underpins the suitability of the
SELL-C/SELL-C-σ storage format for GPU architectures,
future research should focus on how to integrate efficient row-
sorting into the SELL-P SpMV kernel. Furthermore, using
multiple GPUs poses the question of how to distribute the
matrix to multiple accelerators for a balanced workload.
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