
Energy Efficiency and Performance Frontiers for
Sparse Computations on GPU Supercomputers

Hartwig Anzt Stanimire Tomov Jack Dongarra
Innovative Computing Lab, University of Tennessee, Knoxville, USA

hanzt@icl.utk.edu tomov@icl.utk.edu dongarra@eecs.utk.edu

Abstract
In this paper we unveil some energy efficiency and performance
frontiers for sparse computations on GPU-based supercomputers.
To do this, we consider state-of-the-art implementations of the
sparse matrix-vector (SpMV) product in libraries like cuSPARSE,
MKL, and MAGMA, and their use in the LOBPCG eigen-solver.
LOBPCG is chosen as a benchmark for this study as it combines
an interesting mix of sparse and dense linear algebra operations
with potential for hardware-aware optimizations. Most notably,
LOBPCG includes a blocking technique that is a common perfor-
mance optimization for many applications. In particular, multiple
memory-bound SpMV operations are blocked into a SpM-matrix
product (SpMM), that achieves significantly higher performance
than a sequence of SpMVs. We provide details about the GPU ker-
nels we use for the SpMV, SpMM, and the LOBPCG implementa-
tion design, and study performance and energy consumption com-
pared to CPU solutions. While a typical sparse computation like
the SpMV reaches only a fraction of the peak of current GPUs, we
show that the SpMM achieves up to a 6× performance improve-
ment over the GPU’s SpMV, and the GPU-accelerated LOBPCG
based on this kernel is 3 to 5× faster than multicore CPUs with the
same power draw, e.g., a K40 GPU vs. two Sandy Bridge CPUs (16
cores). In practice though, we show that currently available CPU
implementations are much slower due to missed optimization op-
portunities. These performance results translate to similar improve-
ments in energy consumption, and are indicative of today’s fron-
tiers in energy efficiency and performance for sparse computations
on supercomputers.

Categories and Subject Descriptors G4 [MATHEMATICAL SOFT-
WARE]: Algorithm design and analysis

Keywords sparse eigensolver, LOBPCG, GPU supercomputer,
energy efficiency, blocked sparse matrix vector product

1. Introduction
Building an Exascale machine using the technology employed in
today’s fastest supercomputers would result in a power dissipation
of about half a gigawatt [1]. Providing suitable infrastructure poses

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PMAM ’15, February 7-8, 2015, San Francisco Bay Area, USA.
Copyright c© 2015 ACM 978-1-4503-3404-4/15/02. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2712386.2712387

a significant challenge, and with a rough cost of one million USD
per megawatt year, the running cost for the facility would quickly
exceed the acquisition cost. This is the motivation for replacing
homogeneous CPU clusters with architectures generating most of
their performance with low-power processors, or accelerators.

Indeed, the success of using GPU accelerators to reduce energy
consumption is evident by the fact that the 15 greenest systems
are accelerated by GPUs, according to the June 2014 Green500
list [2], which ranks the supercomputers according to their perfor-
mance/watt ratio on the HPL benchmark [3]. A drawback of this
ranking is that HPL provides GFLOP/s numbers that usually are by
orders of magnitude above the performance achieved in real-world
applications, and thus, it is insufficient to understand how energy-
efficient the accelerated systems are for scientific computing [4].

Recent work has addressed this question by comparing the en-
ergy efficiency of a large set of current hardware platforms when
running a Conjugate Gradient solver [5], and the results revealed
that when optimizing with respect to energy efficiency, low-power
processors and the newer CPUs are able to keep up with the GPUs.
Although [5] contains a comprehensive study on different opti-
mization scenarios, considering an isolated CG fails to provide in-
sight into the energy efficiency of more complex applications.

In this paper, we focus on GPU kernel optimizations for the
memory-bound SpMV, which serves as a building block of many
sparse solvers. Standard Krylov methods, for example, are typi-
cally bounded by the SpMV performance, which is only a few
percent of the peak of current GPUs, as shown in Figure 1, right.
One approach to improve Krylov methods is to break up the data
dependency between the SpMV and the dot products like in the re-
cent work on the s-step and communication-avoiding Krylov meth-
ods [7, 8]. The improvement in these methods comes from grouping
SpMVs together into a (so called) Matrix Powers Kernel, which al-
lows reuse of the sparse matrix and vector reads during the compu-
tation of a Krylov subspace. Another approach that we consider in
this paper is to generate a block-Krylov subspace. Higher perfor-
mance for the numerical algorithm is achieved by several vectors
being multiplied simultaneously in an SpMM kernel. Communica-
tion is reduced in this case by accessing the matrix only once, and
reusing it for the multiplication with all vectors, which results in
significant performance benefits. SpMMs are needed in numerical
algorithms like the Discontinuous Galerkin, high-order FEM, cases
when vector quantities are simulated, or in specially designed block
solvers, like the Locally Optimal Block PCG (LOBPCG) used for
finding a set of smallest/largest eigenstates of an SPD matrix [9].

The LOBPCG method provides an interesting mix between
sparse and dense linear algebra operations. It also serves as a
backbone for many simulations, e.g., in quantum mechanics, where
eigenstates and molecular orbitals are defined by eigenvectors, or
principle component analysis. Non-linear CG methods have been
successfully used in predicting the electronic properties of large

1

Figure 1: Nvidia K40 GPU computing efficiency on compute intensive (Left: dense LU in double precision) vs. memory-bound computation
(Right: SpMV in double precision for various data formats) on state-of-the-art hardware and software libraries. CPU runs use MKL (denoted
MKL-CSR) with the numactl interleave=all policy (see also MKL’s benchmarks [6]).

nanostructures [10, 11], where the LOBPCG method in particular
has shown higher performance and improved convergence (reduced
number of SpMV products compared to non-blocked CG methods).
Applying this algorithm efficiently to multi-billion size problems
served as the backbone of two Gordon-Bell Prize finalists that ran
many-body simulations on the Japanese Earth Simulator [12, 13].

In this paper, we compare the state-of-the-art multi-threaded
CPU implementations of LOBPCG in BLOPEX [14], for which
the PETSc and Hypre libraries provide an interface [15], with our
GPU implementation, that is now available through the MAGMA
library [16]. The target platform is the Piz Daint Supercomputer
located at the Swiss National Computing Centre1 (CSCS).

2. Related Work
Energy Efficiency: An overview of energy-efficient scientific com-
puting on extreme-scale systems is provided in [17], where the
authors address both hardware and algorithmic efforts to reduce
the energy cost of scientific applications. Jiménez et al. [18] an-
alyze the trend towards energy-efficient microprocessors. Kestor
et al. [19] break down the energy cost of the data movement in a
scientific application. Targeting different mainstream architectures,
Aliaga et al. present in [5] an energy comparison study for the CG
solver. Concerning more complex applications, Charles et al. [20]
present an efficiency comparison when running the COSMO-ART
simulation model [21] on different CPU architectures. For an agro-
forestry application, Padoin et al. [22] investigate performance and
power consumption on a hybrid CPU+GPU architecture, revealing
that a changing workload can drastically improve energy efficiency.
In [23], Krueger et al. compare the energy efficiency of a CPU and
a GPU implementation of a seismic modeling application against
a general-purpose manycore chip design called ”Green Wave,” that
is optimized for high-order wave equations. Based on the analysis
on Intel Sandy Bridge processors, Wittmann et al. [24] extrapolate
the energy efficiency of a Lattice-Boltzmann CFD simulation to a
petascale-class machine.

1 The authors would like to thank the CSCS for access to Piz Daint and the
support running the experiments.

Blocked SpMV: As there exists significant need for SpMM
products, NVIDIA’s cuSPARSE library provides this routine for the
CSR format [25]. Aside from a straight-forward implementation
assuming the set of vectors being stored in column-major order,
the library also contains an optimized version taking the block of
vectors as a row-major matrix that can be used in combination with
a preprocessing step, transposing the matrix to achieve significantly
higher performance [26]. Still, we show that the SpMM product
that we propose outperforms the cuSPARSE implementations.

Orthogonalizations for GPUs: Orthogonalization of vectors is
a fundamental operation for both linear systems and eigenproblem
solvers, and many applications. Therefore there has been extensive
research on both its acceleration and stability. Besides the classical
and modified Gram-Schmidt orthogonalizations [27] and orthogo-
nalizations based on LAPACK (xGEQRF + xUNGQR) [28] and
correspondingly MAGMA for GPUs [16], recent work includes
communication-avoiding QR [29], also developed for GPUs [30,
31]. For tall and skinny matrices, these orthogonalizations are, in
general, memory bound. Higher performance, using Level 3 BLAS,
is also possible in orthogonalizations like the Cholesky QR or SVD
QR, but they are less stable (error bounded by the square of the con-
dition number of the input matrix). For the LOPBPCG method, af-
ter the SpMM kernel, the orthogonalizations are the most time con-
suming building block. In particular, LOBPCG contains two sets of
orthogonalizations per iteration.

LOBPCG implementations: The BLOPEX package main-
tained by A. Knyazev is state-of-the-art for CPU implementations
of LOBPCG, and popular software libraries like PETSc and Hypre
provide an interface to it [15]. Also Scipy [32], Octopus [33], and
Anasazi [34] as part of the Trilinos library [35] feature LOBPCG
implementations. The first implementation of LOBPCG for GPUs
has been available since 2011 in the ABINIT material science pack-
age [36]. It benefits from utilizing the generic linear algebra rou-
tines available in the CUDA [37] and MAGMA [16] libraries. More
recently, NVIDIA announced that LOBPCG will be included in the
GPU-accelerated Algebraic Multigrid Accelerator AmgX 2.

2 https://developer.nvidia.com/amgx

2

3. LOBPCG
The LOBPCG method [9, 38] finds m of the smallest (or largest)
eigenvalues λ and corresponding eigenvectors x of a symmetric
and positive definite eigenvalue problem:

Ax = λx.

Similarly to other CG-based methods, this is accomplished by the
iterative minimization of the Rayleigh quotient:

ρ(x) =
xTAx

xTx
.

The minimization at each step is done locally, in the subspace of
the current approximation xi, the previous approximation xi−1,
and the preconditioned residual P (Axi − λixi), where P is a
preconditioner for A. The subspace minimization is done by the
Rayleigh-Ritz method.

Note that the operations in the algorithm are blocked and there-
fore can be very efficient on modern architectures. Indeed, the
AXi is the SpMM kernel, and the bulk of the computations in
the Rayleigh-Ritz minimization are general matrix-matrix products
(GEMMs). The direct implementation of this algorithm becomes
unstable as the difference between Xi−1 and Xi becomes smaller,
but stabilization methods can provide an efficient workaround [9,
39]. While the LOBPCG convergence characteristics usually ben-
efit from using an application-specific preconditioner [11, 40–43],
we refrain from including one as we are particularly interested in
the performance of the top-level method. The LOBPCG we develop
is hybrid, using both the GPUs and CPUs available. All data re-
sides on the GPU memory and the bulk of the computation – the
preconditioned residual, the accumulation of the matrices for the
Rayleigh-Ritz method, and the update transformations – are han-
dled by the GPU. The small and not easy to parallelize Rayleigh-
Ritz eigenproblem is solved on the CPU using LAPACK. More
specifically, to find

Xi+1 = argminy∈{Xi,Xi−1,R}ρ(y),

the Rayleigh-Ritz method computes on the GPU

Ã = [Xi, Xi−1, R]
TA [Xi, Xi−1, R]

B = [Xi, Xi−1, R]
T [Xi, Xi−1, R],

and solves the small generalized eigenproblem Ã φ = B φ on the
CPU, to finally find (computed on the GPU)

Xi+1 = [Xi, Xi−1, R] φ(1 : m).

For stability, various orthogonalizations are performed, following
the LOBPCG Matlab code from A. Knyazev 3. We used our highly
optimized GPU implementations based on the Cholesky QR to get
the same convergence rates as the reference CPU implementation
from BLOPEX (in HYPRE) on all our test matrices from the
University of Florida sparse matrix collection (see Section 6).

4. Sparse Matrix-Vector-Block Product
To develop an efficient SpMM kernel, we use the recently proposed
SELL-P format (padded sliced ELLPACK [44]). The performance
numbers reported throughout this section are for double precision
(DP) arithmetic.

Implementation of SpMM for SELL-P
In addition to the well known sparse matrix formats like CSR [45],
work on efficient SpMV products for GPUs has motivated a num-
ber of new formats, and in particular, the one standing out is ELL-
PACK [46], where padding of the different rows with zeros is ap-

3 http://www.mathworks.com/matlabcentral/fileexchange/48-lobpcg-m

plied for a uniform row-length suitable for coalesced memory ac-
cesses of the matrix and instruction parallelism. However, the ELL-
PACK format incurs a storage overhead, which is determined by
the maximum number of nonzero elements aggregated in one row.
Depending on the particular problem, the overheads in using ELL-
PACK may result in poor performance, despite the coalesced mem-
ory access that is highly favorable for streaming processors.

A workaround to reduce memory and computational overhead
is to split the original matrix into row blocks before converting
them into the ELLPACK format. In the resulting sliced ELLPACK
format (SELL or SELL-C, where C denotes the size of the row
blocks [47, 48]), the overhead is no longer determined by the
matrix row containing the largest number of non-zeros, but by the
row with the largest number of nonzero elements in the respective
block. While sliced SELL-C reduces the overhead very efficiently,
e.g., choosing C=1 results in the storage-optimal CSR, assigning
multiple threads to each row requires padding the rows with zeros,
so that each block has a row-length divisible by this thread number.
This is the underlying idea of the SELL-P format: partition the
sparse matrix into row-blocks, and convert the distinct blocks into
ELLPACK format [46] with the row-length of each block being
padded to a multiple of the number of threads assigned to each row
when computing an SpMV or SpMM product.

Although the padding introduces some zero fill-in, the compari-
son between the formats in Figure 3 reveals that the blocking strat-
egy may still render significant memory savings (also see Table 1),
which translates into reduced computational cost for the SpMV ker-
nel. For the performance of the SpMM routine, it is not sufficient
to reduce the computational overhead, but essential to optimize
the memory access pattern. Doing so requires the accessed data
to be aligned in memory whenever possible. For consecutive mem-
ory access, and with the motivation of processing multiple vectors
simultaneously, we implement the SpMM assuming that the tall-and-
skinny dense matrix composed of the vectors is stored in row-major
order. Although this requires a preprocessing step of transposing
the dense matrix from column to row-major format prior to the
SpMM call, the aligned memory access to the vectors’ values com-
pensates for the extra work.

The algorithmic kernel for the SpMM operation arises as a natural
extension of the SpMV kernel for the SELL-P format proposed
in [44]. Like in the SpMV kernel, the x-dimension of the thread
block processes the distinct rows of one SELL-P block, while the
y-dimension corresponds to the number of threads assigned to each
row (see Figure 4). Partial products are written into shared memory
and added in a local reduction phase. For the SpMM it is beneficial
to process multiple vectors simultaneously, which motivates for
extending the thread block by a z-dimension, handling the distinct
vectors. While assigning every z-layer of the block to one vector
would provide a straight-forward implementation, keeping the set
of vectors, in texture memory, makes an enhanced approach more
appealing. The motivation is that in CUDA (version 6.0) every
texture read fetches 16 bytes, corresponding to two IEEE double
or four IEEE single precision floating point values. As using only
part of them would result in performance waste, every z-layer may
process two (double precision case) or four (single precision case)
vectors, respectively. This implies that, depending on the precision
format, the z-dimension of the thread block equals half or a quarter
the column count of the tall-and-skinny dense matrix.

As assigning multiple threads to each row requires a local re-
duction of the partial products in shared memory (see Figure 4),
the x- y- and z- dimensions are bounded by the characteristics of
the GPU architecture [37]. An efficient workaround when process-
ing a large number of vectors is given by assigning only one thread
per z-dimension to each row (choose y-dimension equal 1), which
removes the reduction step and the need for shared memory.

3

ELLPACK SELL-P
Acronym Matrix #nonzeros (nz) Size (n) nz/n nrow

z nELLPACK
z overhead nSELL−P

z overhead

AUDI AUDIKW 1 77,651,847 943,645 82.28 345 325,574,775 76.15% 95,556,416 18.74%
BMW BMWCRA1 10,641,602 148,770 71.53 351 52,218,270 79.62% 12,232,960 13.01%
BONE010 BONE010 47,851,783 986,703 48.50 64 62,162,289 23.02% 55,263,680 13.41%
F1 F1 26,837,113 343,791 78.06 435 149,549,085 82.05% 33,286,592 19.38%
INLINE INLINE 1 38,816,170 503,712 77.06 843 424,629,216 91.33% 45,603,264 19.27%
LDOOR LDOOR 42,493,817 952,203 44.62 77 73,319,631 42.04% 52,696,384 19.36%

Table 1: Matrix characteristics and storage overhead for ELLPACK and SELL-P formats. SELL-P employs a blocksize of 8 with 4 threads
assigned to each row. nFORMAT

z refers to the explicitly stored elements (nz nonzero elements plus the explicitly stored zeros for padding).

(a) AUDIKW 1 (b) BMWCRA 1 (c) BONE 010 (d) F1 (e) INLINE 1 (f) LDOOR

Figure 2: Sparsity plots of selected test matrices.

5 2 4 2 5
3 7 2 0 0
7 5 0 0 0
0 0 0 0 0
0 0 0 0 0
8 0 0 0 0
3 0 0 0 0

0 1 2 5 7
0 1 2 X X
2 7 X X X
X X X X X
X X X X X
0 X X X X
6 X X X X

5 2 4 2 5 0 0 0
3 7 2 0 0 0 0 0
7 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0

5 2 4 0 0 2 0 5
3 7 2 0 0 0 0 0
0 0 7 0 0 0 0 5
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
0 0 0 0 0 0 3 0

5 2 4 2 5 0 0 0
3 7 2 0 0 0 0 0
7 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0

CSR format

5 2 4 2 5 3 7 2 7 5 8 3

0 1 2 5 7 0 1 2 2 7 0 6

0 5 8 10 10 10 11

values

colind

rowptr

points to first element in row

0

1

2

 3

4

5

6

7

7
col-index

r
o
w
-
i
n
d
e
x

6543210

values colindvalues colind

ELLPACK format

rowptr

Sparse
storage formats

ELLPACK format

values colind

0 10 14 16 18
points to first element in block

5 2 4 2 5 0 0 0
3 7 2 0 0 0 0 0
7 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

5 2 4 2 5
3 7 2 0 0
7 5
0 0
0
8
3

 0

0 1 2 5 7
0 1 2 X X
2 7
X X
X
0
6
X

SELL-2 format

rowptr

values colind

0 12 16 20 24

5 2 4 2 5 0 0 0
3 7 2 0 0 0 0 0
7 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

5 2 4 2 5 0
3 7 2 0 0 0
7 5
0 0
0 0
8 0
3 0
0 0

0 1 2 5 7 X
0 1 2 X X X
2 7
X X
X X
0 X
6 X
X X

SELL-P format

5 2 4 2 5 0 0 0
3 7 2 0 0 0 0 0
7 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Figure 3: Visualizing the CSR, ELLPACK, SELL-C, and SELL-P formats. The memory demand corresponds to the grey areas. Note that
choosing the block size 2 for SELL-C (SELL-2) and SELL-P requires adding a zero row to the original matrix. Furthermore, padding the
SELL-P format to a row length divisible by 2 requires explicit storage of a few additional zeros.

Performance of SpMM for SELL-P
For the runtime analysis we use a Kepler K40 GPU which is
newer than the K20 GPUs in the Piz Daint supercomputer. We
benchmarked the SELL-P SpMV for a larger set of test matrices
taken from the University of Florida Matrix Collection (UFMC)4

than the ones we target with the LOBPCG algorithm in Section 6.
With some key characteristics collected in Table 1, and spar-

sity plots shown in Figure 2, we tried to cover a large variety of
systems common in scientific computing. The hardware we used
is a two socket Intel Xeon E5-2670 (Sandy Bridge) platform ac-
celerated by an NVIDIA Tesla K40c GPU with a theoretical peak
performance of 1,682 GFLOP/s. The host system has a theoretical
peak of 333 GFLOP/s, main memory size is 64 GB, and theoreti-
cal bandwidth is up to 51 GB/s. On the K40 GPU, 12 GB of main
memory are accessed at a theoretical bandwidth of 288 GB/s. The
implementation of all GPU kernels is realized in CUDA [37], ver-
sion 6.0 [49], while we also include in the performance compar-

4 UFMC; see http://www.cise.ufl.edu/research/sparse/matrices/

isons routines taken from NVIDIA’s cuSPARSE [25] library. On
the CPU, Intel’s MKL [50] is used in version 11.0, update 5.

In Figure 5, for different test matrices we visualize the perfor-
mance scaling of the previously described SpMM kernel with re-
spect to the number of columns in the dense matrix (equivalent
to the number of vectors in a blocked SpMV). The results reveal
that the SpMM performance exceeds 100 GFLOP/s as soon as the
number of columns in the dense matrix exceeds 30. The character-
istic oscillation of the performance can be explained by the more or
less efficient memory access, but in particular the cases where the
column-count equals a multiple of 16 provide very good perfor-
mance. Using the SpMM kernel vs. a set of consecutive SpMV sparse
products (that typically achieve less than 25 GFLOP/s on this ar-
chitecture [44]; see Figure 1, Right) results in speedup factors of
around five, see Table 2. Similar performance improvement (up to
6.1×) is observed on CPUs when replacing consecutive MKL SpMV
kernels by the MKL SpMM routine, see Table 3.

While these results are obtained by assuming the performance-
beneficial row-major storage of the tall-and-skinny dense matrix,

4

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

multiple vectors

Figure 4: Visualization of the SELL-P memory layout and the SELL-P SpMM kernel including the reduction step using the blocksize b = 4
(corresponding to SELL-4), and always assigning two threads to every row (t = 2). Adding a z-dimension to the thread-block allows for
processing multiple vectors simultaneously.

many applications and algorithms use dense matrices stored in
column-major format to benefit from highly optimized BLAS im-
plementations (available for matrices in column-major format). For
this reason, when comparing the performance of the SELL-P im-
plementation against the cuSPARSE CSRSpMM [25], we include
the preprocessing time needed to transpose the tall-and-skinny
dense matrix (see Figure 6). Aside from the standard CSRSpMM
assuming column-major storage, the cuSPARSE also includes a
highly tuned version assuming, like the MAGMA implementation,
row-major storage [26]. Combining this with a preprocessing step
transposing the matrix provides the same functionality at signif-
icantly higher GFLOP rates. While the standard SpMM achieves
between 20 and 60 GFLOP/s for most matrices, the highly tuned
row-major based implementation often gets close to 100 GFLOP/s,
sometimes even above (see results labelled “cuSPARSE CSR-
SpMM v2” in Figure 6). Our SpMM based on the SELL-P format
outperforms both cuSPARSE SpMM implementations. With signifi-
cant speedup factors over the standard SpMM, the performance im-

cuSPARSE MAGMA MAGMA
Matrix CSR HYB SELL-P SpMM speedup
AUDI 21.9 17.7 22.1 111.3 5.0
BMW 22.3 24.2 23.6 122.0 3.8
BONE010 15.5 25.2 22.3 121.6 4.1
F1 19.3 16.9 19.6 106.3 5.4
INLINE 20.7 19.1 21.1 108.8 3.8
LDOOR 14.9 19.3 20.7 111.2 5.4

Table 2: Asymptotic DP performance [GFLOP/s] for a large num-
ber of vectors using consecutive SpMVs (cuSPARSE CSR, cuS-
PARSE HYB, MAGMA SELL-P SpMV) vs. the SpMM kernel on
GPUs. The last column is the speedup of the SpMM against the re-
spective best SpMV. See Table 1 for the matrix characteristics.

provement compared to the cuSPARSE SpMM ranges between 13%
and 41% (see results for CANT and CRANK, respectively).

Figure 7 compares our SpMM kernel on a K40 with the DC-
SRMM kernel from MKL (routine mkl dcsrmm) on two eight-

5

 20

 40

 60

 80

 100

 120

audikw
_1

bm
w

3_2

bm
w

cra_1
bone_010
bone_S10
cant

crankseg_2
F1 Fault_639
H

ook_1498
inline_1

ldoor

pw
tk

Stoc_1465
stom

ach

xenon_2

G
FL

O
P
/s

cuSPARSE CSRSpMM
cuSPARSE CSRSpMM v2

MAGMA SELL-P SpMM

 20

 40

 60

 80

 100

 120

audikw
_1

bm
w

3_2

bm
w

cra_1
bone_010
bone_S10
cant

crankseg_2
F1 Fault_639
H

ook_1498
inline_1

ldoor

pw
tk

Stoc_1465
stom

ach

xenon_2

G
FL

O
P
/s

cuSPARSE CSRSpMM
cuSPARSE CSRSpMM v2

MAGMA SELL-P SpMM

Figure 6: Performance comparison between the developed SpMM kernel and the CSRSpMM kernels provided by NVIDIA for selected matrices
and a set of 64 vectors in DP arithmetic.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140

G
FL

O
P
/s

Number of Vectors

audikw_1
bmwcra_1

bone010
inline_1

ldoor

Figure 5: DP performance scaling with respect to the vector count
of the SpMM kernel for the matrices listed in Table 1.

0	

1	

2	

3	

4	

5	

6	

n=1	

n=16	

n=32	

n=48	

Figure 7: Speedup of the developed SpMM kernel on a K40 vs. the
DCSRMM kernel provided by Intel’s MKL on two eight-core Intel
Xeon E5-2690s for selected matrices and number of vectors n.

Matrix mkl dcsrmv mkl dcsrmm speedup
AUDI 7.24 22.5 3.1
BMW 6.86 32.2 4.7
BONE010 7.77 30.5 3.9
F1 5.64 20.1 3.6
INLINE 8.10 28.9 3.6
LDOOR 6.78 41.5 6.1

Table 3: Asymptotic DP performance [GFLOP/s] of sparse test
matrices and a large number of vectors with a set of consecutive
SpMVs vs. blocked SpMVs (SpMM) on CPUs using MKL. The last
column is the speedup of the SpMM kernel against the SpMV.

core Intel Xeon E5-2690s for selected matrices and number of
vectors n. Both implementations assume the vectors to be multi-
plied by the sparse matrix to be stored in row-major data format.
On both architectures, the row-major storage allows for signifi-
cantly higher GFLOP rates. The CPU runs are using the numactl
--interleave=all policy, which is well known to improve per-
formance. The performance obtained is consistent with bench-
marks provided by Intel [6]. The results show a 3 to 5× accel-
eration from CPU to GPU implementation, which is expected from
the compute and bandwidth capabilities of the two architectures.

5. Experiment Framework
The Piz Daint Supercomputer at the Swiss National Computing
Centre in Lugano was listed in June 2014 as the sixth fastest su-
percomputer according to the TOP500 [3], while its energy ef-
ficiency ranked number five in the Green500 [2]. A single node
is equipped with an 8-core 64-bit Intel Sandy Bridge CPU (In-
tel Xeon E5-2670), an NVIDIA Tesla K20X with 6 GB GDDR5
memory, and 32 GB of host memory. The nodes are connected by
the ”Aries” proprietary interconnect from Cray, with a dragonfly
network topology [51]. Piz Daint has 5,272 compute nodes, corre-
sponding to 42,176 CPU cores in total - with the ability to use up
to 16 virtual cores per node when hyperthreading (HT) is enabled,
i.e., 84,352 virtual cores in total, and 5,272 GPUs. The peak per-
formance is 7.8 Petaflops [51]. PMDB enables the user to monitor
power and energy usage for the host node and separately for the
accelerator at a frequency of 10 Hz [52]. For the BLOPEX code
running exclusively on the CPU of the host nodes, we obtain the
pure CPU power by subtracting the power draft of the (idle) GPUs.

6

 524288

 1.04858e+06

 2.09715e+06

 4.1943e+06

 8.38861e+06

 1.67772e+07

 3.35544e+07

 0 20 40 60 80 100

R
e
si

d
u
a
l
N

o
rm

s

Number of Iterations

Figure 8: Visualizing the convergence of 10 eigenvectors when
applying the developed GPU implementation of LOBPCG based
on the SpMM kernel to the AUDI test matrix.

6. Runtime and Energy Analysis of LOBPCG
In this Section we quantify the runtime and energy efficiency of
two LOBPCG implementations: the GPU-accelerated LOBPCG,
and the multithreaded CPU implementation from BLOPEX [14].
All computations use DP arithmetic. For the runtime and energy
analysis, we used the BLOPEX code via the Hypre interface, as-
signing 8 threads to each node (one thread per core) for up to 128
nodes (1024 cores) of the hardware platform listed in Section 5. We
note that we use the BLOPEX LOBPCG out-of-the-box, without
attempting any optimizations that are not included in the software
library. The convergence rate of the GPU implementation is match-
ing the one from BLOPEX. In Figure 8 we visualize the conver-
gence of 10 eigenvectors for the AUDI test matrix. As convergence
properties are not the focus of the research, all further results are
based on 100 iterations of either implementation.

The LOBPCG implementation in BLOPEX is matrix free, i.e.,
the user is allowed to provide their choice of SpMV/SpMM im-
plementation. In these experiments we use the Hypre interface to
BLOPEX, linked with the MKL library.

The number of operations executed in every iteration of LOBPCG
can be approximated by

2 · nnz · nv + 36 · n · n2
v (1)

where nnz denotes the number of non-zeros of the sparse matrix,
n the dimension, and nv the number of eigenvectors (equivalent
to the number of columns in the tall-and-skinny dense matrix).
The first term of the sum reflects the SpMM operation generating
the Krylov vectors, while the second contains the remaining op-
erations including the orthogonalizations. Due to the n2

v term, the
runtime is expected to increase superlinearly with the number of
vectors. This can be observed in Figure 9 where we visualize the
time needed to complete 100 iterations on the AUDI problem us-
ing either the BLOPEX code via the Hypre interface on 4 nodes
(32 threads), or the GPU implementation using either a sequence
of SpMVs or the SpMM kernel. While the BLOPEX implementa-
tion also shows some variances for different numbers of vectors,
the runtime pattern of the GPU LOBPCG reflects the efficiency of
the orthogonalization routines favoring cases where 16, 32, or 48
vectors are processed. This characteristic pattern remains when re-
placing the consecutive SpMVs with the SpMM, as this kernel also
promotes certain column-counts of the tall and skinny dense ma-
trix. Figure 10 shows the runtime of the SpMM-based GPU imple-
mentation of LOBPCG to complete 100 iterations for different test
matrices. Comparing the results for the AUDI problem, we are 1.3

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45

R
u
n
ti

m
e
 [

s]

Number of Eigenvectors

BLOPEX
SpMV
SpMM

Figure 9: Runtime to complete 100 DP iterations on the AUDI
problem using either the BLOPEX via the Hypre interface on 4
nodes (32 threads), or the GPU implementation using either a
sequence of SpMVs or the SpMM kernel.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60

R
u
n
ti

m
e
 [

s]

Number of Eigenvectors

audikw
ldoor
inline

f1

Figure 10: Runtime needed to complete 100 iterations in DP using
the LOBPCG GPU implementation based on SpMM.

and 1.2× faster when computing 32 and 48 eigenvectors, respec-
tively, using the SpMM instead of the SpMV in the GPU implemen-
tation of LOBPCG. Note that although in this case the SpMM per-
formance is about 5× the SpMV performance, the overall improve-
ment of correspondingly 30% and 20% reflects that only 12.5%
and 8.7% of the overall LOBPCG FLOP/s are in SpMVs for the 32
and 48 eigenvector problems, respectively (see equation (1) and the
matrix specifications in Table 1). While the BLOPEX implementa-
tion also shows some variances for different numbers of vectors,
the runtime pattern of the GPU LOBPCG reflects the efficiency of
the orthogonalization routines favoring cases where 16, 32, or 48
vectors are processed. This characteristic pattern is even amplified
when replacing the consecutive SpMVs with the SpMM, as this kernel
also promotes certain column-counts of the tall and skinny dense
matrix, as shown in Figure 10.

Figure 11 shows the scaling of the Hypre implementation when
computing a set of eigenvectors for the AUDI problem. Taking one
node (8 threads) as the baseline configuration, the algorithm scales
almost linearly up to 16 nodes. The associated energy need remains
constant within the linear scaling range, but rises as soon as the
speedup is smaller than the node increase. We further observe that
the Hypre LOBPCG scales almost independently of the number
of eigenvectors to compute. We define the computation of a set
of 16 and 32 eigenvectors as the two benchmarks for the further
analysis. In a first step, we investigate how energy efficiency and
runtime performance are related for the BLOPEX implementation.

7

For this, we evaluate these metrics when running on 1, 2, 4, 8, 16,
32, 64, and 128 nodes, and identify the configuration providing the
best runtime performance and energy efficiency (see Table 4). Due
to the non-linear scaling of the BLOPEX implementation, and the
power draft increasing almost linearly with the hardware resources,
optimizing for runtime results in significant overhead for energy
efficiency and vice versa. While this is different for the hybrid im-
plementation of LOBPCG using a single CPU+GPU node, the en-
ergy balance has to also account for the power draft of the GPU
(see Table 5). Theoretically, each node of Piz Daint is equipped
with a multicore Sandy Bridge CPU that provides a theoretical
peak of 166.4 GFLOP/s at a power consumption of 115W (1.44
GFLOP/W), whereas the K20X GPU consumes 225W when pro-
viding 1311 GFLOP/s (5.83 GFLOP/W) [52]. Hence, assuming full
load, adding the accelerator theoretically increases the power need
per node by a factor of around 1.67. However, the GPU-acclerated
LOBPCG uses both the CPU host and the GPU, but not heavily.
The power usage therefore scales according to the load. Hence,
the energy improvement depends on the specific test case, but is
in general smaller than the runtime improvement when comparing
the BLOPEX implementation running on one node with the hy-
brid code. This is reflected in the first line of Table 6, where we
list the runtime and energy requirement of the BLOPEX LOBPCG
scaled to the MAGMA LOBPCG results (this is equivalent to the
speedup and greenup of the MAGMA implementation over the
BLOPEX implementation). When computing 16 eigenvectors (see
speedup shown on the left top of Table 6), increasing the comput-
ing resources enables the BLOPEX implementation to outperform
the MAGMA LOBPCG for some test cases; however, this comes
at the cost of a significantly higher energy usage (see greenup of
MAGMA over BLOPEX on the right top of Table 6). With the
greenup ranging between 4 and 180, the BLOPEX code is, for
no configuration, even close to the energy efficiency of the GPU-
accelerated solver. Targeting the computation of 32 eigenvectors,
speedup and greenup grow even more (see bottom of Table 6).

To complete the performance analysis, we concentrate on the
single node performances in Table 6. Based on the SpMM kernel
analysis in Figure 7, the expectation for 16 vectors is that an op-
timized CPU code (blocking the SpMVs) must be only about 5×
slower than the GPU code. The 10× acceleration indicates that the
Hypre interface to BLOPEX is probably not blocking the SpMVs.
Computing more vectors (e.g., 32, shown in Table 6, bottom) re-
duces the fraction of SpMV FLOP/s to the total FLOP/s (see equa-
tion (1)), and thus making the SpMV implementation less critical for
the overall performance. The fact that the speedup of the GPU vs.
the CPU LOBPCG continues to grow, reaching about 30×, shows
that there are other missed optimization opportunities in the CPU
implementation. In particular, these are where the majority of the
FLOP/s are – the GEMMs in assembling the matrix representa-
tions for the local Rayleigh-Ritz minimizations and the orthogo-
nalizations. These routines are highly optimized in our GPU im-
plementation, especially the GEMMs, which due to the specific
sizes of the matrices involved – tall and skinny matrices A and
B with a small square resulting matrices ATB – required modifi-
cations to the standard GEMM algorithm for large matrices [53].
What worked very well is splitting the ATB GEMM into smaller
GEMMs based on tuning the MAGMA GEMM [53] for the par-
ticular small sizes, all grouped for execution into a single batched
GEMM, followed by the addition of the local results [54].

As a bottom-line, we observe that using more hardware re-
sources may enable a scalable CPU-based algorithm to keep up
with the performance of the hybrid implementation, but this in-
creasingly fails to provide the energy efficiency desired.

 1

 10

 100

 1 10 100

sp
e
e
d
u
p

nodes

linear speedup
2 EV

16 EV
32 EV
48 EV

Figure 11: Scaling of the Hypre LOBPCG using 8 threads/node
when computing a set of eigenvectors for the AUDI problem.

best performance best energy efficiency
matrix nodes time energy nodes time energy

[s] [J] [s] [J]
AUDI 64 8.88 73956 8 24.21 27611
BMW 8 3.59 3713 2 7.57 2291
BONE010 64 6.06 38656 8 15.33 18078
F1 32 8.12 32179 4 17.20 9587
INLINE 64 6.22 46744 4 18.08 10558
LDOOR 64 7.14 56041 8 14.41 16976

best performance best energy efficiency
matrix nodes time energy nodes time energy

[s] [J] [s] [J]
AUDI 32 34.86 151800 2 307.20 96060
BMW 8 14.41 14564 2 30.20 9215
BONE010 64 23.85 192492 2 258.93 81873
F1 32 23.86 101979 1 206.64 31659
INLINE 32 24.31 105512 8 36.73 42382
LDOOR 32 24.93 107172 2 233.35 74638

Table 4: Runtime and energy consumption of 100 iterations in DP
of the BLOPEX LOBPCG computing 16 (top) and 32 (bottom)
eigenvectors when optimizing the hardware configuration (number
of nodes #) w.r.t. performance (left) or energy efficiency (right).

matrix EVs time [s] energy CPU [J] energy GPU [J]

AUDI
16 14.69 1075.00 1664.00
32 19.47 1377.00 2539.00

BMW
16 2.54 182.00 232.00
32 3.37 241.00 375.00

BONE010 16 14.58 996.00 1609.00
32 18.97 1307.00 2456.00

F1 16 5.57 390.00 581.00
32 7.40 536.00 958.00

INLINE
16 7.71 602.00 906.00
32 10.11 709.00 1248.00

LDOOR
16 13.87 951.00 1537.00
32 18.39 1283.00 2368.00

Table 5: Runtime and energy balance of 100 iterations of the GPU-
accelerated LOBPCG in DP.

8

speedup greenup
nodes audi bmw bone F1 inline ldoor audi bmw bone F1 inline ldoor

1 14.88 7.00 11.37 12.35 11.27 10.61 12.37 6.56 9.84 10.69 8.88 9.22
2 6.56 2.98 5.25 5.89 5.93 5.10 10.98 5.53 9.18 10.23 9.42 9.01
4 3.36 1.88 2.68 3.09 2.35 2.64 10.92 6.32 9.07 9.87 7.00 9.04
8 1.65 1.41 1.05 2.02 1.46 1.04 10.24 8.97 6.94 12.66 8.20 6.82

16 1.97 2.38 1.36 2.02 2.16 1.71 23.27 24.73 16.72 24.96 23.98 20.71
32 0.73 1.62 0.45 1.46 0.88 0.53 16.99 41.73 10.13 33.14 17.94 11.61
64 0.60 1.99 0.42 1.86 0.81 0.51 27.42 97.39 14.84 83.50 31.00 22.52

128 0.69 2.60 0.50 2.12 1.23 0.55 47.80 231.79 37.36 190.68 86.05 49.36

speedup greenup
nodes audi bmw bone F1 inline ldoor audi bmw bone F1 inline ldoor

1 33.60 23.09 28.01 27.92 28.88 27.43 26.12 19.48 22.02 21.19 23.19 21.62
2 15.78 8.96 13.65 15.00 14.97 12.69 24.87 14.96 21.76 22.78 24.09 20.44
4 9.78 4.95 7.24 7.48 9.02 7.20 29.59 15.23 22.46 21.69 27.73 22.32
8 5.14 4.28 4.03 4.98 3.63 3.82 30.34 23.64 24.24 27.14 21.66 23.09

16 4.37 4.63 3.94 4.79 4.46 3.89 48.11 54.70 43.88 51.92 50.09 43.05
32 1.79 5.17 1.32 3.22 2.40 1.36 39.31 117.84 27.75 68.26 53.92 29.35
64 1.80 7.91 1.26 4.03 2.51 1.54 73.85 351.47 51.15 163.09 106.38 63.08

128 1.93 7.61 1.50 5.01 3.08 1.67 153.09 682.25 121.28 410.40 262.81 136.72

Table 6: Speedup and greenup of the MAGMA LOBPCG vs. the CPU LOBPCG when computing 16 (top) or 32 (bottom) eigenvectors.

7. Summary and Outlook
In this paper we have compared the performance and energy effi-
ciency of a CPU and a hybrid CPU+GPU LOBPCG eigensolver on
the Piz Daint supercomputer. For the GPU-accelerated LOBPCG,
we provide a comprehensive description of the GPU-kernel used
to generate the Krylov subspace by computing the SpMM product.
As this building block also serves as the backbone for other block-
Krylov methods, we include a runtime analysis that reveals sig-
nificant speedups over a set of consecutive SpMVs, and an equiva-
lent routine provided in NVIDIA’s cuSPARSE library. Integrating
it into the GPU implementation of LOBPCG, we outperform the
BLOPEX CPU implementation running on one node by more than
an order of magnitude for both, runtime performance and energy
efficiency, when computing a set of eigenvectors. Increasing the re-
sources for the BLOPEX code improves runtime performance at
the cost of a rising energy balance. This indicates, that resource ef-
ficiency of scientific applications can be improved by utilizing GPU
accelerators lauded for their high GFLOP/W ratios.

Various insights regarding energy efficiency can be extracted
from the results presented. For example, as a general rule Krylov
space methods achieve (on systems comparable to the one tested)
about 0.033 GFLOP/W on CPUs vs. 0.2 GFLOP/W on GPUs. This
makes GPUs about six times more energy efficient. Performance-
wise, two Sandy Bridge CPUs achieve around 5 GFLOP/s vs.
around 20 GFLOP/s for a K20 GPU. Further, employing techniques
to reduce communications has a significant impact. In particular,
blocking of size 16 in kernels like SpMM, brings the GPU’s energy
efficiency to about 1 GFLOP/W and the performance to about
100 GFLOP/s. Compared to the baseline SpMV-based method this
brings 30x greenup. The greenup for an entire application would
depend on the other operations as well, e.g., being around 7× for
the LOBPCG for 16 vectors (see Table VI), and converging to
the asymptotic 30× as the number of vectors grows (and more if
the performance of the CPU implementation does not scale with
increasing the number of nodes used).

The results presented were shown to be state-of-the-art, and
therefore to be indicative of today’s frontiers in energy efficiency
and performance for sparse computations on supercomputers. In-
deed, the performance and energy efficiency on other optimizations
techniques can be evaluated based on their expected FLOP/Byte ra-
tio, and extrapolated from the results for the basic building blocks

presented (like the SpMV and SpMM, and their interactions with other
BLAS kernels). Future work includes simplifying this process of
evaluation by setting up MAGMA’s basic kernels as benchmarks,
and their use in the development of performance and energy effi-
ciency evaluation tools for sparse computing applications.

Acknowledgments
This material is based upon work supported by the National Science
Foundation under Grant No. ACI-1339822, Department of Energy
grant No. DE-SC0010042, the Russian Scientific Fund (Agreement
N14-11-00190), and NVIDIA. The authors would like to thank
the Swiss National Computing Centre for granting access to their
system, and support in deploying the energy measurements.

References
[1] J. Dongarra et al, “The international ExaScale software project

roadmap,” IJHPCA, vol. 25, no. 1, 2011.

[2] The green 500 list, http://www.green500.org/.

[3] The top 500 list, http://www.top.org/.

[4] J. Dongarra and M. A. Heroux, “Toward a New Metric for Rank-
ing High Performance Computing Systems,” SANDIA REPORT
SAND2013-4744, June 2013.

[5] J. Aliaga, H. Anzt, M. Castillo, J. Fernández, G. Léon, J. Pérez,
and E. Quintana-Ortı́, “Unveiling the performance-energy trade-
off in iterative linear system solvers for multithreaded processors,”
Concurrency and Computation: Practice and Experience, 2014.

[6] “Intel R© Math Kernel Library. Sparse BLAS and Sparse Solver Perfor-
mance Charts: DCSRGEMV and DCSRMM,” October 2014. [Online].
Available: https://software.intel.com/en-us/intel-mkl

[7] M. F. Hoemmen, “Communication-avoiding krylov subspace methods,”
Ph.D. dissertation, EECS Department, UC, Berkeley, Apr 2010.

[8] I. Yamazaki, H. Anzt, S. Tomov, M. Hoemmen, and J. Dongarra,
“Improving the performance of CA-GMRES on multicores with multiple
GPUs,” in IPDPS’14. Washington, DC, USA: 2014, pp. 382–391.

[9] A. V. Knyazev, “Toward the optimal preconditioned eigensolver:
Locally optimal block preconditioned conjugate gradient method,” SIAM
J. Sci. Comput, vol. 23, pp. 517–541, 2001.

[10] S. Tomov, J. Langou, J. Dongarra, A. Canning, and L.-W. Wang,
“Conjugate-gradient eigenvalue solvers in computing electronic proper-

9

ties of nanostructure architectures.” IJCSE, vol. 2, no. 3/4, pp. 205–212,
2006.

[11] C. Vömel, S. Tomov, O. A. Marques, A. Canning, L.-W. Wang, and
J. J. Dongarra, “State-of-the-art eigensolvers for electronic structure
calculations of large scale nano-systems.” J. Comput. Physics, vol. 227,
no. 15, pp. 7113–7124, 2008.

[12] S. Yamada, T. Imamura, and M. Machida, “16.447 tflops and
159-billion-dimensional exact-diagonalization for trapped fermion-
hubbard model on the earth simulator,” in Proc. of SC’05, ser. SC
’05. Washington, DC, USA: IEEE Computer Society, 2005, p. 44.

[13] S. Yamada, T. Imamura, T. Kano, and M. Machida, “High-
performance computing for exact numerical approaches to quantum
many-body problems on the earth simulator,” in Proc. of the ACM/IEEE
SC’06. New York, NY, USA: ACM, 2006.

[14] A. Knyazev. https://code.google.com/p/blopex/.
[15] A. V. Knyazev, M. E. Argentati, I. Lashuk, and E. E. Ovtchinnikov,

“Block locally optimal preconditioned eigenvalue xolvers (blopex) in
hypre and petsc.” SIAM J. Scientific Computing, vol. 29, no. 5, pp.
2224–2239, 2007.

[16] I. C. Lab, “Software distribution of MAGMA version 1.5,” http:
//icl.cs.utk.edu/magma/, 2014.

[17] D. Donofrio, L. Oliker, J. Shalf, M. F. Wehner, C. Rowen, J. Krueger,
S. Kamil, and M. Mohiyuddin, “Energy-efficient computing for extreme-
scale science,” Computer, vol. 42, no. 11, pp. 62–71, 2009.

[18] V. Jiménez, R. Gioiosa, E. Kursun, F. Cazorla, C.-Y. Cher, A. Buyuk-
tosunoglu, P. Bose, and M. Valero, “Trends and techniques for energy
efficient architectures,” in VLSI System on Chip Conference (VLSI-SoC),
2010 18th IEEE/IFIP, Sept 2010, pp. 276–279.

[19] G. Kestor, R. Gioiosa, D. Kerbyson, and A. Hoisie, “Quantifying the
energy cost of data movement in scientific applications,” in Workload
Characterization (IISWC), 2013 IEEE International Symposium on, Sept
2013, pp. 56–65.

[20] J. Charles, W. Sawyer, M. F. Dolz, and S. Catalán, “Evaluating the
performance and energy efficiency of the cosmo-art model system,”
Computer Science - Research and Development, pp. 1–10, 2014.

[21] C. e. a. Knote, “Towards an online-coupled chemistry-climate model:
evaluation of trace gases and aerosols in cosmo-art,” Geoscientific Model
Development, vol. 4, no. 4, pp. 1077–1102, 2011.

[22] E. Padoin, L. Pilla, F. Boito, R. Kassick, P. Velho, and P. Navaux,
“Evaluating application performance and energy consumption on hybrid
CPU+GPU architecture,” Cluster Computing, vol. 16, no. 3, pp. 511–
525, 2013.

[23] J. Krueger, D. Donofrio, J. Shalf, M. Mohiyuddin, S. Williams,
L. Oliker, and F.-J. Pfreund, “Hardware/software co-design for energy-
efficient seismic modeling,” in Proc. of SC’11. New York, NY, USA:
ACM, 2011, pp. 73:1–73:12.

[24] M. Wittmann, G. Hager, T. Zeiser, and G. Wellein, “An analysis of
energy-optimized lattice-boltzmann cfd simulations from the chip to the
highly parallel level,” CoRR, vol. abs/1304.7664, 2013.

[25] NV, CUSPARSE LIBRARY, July 2013.
[26] M. Naumov, “Preconditioned block-iterative methods on gpus,”

PAMM, vol. 12, no. 1, pp. 11–14, 2012.
[27] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.).

Baltimore, MD, USA: Johns Hopkins University Press, 1996.
[28] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J.

Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney,
and D. Sorensen, LAPACK Users’ Guide (Third Ed.). Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 1999.

[29] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou,
“Communication-avoiding parallel and sequential QR factorizations,”
CoRR, vol. abs/0806.2159, 2008.

[30] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer,
“Communication-avoiding QR decomposition for GPUs,” EECS De-
partment, UC, Berkeley, Tech. Rep. UCB/EECS-2010-131, Oct 2010.

[31] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief,
S. Thibault, and S. Tomov, “QR factorization on a multicore node

enhanced with multiple gpu accelerators.” in IPDPS. IEEE, 2011, pp.
932–943.

[32] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001–. [Online: http://www.scipy.org/].

[33] A. Castro et al, “Octopus: a tool for the application of time-dependent
density functional theory,” phys. stat. sol. (b), vol. 243, no. 11, pp.
2465–2488, 2006.

[34] C. G. Baker, U. L. Hetmaniuk, R. B. Lehoucq, and H. K. Thornquist,
“Anasazi software for the numerical solution of large-scale eigenvalue
problems,” ACM TOMS, vol. 36, no. 3, pp. 13:1–13:23, Jul. 2009.

[35] M. Heroux et al, “An Overview of Trilinos,” Sandia National
Laboratories, Tech. Rep. SAND2003-2927, 2003.

[36] X. G. et al., “First-principles computation of material properties: the
ABINIT software project,” Computational Materials Science, vol. 25,
no. 3, pp. 478 – 492, 2002.

[37] NVIDIA CUDA Compute Unified Device Architecture Programming
Guide, 6th ed., NVIDIA Corporation, April 2014.

[38] A. V. Knyazev, “Preconditioned eigensolvers - an oxymoron?” ETNA,
vol. 7, pp. 104–123, 1998.

[39] U. Hetmaniuk and R. Lehoucq, “Basis selection in LOBPCG,” Journal
of Computational Physics, vol. 218, no. 1, pp. 324 – 332, 2006.

[40] P. Arbenz and R. Geus, “Multilevel preconditioned iterative eigen-
solvers for Maxwell eigenvalue problems,” Applied Numerical Mathe-
matics, vol. 54, no. 2, pp. 107 – 121, 2005, 6th IMACS International
Symposium on Iterative Methods in Scientific Computing.

[41] P. Benner and T. Mach, “Locally optimal block preconditioned
conjugate gradient method for hierarchical matrices,” PAMM, vol. 11,
no. 1, pp. 741–742, 2011.

[42] T. V. Kolev and P. S. Vassilevski, “Parallel eigensolver for H(curl)
problems using H1-auxiliary space AMG preconditioning,” LLNL,
Livermore, CA, Tech. Rep. UCRL-TR-226197, 2006.

[43] A. Knyazev and K. Neymeyr, Efficient Solution of Symmetric
Eigenvalue Problems Using Multigrid Preconditioners in the Locally
Optimal Block Conjugate Gradient Method, ser. UCD/CCM report.
University of Colorado at Denver, 2001.

[44] H. Anzt, S. Tomov, and J. Dongarra, “Implementing a Sparse Matrix
Vector Product for the SELL-C/SELL-C-σ formats on NVIDIA GPUs,”
University of Tennessee, Tech. Rep. ut-eecs-14-727, March 2014.

[45] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd
Edition. Philadelphia, PA: SIAM, 1994.

[46] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication
on CUDA,” Dec. 2008.

[47] A. Monakov, A. Lokhmotov, and A. Avetisyan, “Automatically tuning
sparse matrix-vector multiplication for gpu architectures,” in Proc. of
HiPEAC’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 111–125.

[48] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop, “A
unified sparse matrix data format for modern processors with wide simd
units,” CoRR, vol. abs/1307.6209, 2013.

[49] N. Corp., NVIDIA CUDA TOOLKIT V6.0, July 2013.
[50] “Intel R© Math Kernel Library for Linux* OS,” Document Number:

314774-005US, October 2007, Intel Corporation.
[51] (2014) Piz Daint Computing Resources. Swiss National Computing

Centre.
[52] G. Fourestey, B. Cumming, L. Gilly, and T. C. Schulthess. (2014,

August) First Experiences With Validating and Using the Cray Power
Management Database Tool.

[53] R. Nath, S. Tomov, and J. Dongarra, “An improved magma gemm for
fermi graphics processing units,” Int. J. High Perform. Comput. Appl.,
vol. 24, no. 4, pp. 511–515, Nov. 2010.

[54] I. Yamazaki, S. Tomov, T. Dong, and J. Dongarra, “Mixed-precision
orthogonalization scheme and adaptive step size for ca-gmres on gpus,”
VECPAR 2014 (Accepted), jan 2014.

10

