
Towards Batched Linear Solvers
on Accelerated Hardware Platforms

Azzam Haidar1 Tingxing Dong1 Piotr Luszczek1 Stanimire Tomov1 Jack Dongarra1,2,3

University of Tennessee, Knoxville, TN 37916, USA1; Oak Ridge National Laboratory, USA2; University of Manchester, UK3

{haidar, tdong, luszczek, tomov, dongarra}@eecs.utk.edu

Abstract
As hardware evolves, an increasingly effective approach to develop energy
efficient, high-performance solvers, is to design them to work on many
small and independent problems. Indeed, many applications already need
this functionality, especially for GPUs, which are known to be currently
about four to five times more energy efficient than multicore CPUs for
every floating-point operation. In this paper, we describe the development
of the main one-sided factorizations: LU, QR, and Cholesky; that are
needed for a set of small dense matrices to work in parallel. We refer
to such algorithms as batched factorizations. Our approach is based on
representing the algorithms as a sequence of batched BLAS routines for
GPU-contained execution. Note that this is similar in functionality to the
LAPACK and the hybrid MAGMA algorithms for large-matrix factorizations.
But it is different from a straightforward approach, whereby each of GPU’s
symmetric multiprocessors factorizes a single problem at a time. We illustrate
how our performance analysis together with the profiling and tracing tools
guided the development of batched factorizations to achieve up to 2-fold
speedup and 3-fold better energy efficiency compared to our highly optimized
batched CPU implementations based on the MKL library on a two-sockets,
Intel Sandy Bridge server. Compared to a batched LU factorization featured
in the NVIDIA’s CUBLAS library for GPUs, we achieves up to 2.5-fold
speedup on the K40 GPU.

Categories and Subject Descriptors G.1.3 [Numerical Linear
Algebra]: Linear systems (direct and iterative methods)

General Terms Algorithms, Experimentation, Measurement, Per-
formance

Keywords batched factorization; numerical linear algebra; hard-
ware accelerators; numerical software libraries; one-sided factoriza-
tion algorithms

1. Parallel Swapping on GPUs
Profiling the batched LU reveals that more than 60% of the time
is spent in the swapping routine. We can observe on the trace that
the classic dlaswp kernel is the most time consuming part of the
algorithm. The swapping consists of nb successive interchanges
of two rows of the matrices. The main reason for this kernel to
be the most time consuming is because the nb row interchanges
are performed in a sequential manner, and the data of a row is not

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPoPP’15, February 7–11, 2015, San Francisco, CA, USA.
Copyright c© 2015 ACM 978-1-4503-3205-7/15/02. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

matrix size

G
flo

ps
/s

Batched dgetrf count = 2000

Magma v4: streamed/batched gemm
Magma v3: recursive blocking
Magma v2: parallel swap
Magma v1: classic blocked algorithm
Magma v0: non blocking algorithm
CUBLAS

Figure 1. Performance in Gflops/s of the different versions of our
batched LU factorizations compared to the CUBLAS implementa-
tion for square matrix sizes.
coalesced, thus the thread warps do not read/write in parallel. It is
clear that the main bottleneck here is the memory access. Indeed,
slow memory access compared to high compute capability have been
a persistent problem for both CPUs and GPUs. CPUs for example
alleviate the effect of the long latency operations and bandwidth
limitations by using hierarchical caches. GPUs on the other hand,
in addition to cache memory, use thread level parallelism (TLP)
whereby threads are grouped into warps and multiple warps assigned
for execution on the same SMX unit. When a warp issues an access
to the device memory, it stalls until the memory returns a value,
while the GPU’s scheduler switches to another warp. In this way,
even if some warps stall, others can execute, keeping functional
units busy while resolving data dependencies, branch penalties, and
long latency memory requests. In order to overcome the bottleneck
of swapping, we propose to modify the kernel to apply all nb row
swaps in parallel. This modification will also allow the coalescent
write back of the top nb rows of the matrix. Note that the first nb
rows are those used by the dtrsm kernel that is applied right after
the dlaswp, so one optimization is to use shared memory to load a
chunk of the nb rows, and apply the dlaswp followed by the dtrsm.
We changed the algorithm to generate two pivot vectors, where
the first vector gives the final destination (e.g. row indices) of the
top nb rows of the panel, and the second gives the row indices of
the nb rows to swap and bring into the top nb rows of the panel.
Our experiments show that this reduces the time spent in the kernel
from 60% to around 10% of the total elapsed time. As a result, the
performance gain obtained is about 1.8× as shown by the purple
curve of Figure 1. We report each of the proposed optimization for
the LU factorization in Figure 1 but we would like to mention that
the percentage of improvement obtained for the Cholesky and QR

Algorithm 1: Classical implementation of the dlarft routine.

for j ∈ {1, 2, . . . , nb} do
dgemv to compute T̂1:j−1,j = AH

j:m,1:j−1 ×Aj:m,j

dtrmv to compute T1:j−1,j = T1:j−1,1:j−1 × T̂1:j−1,j

T (j, j) = tau(j)

factorization is similar and to simplify we report the LU factorization
only. Note that starting from this version we were able to be faster
than the CUBLAS implementation of the batched LU factorization.

2. Recursive Nested Blocking
The panel factorizations operate on nb columns one after another,
similarly to the LAPACK algorithm. At each of the nb steps, either
a rank-1 update is required to update the vectors to the right of the
factorized column i (this operation is done by the dger kernel for LU
and the dlarf kernel for QR), or a left looking update of column i by
the columns on its left, before factorizing it (this operation is done
by dgemv for the Cholesky factorization). Since we cannot load the
entire panel into the shared memory of the GPU, the columns to the
right (in case of LU and QR) or to the left (in case of Cholesky) are
loaded back and forth from the main memory at every step. Profiling
reveals that the dger kernel requires more than 80% and around 40%
of the panel time and of the total LU factorization time, respectively.
Similarly, for the QR decomposition the dlarf kernel used inside the
panel computation needs 65% and 33% of the panel and the total QR
factorization time, respectively. Likewise, the dgemv kernel used
within the Cholesky panel computation need around 91% and 30%
of the panel and the total Cholesky factorization time, respectively.
This inefficient behavior of these routines is also due to the memory
access. To overcome this, we improve the efficiency of the panel and
reduce the memory access by using a recursive blocking technique
depicted in Figure 2. The panel can be blocked recursively until a
single element. Yet, in practice, 2-3 blocked levels are sufficient to
achieve high performance. The above routines must be optimized
for each blocked level, which complicates the implementation. More
than 30% boost in performance is obtained by this optimization, as
demonstrated in Figure 1 for the LU factorization. The same trend
has been observed for both the Cholesky and the QR factorization.

3. Trading Extra Computation for Performance
For batched problems there is a need to minimize the use low
performance kernels on the GPU even if they are Level 3 BLAS.
For the Cholesky factorization, this concerns the dsyrk routine that
is used to update the trailing matrix. The performance of dsyrk is
important to the overall performance, since it takes a big part of the
run-time. We implemented the batched dsyrk routine as a sequence
of dgemm routines, each of size M = m,N = K = nb. In
order to exclusively utilize the dgemm kernel, our implementation

P	

a	

n	

e	

l	

Pi	

Trailing 	

matrix	

sub trailing m
atrix	

sub panel	

Factored part of A	

Figure 2. Recursive nested blocking

Algorithm 2: Block recursive dlarft routine.

dgemm to compute T̂1:nb,1:nb = AH
1:m,1:nb ×A1:m,1:nb

load T̂1:nb,1:nb to the shared memory. for j ∈ {1, 2, . . . , nb}
do

dtrmv to compute T1:j−1,j = T1:j−1,1:j−1 × T̂1:j−1,j

T (j, j) = tau(j)

write back T to the main memory.

level 2	

level 1	

level 3	

Figure 3. The shape of the matrix T for different level of the
recursion during the QR decomposition.
writes both the lower and the upper portion of the nb× nb diagonal
blocks of the trailing matrix. This results in nb3 extra operations
for the diagonal block. However, since nb is small (e.g., nb = 32)
these extra operations can be considered free. The use of dgemm
results in higher performance than dtrmm that only access either
lower or upper portion of the diagonal blocks. Tests show that our
implementation of dsyrk is twice as fast as the dgemm kernel for
the same matrix size. Our dsyrk is optimized in order to reach the
performance of dgemm (twice as slow due to twice as many flops).

We applied the same technique in the dlarfb routine used by
the QR decomposition. The QR trailing matrix update uses the
dlarfb routine to perform A22 ← (I − V THV H)A22 ← (I −
A21T

HAH
21)A22. The upper triangle of V is an identity. In the

classic dlarfb A21 is available and it stores V in its lower triangular
part and R (part of the upper A) in its upper triangular part.
Therefore, the above is computed using dtrmm for the upper part
of A21 and dgemm for the lower part. Also, the T matrix is an
upper triangular and therefore the classical dlarfb implementation
uses dtrmm to perform the multiplication with T . Thus, if one can
guarantee that the lower portion of T is filled with zeroes and the
upper portion of V is filled zeros and ones on the diagonal, the
dtrmm can be replaced by dgemm. A batched dlarfb uses three
dgemm kernels by initializing the lower portion of T with zeros,
and filling up the upper portion of V with zeroes and ones on the
diagonal. Note that this brings 3nb3 extra operations, but the overall
time spent in the new dlarfb even with the extra computation is
around 10% less than the one using the dtrmm.

Similarly to dsyrk and dlarfb, our batched dtrsm solves AX =
B by inverting the small nb× nb block of A and using dgemm to
get the final results X = A−1B.

4. Block Recursive dlarft Algorithm
The dlarft is used to compute the upper triangular matrix T that is
needed by the QR factorization in order to update either the trailing
matrix or the right hand side of the recursive portion of the QR
panel. LAPACK computes T column by column in a loop over the
nb columns as described in Algorithm 1. Such an implementation
takes up to 50% of the total QR factorization time.

