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ABSTRACT

The solution of nonsymmetric eigenvalue problems, Az =
Az, can be accelerated substantially by first reducing A to
an upper Hessenberg matrix H that has the same eigenval-
ues as A. This can be done using Householder orthogonal
transformations, which is a well established standard, or sta-
bilized elementary transformations. The latter approach, al-
though having half the flops of the former, has been used less
in practice, e.g., on computer architectures with well devel-
oped hierarchical memories, because of its memory-bound
operations and the complexity in stabilizing it. In this paper
we revisit the stabilized elementary transformations approach
in the context of new architectures — both multicore CPUs and
Xeon Phi coprocessors. We derive for a first time a blocking
version of the algorithm. The blocked version reduces the
memory-bound operations and we analyze its performance.
A performance model is developed that shows the limitations
of both approaches. The competitiveness of using stabilized
elementary transformations has been quantified, highlighting
that it can be 20 to 30% faster on current high-end multicore
CPUs and Xeon Phi coprocessors.
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Eigenvalue problems are fundamental for many engineering
and physics applications. For example, image processing,
compression, facial recognition, vibrational analysis of me-
chanical structures, and computing energy levels of electrons
in nanostructure materials can all be expressed as eigenvalue
problems. The solution of these problems, in particular for
nonsymmetric matrices that is of interest to this work, can be
accelerated substantially by first reducing the matrix at hand
to an upper Hessenberg matrix that has the same eigenval-
ues as the original one (see Section ). This can be done in
several ways, e.g., using Householder transformations, which
is a well established standard, through elementary orthogo-
nal transformations, or stabilized elementary transformations.
The latter approach, although having half the flops of the
Householder Hessenberg, has been used less in practice be-
cause of its memory-bound operations and the complexity
in stabilizing it. In this paper we revisit the stabilized ele-
mentary transformations approach in the context of multicore
CPUs and Xeon Phi coprocessors.

The reduction approach can be used for other two sided-
factorizations as well, e.g., in the tridiagonal reduction al-
gorithm for symmetric eigenvalue problems, or in the bidi-
agonal reduction for singular value decomposition problems.
Besides applications based on the nonsymmetric eigenvalue
problem, the Hessenberg reduction is applicable to other ar-
eas that exploit for example the fact that the powering of a
Hessenberg matrix and solving a Hessenberg system of equa-
tions is cheap compared to corresponding algorithms for gen-
eral matrices[22].

It is challenging to accelerate the two-sided factorizations on
new architectures because they are rich in Level 2 BLAS op-
erations, which are bandwidth limited and therefore do not
scale on multicore architectures and run only at a fraction of
the machine’s peak performance. There are techniques that
can replace Level 2 BLAS operations with Level 3 BLAS.
For example, in factorizations like LU, QR, and Cholesky, the
application of consecutive Level 2 BLAS operations that oc-



cur in the algorithms can be delayed and accumulated so that
at a later moment the accumulated transformation be applied
at once as a Level 3 BLAS (see LAPACK [1]). This approach
totally removes Level 2 BLAS from Cholesky, and reduces
its amount to O(n?) in LU, and QR, thus making it asymp-
totically insignificant compared to the total O(n?*) amount of
operations for these factorizations. The same technique can
be applied to the Hessenberg reduction based on orthogonal
transformations[6], but in contrast to the one-sided factoriza-
tions, it still leaves about 20% of the total number of oper-
ations as Level 2 BLAS. In practice, these 20% of Level 2
BLAS do not scale well on current architectures and dom-
inate the total execution time. Therefore, a very important
aspect in enabling the Hessenberg reduction using stabilized
elementary transformations to run efficiently on new archi-
tectures, is to what extend blocking can be applied, and what
is the number of flops remaining in Level 2 BLAS.

Besides the algorithmic and performance modeling aspects
related to the importance of reducing the Level 2 BLAS flops,
this work is also focused on the computational challenges of
developing high-performance routines for new architectures.
We describe a number of optimizations that lead to perfor-
mance as high as 95% of the theoretical/model peak for mul-
ticore CPUs and 80% of the model peak for Intel Xeon Phi
coprocessors. These numbers are indicative for a high level
of optimization achieved — note that the use of accelerators
is known to achieve smaller fraction of the peak compared
to non-accelerated systems, e.g., for the TopS00 HPL bench-
mark for GPU/MIC-based supercomputers this is about 60%
of the peak, and for LU on single coprocessor is about 70%
of the peak [4].

BACKGROUND
The eigenvalue problem is to find an eigenvector  and eigen-
value A that satisfy

Ar = Ax,

where A is a symmetric or nonsymmetric 7 X 1 matrix. When
the full eigenvalue decomposition is computed we have

A=XAX"1,

where A is a diagonal matrix of the eigenvalues and X is a
matrix of the eigenvectors of A.

In general, solving the eigenvalue problem can be split into
three main phases:

1. Reduction phase: orthogonal matrices () are applied on
both the left and the right side of A to reduce it to a con-
densed form matrix — hence these are called “two-sided
factorizations.” Note that the use of two-sided orthogonal
transformations guarantees that A has the same eigenval-
ues as the reduced matrix, and the eigenvectors of A can
be easily derived from those of the reduced matrix (step 3);

2. Solution phase: an eigenvalue solver further computes the
eigenpairs A and Z of the condensed form matrix;

3. Back transformation phase: if required, the eigenvectors
of A are computed by multiplying Z by the orthogonal ma-
trices used in the reduction phase.

In this paper we are interested in the nonsymmetric eigen-
value problem. Thus, the reduction phase reduces the non-
symmetric matrix A to an upper Hessenberg form,

H=QTAQ.

For the second phase, QR iteration is used to find the eigen-
pairs of the reduced Hessenberg matrix H by further reducing
it to (quasi) upper triangular Schur form, S = ET HE. Since
S is in a (quasi) upper triangular form, its eigenvalues are
on its diagonal and its eigenvectors Z can be easily derived.
Thus, A can be expressed as:

A=QHQ" =QESE"Q",

which reveals that the eigenvalues of A are those of S, and the
eigenvectors Z of S can be back-transformed to eigenvectors
of Aas X =QFE Z.

There are many ways to formulate mathematically and solve
these problems numerically, but in all cases, designing an ef-
ficient computation is challenging because of the nature of the
algorithms. In particular, the orthogonal transformations ap-
plied to the matrix are two-sided, i.e., transformations are ap-
plied on both the left and right side of the matrix. This creates
data dependencies that prevent the use of standard techniques
to increase the computational intensity of the computation,
such as blocking and look-ahead, which are used extensively
in the one-sided LU, QR, and Cholesky factorizations. Thus,
the reduction phase can take a large portion of the overall
time, and it is very important to identify its bottlenecks. The
classical approach (LAPACK algorithms dgehrd) to reduce
a matrix to Hessenberg form is to use the Householder reflec-
tors [24]. The computational complexity of this procedure is

3
about NT".

The reduction to Hessenberg, besides the use of orthogonal
transformations based on Householder reflectors, may also be
achieved in a stable manner by either stabilized elementary
matrices or elementary unitary matrices [18, 12]. This later
approach reduces the computational cost by half. In this pa-
per we study and focus on the reduction to Hessenberg using
elementary matrices. We revisit the algorithm as well as we
accelerate it by implementing a blocked version on both mul-
ticore CPUs and Xeon Phi coprocessors. We also revisited
the use of elementary matrices to reduce the general matrix
to tridiagonal form as described in [8].

Note that in this approach the transformations used in the re-
duction phase are not orthogonal anymore as explained for the
general case at the beginning, and therefore Q7 is replaced by
the inverse of the elementary transformation at hand, so that
the reduced and the original matrix still have the same eigen-
values (see next).

RELATED WORK

The earliest standard method for computing the eigenvalues
of a dense nonsymmetric matrix is based on the QR iteration
algorithm [7]. This schema is prohibitively expensive com-
pared to a two phases scheme that first reduces the matrix
to Hessenberg form (using either elementary or orthogonal
similarity transformations), and then uses a few QR iterations



to compute the eigenvalues of the reduced matrix. This two
phase approach using Householder reflectors [24] was imple-
mented in the standard EISPACK software [5]. Blocking was
introduced in LAPACK, where a product of Householder re-
flectors H; = I — rv;vl, i = 1,...,nb were grouped to-
gether using the so called compact WY transform [2, 20]:

H\Hy...Hy=I-VTVT,
where nb is the blocking size, V' = (v1]...
nb x nb upper triangular matrix.

|Unp), and T is

Alternatively to the Householder reflector approach, the use
of stabilized elementary matrices for the Hessenberg reduc-
tion has been well known [18]. Later [8] proposed a new
variant that reduce the general matrix further to tridiagonal
form. The main motivation was that iterating with a tridi-
agonal form is attractive and extremely beneficial for non
symmetric matrices. However, there was two major diffi-
culty here, first is that the QR iteration does not maintain the
tridiagonal form of a nonsymmetric matrix and second re-
ducing the nonsymmetric matrix to tridiagonal by similarity
transformations encounter stability and numerical issues. To
overcome the first issue, [19] proposed the LR iteration al-
gorithm which preserves the tridiagonal form. [8] proposed
some recovery techniques in his paper and later [12, 23] pro-
posed another variant that reduce the nonsymmetric matrix
to a similar banded form and [13] provided an error analysis
of its BHESS algorithm. Up to our knowledge, blocking to
the stabilized elementary reduction is introduced in this pa-
per, similar to the blocking for the one-sided LU, QR and
Cholesky factorizations (see Section ).

A hybrid Hessenberg reduction that uses both multicore
CPUs and GPUs was introduced first through the MAGMA
library [21]. The critical for the performance Level 2 BLAS
were offloaded for execution to the high-bandwidth GPU and
proper data mapping and task scheduling was applied to re-
duce CPU-to-GPU communications.

Recent algorithmic work on the two-sided factorizations has
been concentrated on two- (or more) stage approaches. In
contrast to the standard approach from LAPACK that uses a
“single stage”, the new ones first reduce the matrix to band
form, and second, to the final form, e.g., tridiagonal for sym-
metric matrices. One of the first uses of a two-step reduc-
tion occurred in the context of out-of-core solvers for gen-
eralized symmetric eigenvalue problems [9], where a multi-
stage method reduced a matrix to tridiagonal, bidiagonal, and
Hessenberg forms [17]. With this approach, it was possible
to recast the expensive memory-bound operations that occur
during the panel factorization into a compute-bound proce-
dure. Consequently, a framework called Successive Band Re-
ductions (SBR) was created [3]. A multi-stage approach has
also been applied to the Hessenberg reduction [16] as well
as the QZ algorithm [15] for the generalized non-symmetric
eigenvalue problem. These approaches were also developed
for hybrid GPU-CPU systems [11].

ALGORITHMIC ADVANCEMENTS

In this section we describe the Hessenberg reduction algo-
rithm that uses stabilized elementary matrices. A nonsym-
metric n X n matrix A is reduced to upper Hessenberg form
H by stabilized elementary matrices in n — 2 steps. At step
k the original matrix A; = A is reduced to Ay41 which is
in upper Hessenberg form in its first £ columns. Applying
elementary transformation matrix Ly from the right, and
then L,;il from the left to Ay introduces zeros below the
first subdiagonal of column k and generates Ay, by updat-
ing columns &k + 1, ..., n of Ag. The algorithm is performed
in-place where Ay 1 overwrites Ay and elementary transfor-
mation matrix Ly can be stored in Ay 1. The relationship
between Ay 1 and Ay, is expressed as,

A1 = k+1A/€Lk+l (D
The elementary transformation matrix Ly is defined as
L1 = (I + lg+1e41),

where lk+1 = [0, .y 0, lk+2, ...,ln]T with [; = Ai,k/Ak+1,k

fori = k+42,..,n,and e;; = [0,...,px11,0,...,0] with
Pr+1 = 1. The inverse of Ly is

LI:+1 =~ lk+1e;:+1)a
as one can easily check that indeed Lk+1Lk 41 = 1. Cer-

tain permutations can be introduced to stabilize the reduction,
leading to the following reformulation of equation (1):

Apgr = Li 1 Pyt A PogrLyg. 2)

Here Py is an elementary permutation matrix. For simplic-
ity of the explanation, we can ignore the permutation matrix
for the rest of the analysis. Namely, we can rewrite (1) as:

Appr = Ly AeLyry = Lty Ly Ay Ly Ly
= = lpregp ) —lpey) ... (I — lae3)
Ar(I +lze3) (I +1se3) ... (I + lp1€h 1)
= (I = lisrejq)( = lreg) ... (1 = l2e3)
AT+ 1) (T + 165 . (1 + lesrchn)
(3)
Since ef ly1 = 0, (I+lpe3)(I+1se3) ... (I+lksref) =

(I + Iz e5+1ze5+- - +Iky1€),,). Therefore, (3) becomes:

App1 = (I = lpgre )T —lreg) ... (I = lze3)
AL+ lges + lzes + - 4 lpy1e54 1)
= (I — lk+1€7;+1)(1 — lk(i;) e (I — 1263)
(A + Algez + Al3€§ + -+ Alk+1e,’;+1)
= = lks1ep41) —lrey) ... (I — lze5)B = R.
“)
Here B = (A 4 Alges + Alges + --- + Alpyiej,,) and
R = (I —lppe ) — lgep)...(I — lge3)B. Let
Ly.(x+1) be the product of the elementary transformations
L2L3 ‘e Lk'+1~ Then,

R = (I — l}g+1€7;+1)([ — lke,t) “e (I — lgeS)B



is written as,
B = (I + 1263)(1 + 1363) . (I + l;H_le,*CH)R
= (I + ZQGZ + l3€§ + -+ lk+1ez+1)R = LQ:(k+1)R.
)
Based on (4) and (5), we can derive the blocked version of the

reduction algorithm. Now the product of elementary transfor-
mation matrices, Lo.(x1) is partitioned as:

L2:(k+1) =LaL3... Lk+1
= (T4 lae) (I +13€5) ... (I + lpsref 1)
= (I + 1263 + l3€§ + -+ lk+162+1)

1 0 0 0 0O --- 0
0 1 0 0 0O --- 0
0 39 1 0 0O --- 0
0 Lo lus 0 0 - 0
0 lpr12 lky13 - 1 0 0
0 lpy22 lkt23 -+ lppor 1 0
() In.2 ln.,3 v lyk 0 -ee 1

Ly 0

B _Lgl I

If we partition B and R matrix as well we can rewrite equa-
tion (5) for block matrix as,

By Biz| _ |Lun 0 « Rii Rio
By1 B Ly 1 Ry1 Ra

If [B11B2;]7 is in upper Hessenberg form we can update
[Ri2R22]T as follows,

Li1Ry12 = Bia

and Bos = Ras + Lo Ryo

=> Rgo = By — L1 Ry
Block R;2 is computed using triangular solve and block Roo
is updated using matrix multiplication. After k steps the orig-

inal matrix A is replaced by matrix R where it is in upper
Hessenberg form in its first k£ column.

-1
AT AGTY Ly 0] AR AR | [Lu o
D R R ]

— Rll R12

Riz Rao

Here [R11R12]” is in upper Hessenberg form. To reduce the
rest of the matrix, Ag;' ! we proceed the same way as above
and repartition AR+L) a9 follows,

k+1 k+1 k+1
g
A Al A
A31 A32 A33

Then, in next k steps, [ASEH)ASDEH)]T is reduced to upper

Hessenberg form and the trailing matrix [AS% D A% i

updated in the same way as Ag; ! was updated after the first
k steps. When we worked on [Ag];H)AéZH)]T, the reduction

does not have any impact on [AgliH)AgiH)Agl* Y7, Then,
after 2k steps, A = A; is updated by Asj1; as follows,

1 1 1 k+1 k+1 k+1
A A A AT ApTh Ay
D B B T iy
A31 A32 ASS ASI A32 A33

A g
. Agkﬂ) Aé22k+1) Aé23k+1)
A:(aliﬂ) Ag22k+1) A§§k+1)
We have not updated [A%JFI)A%H)] yet — the application
of L&{FQ): (2k+1) from the left does not impact it, while the
application of Ly 2).(2x41) from the right has the following
effect:

Loy 0
2k+1 2k+1)] _ k+1 k+1 22
AGHY A )} = {A§2 vt )} X [L:ﬂ ]]
- [A%H)Lzz + A Lo AS‘&*”]
(6)
To summarize the description, we give the pseudo-code of

the reduction for the non-blocked and the blocked version in
Algorithm 1 and Algorithm 2, respectively.

Algorithm 1: Non-blocked algorithm of Hessenberg reduc-
tion using elementary transformation.

fork =1ton —2byldo
find max in A(k + 1 : n, k) and j is its index
Interchange rows k + 1 and j
Interchange columns k + 1 and j
Ak+2:n,k)=A(k+2:n,k)/A(k + 1, k) (xscal)
A(l:n,k+ 1)+ =A(1:n,k+2:n)A(k + 2 : n, k) (xgemv)
Ak+2:n,k+1:n)—=Ak+2:n,k)A(k+1,k+1:n)(xger

OPTIMIZATIONS AND PERFORMANCE ANALYSIS

We benchmark our implementations on an Intel multicore
system with two 8-core Intel Xeon E5-2670 (Sandy Bridge)
CPUs, running at 2.6 GHz. Each CPU has a 24 MB shared
L3 cache, and each core has a private 256 KB L2 and 64
KB L1 caches. The system is equipped with 52 GB of
memory. The theoretical peak in double precision is 20.8
Gflop/s per core, giving 332 Gflop/s in total. For the accel-
erators experiments, we used an Intel Xeon-Phi KNC 7120
coprocessor. It has 15.1 GB, runs at 1.23 GHz, and yields
a theoretical double precision peak of 1,208 Gflop/s. We
used the MPSS 2.1.5889-16 software stack, the icc com-
piler that comes with the composer_xe_2013_sp1.2.144 suite,
and BLAS implementation from MKL (Math Kernel Library)
11.01.02 [14].

The EISPACK library has routine elmhes which computes
the Hessenberg reduction using elementary transformations.
This routine is a serial, non-blocked implementation, and



Algorithm 2: Blocked algorithm of Hessenberg reduction us-
ing elementary transformation.

for k = 1ton — 2bynbdo

nb = min(nb,n — k — 1)

for i = 1 tonbby1ldo

if i > 1 then
Ak+1:k+i—1,k+1—1)=L(1:4—1,1:
i—1)TAk+1:k4+i—1,k4i— 1) (xtrsv)
Alk+i:nk+i—1)—=Ak+i:n,k:
k+i—2)A(k+1:k+i—1,k+i—1)(xgemv)

find maxin A(k +i:n,k 44— 1) and j is its index

Interchange rows k + ¢ & j, columns k& + ¢ & j
Ak+i+1:n,k+t—1)/ =A(k+1i,k+i— 1) (xscal)
L(i,i) =1
Li+1l:n—k—14,i)=Ak+i+1:nk+i—1)

Ak :n,k+i)+ = Ak :n,k+i+1:n)A(k+i+1:n,k+i—1)
(xgemv)

if £ > 1 then
A(l:k,k+1:k+nb)=A1:kk+1:n)L(1:n—k,1:nb)
(xgemm1)

A(k+1:k+nbk+nb:n)=L(1:nb,1:nb) *A(k+1:
k + nb, k + nb : n) (xtrsm)
Ak+nb+1:n,k+nb:n)—=Ak+nb+1:n,k:
k+nb—1)A(k+1:k+ nb, k+ nb: n) (xgemm2)

thus depends on the performance of the Level 2 BLAS op-
erations. We implemented a similar serial version since we
realized that the EISPACK version unrolls the BLAS oper-
ations and this might slow the code. Our serial version is
about 3 — 5x faster, as shown in Figure 1. This is due to
the fact that we use optimized xgemv and xger kernels from
the MKL library. In order to evaluate its performance in
both serial and parallel, we developed a parallel nonblocked
version as described in Algorithm 1. We illustrate in Fig-
ure 1 a comparison of the performance of the EISPACK rou-
tine (EISPACK_Elementary_nonblocked_CPU) and our non-
blocked version (MAGMA Elementary_nonblocked CPU).
As expected, both performances are limited by the perfor-
mance of the Level 2 BLAS operations. Even if our non-
blocked implementation is parallel (here using 16 threads),
we can observes only around 4x speedup. This is due
to the fact that the parallel Level 2 BLAS performance is
limited by the memory bandwith. As consequence, it is
clear that further significant improvements can be obtained
only through algorithmic redesign, as in the blocked ver-
sion of the algorithm where we replace as many as possible
Level 2 BLAS operations (xger) by Level 3 BLAS (xtrmm,
xtrsm, xgemm). The performance of dgemm on our test-
ing machine is around 20x higher than the performance of
dger, and since around 60% of the flops are in xgemm,
we expect a maximum of 2.5x speedup in double preci-
sion over the nonblocked version. Figure 1 shows the per-
formance obtained from the parallel blocked implementation
(MAGMA _Elementary _blocked_CPU), as described in Algo-
rithm 2. Our blocking factor n; is equal to 64. The gain
obtained here is around 2.3 x, which corresponds to our ex-
pectation. However, even though 60% of the flops are now in
Level 3 BLAS, the overall performance in Gflop/s obtained
(around 35 Gflop/s) remains low compared to the capability
of the machine (> 300 Gflop/s).

Performance Bound Analysis

In order to evaluate if the obtained performance results are ac-
ceptable and to analyse if there is an opportunity to more im-
provement as well as to compare the cost of this approach to
the classical Householder technique, we conducted a compu-
tational analysis of the reduction to Hessenberg using either
the elementary or the Householder transformations. For sim-
plicity we show the cost of double precision implementation
but it is easily to derive the other precision.

16
EISPACK_Elementary_nonblocked_CPU(serial)

== MAGMA_Elementary_nonblocked_CPU(serial)
«@=MAGMA_Elementary_nonblocked_CPU(16 threads)
=4=MAGMA_Elementary_blocked_CPU(16 threads)

14

12

log2(Time)
ey

0 4000 6000 8000 10000 12000 14000 16000 18000

Matrix Size

Figure 1. Performance of Hessenberg reduction using elementary trans-
formation on CPU

Similar to the one-sided factorizations (Cholesky, LU, QR),
the two-sided reduction to Hessenberg (either using House-
holder or Elementary) is split into a panel factorization and a
trailing matrix update. Unlike the one-sided factorizations,
the panel factorization requires computing Level 2 BLAS
matrix-vector product (xgemv) involving the entire trailing
matrix. This requires loading the entire trailing matrix into
memory incurring a significant amount of memory bound op-
erations. This creates data dependencies and produces arti-
ficial synchronization points between the panel factorization
and the trailing submatrix update steps that prevent the use of
standard techniques to increase the computational intensity of
the computation, such as look-ahead, which are used exten-
sively in the one-sided LU, QR, and Cholesky factorizations.
Let us compute the cost of the algorithm. The blocked imple-
mentation of the reduction proceeds by steps of size n;, where
the cost of each step consists of the cost of the panel and the
cost of the update.

e The panel is of size n; columns. The factorization of every
column involves one matrix-vector product (Xgemv) with
the trailing matrix that constitutes 95% of its operations.
Thus the cost of a panel is n, x 2I2 + O(n). Note that
l is the size of the matrix at a step ¢. For simplicity, we
omit ©(n) and round the cost of the panel by the cost of
the matrix-vector product.

e The update of the trailing matrix consists of applying either
the Householder reflectors or the Elementary matrices gen-
erated during the panel factorization to the trailing matrix
from both the left and the right side.

For Householder: The update follows three steps, first and
second are the application from the right and third is the
application from left:



1- Al:n’iJ’,nb:n — Al:n’iJ’,nb:n —Y x VT using dgemm,
2- Atsiittiitng < Aliitiitn, — Y14 x VT using dtrmm,
3- Ai:n,i+nb:n — Ai:717i+nb:n(lfv X TTVT) using dlarfb.
Its cost is 2ny kn + ny 2 + 4ny k (k + ny) flops where
k =mn — 1 — ny is the size of the trailing matrix at a step .
Note that V, T', and Y are generated by the panel phase.
For Elementary: The update follows three steps:

I- Aviitiiidn, < Aviitin X Aimitiitn, Using
dgemm,

2- Aittitngitngn A Ai_-&-llzi-i-nb,i-&-l:i-i-nb X
Ai+1:i+nb,i+nb:n USing dtrsm,

3- Ai+nb:71,i+nb:n — Ai+nb:n,i+nb:n - Ai+nb:n,i+1:i+nb X
Ai+1:i+nb,i+nb:n using dgemm

Its cost is 2np i (n — i) +ni k + 2ny, k2 flops.

For all steps (n/ny,), the trailing matrix size varies from n to
np by steps of ny, where [ varies from n to n, and k varies
from (n — ny) to 2ny. Thus the total cost for the n/ny steps
is:

For Householder:

n—ng n—mng

n/ng

ny n/nb ng,
:2nb Z l2+2nbn Z k+nb Z 1'2+4nbn Z k(k+nb
np

ng 2nyp 2nyp
2.3 3 1,3 4,3
= 3Mdgemv T Mlevel3 T 57 evel3 T 370 evel 3

= 1—30713 flops.

(7

For Elementary:

n—nyg n—nyg n—nyg
n/nb ng

=2n, > 2+2n, Y i(n—4)+nd > k+2mn 22 k?
ney ny

np ngy
— 2,3 1.3 2 2.3
- Sndgemv + 3" evel 3 + @(n ) + 3" evel 3

= %nS flops.
(®)

The maximum performance P, that the reduction using
elementary transformations can achieve is

number of operations

Pmaac = . A
minimum time tmin

nS

w|ut

tmm(gn?’ flops in gemv) + tmm(%n3 flops in Level3)

5,3
_ 3"
- 2.3 1 3.3 1
2N° * 55— N7 *
3 Pgemv + 3 Pmel,Zi

5 * PLE’U&Z3 * Pgemv 5
~

of dgemv. We shows in Figure 2 the performance of the
dgemv routine as well as the theoretical upper bound as de-
scribed above and the performance of our Magma implemen-
tation of the Hessenberg reduction on CPU.

Optimization and design for accelerators

It is clear that the performance obtained from our CPU im-
plementation reaches close to its theoretical bound and thus
we believe that there is no more room for improvement. For
that we decided to take advantage of accelerators that provide
higher range of dgemv performance and thus we can expect
that the reduction can be accelerated. For the Intel Xeon Phi
the dgemv peak performance is around 39 Gflop/s while the
dgemm is more than 800 Gflop/s. Since the dgemv is more
than twice faster on Xeon-Phi we can expect more than 2Xx
speedup of the reduction on the coprocessor. To verify that,
we implemented the reduction to Hessenberg algorithm us-
ing Elementary transformation on the Xeon-Phi coprocessor.
The code on high level is the same, using the MAGMA MIC
APIs [10] to offload the computation to the Xeon Phi. Only
certain kernels, like the swapping, had to be specifically de-
signed and optimized. For the other kernels we used MKL,
)which is highly optimized. We depict in Figure 3 the results in
Gflop/s that our implementation achieves, its theoretical up-
per bound, as well as the performance of dgemv. Similarly
our implementation reaches asymptotically its upper bound.
The gap observed for the Xeon Phi is larger than the one ob-
served for CPU. This is due to hierarchical cache effect and to
the fact that the cost of some Level 1 operation is considered
marginal on CPU while it is more expensive on Xeon Phi
introducing this difference. We implemented an optimized
xswap kernel since we need to swap both row and column at
every step. In our parallel swap implementation we had to de-
sign our parallelism to force each set of thread to read/write
data aligned with cache for optimal performance. This was
useful for column swapping since data is coalescent in mem-
ory while for row swapping we had to think differently. For
the row swapping we only swap the rows within the current
panel and delay the remaining till the end of the panel fac-
torization when we swap the remaining rows in parallel. We
split the thread pool over the data so that every set of threads
tries to read/write as much as possible data within the same
bank of memory. Also another improvement we had to im-
plement for the Xeon Phi, it is not always advantageous to use
all the threads i.e 240 threads for Level 1 BLAS because of
the overhead of OMP thread management as OMP puts active
threads in sleep mode after certain period and wakes them up
when necessary. Since the swap function is needed for every
step (n times) this overhead become unaffordable. To reduce

= R 5 * Pgemo when  Preveis 2> Pgemthis overhead we have changed the number of threads dynam-

2% PLevelS + 3Pgemv 2
Since the Level 3 BLAS operations are considered as com-
pute bound while the Level 2 are considered as memory
bound the gap in performance between these level is large
enough such a way that allow us to consider that Prcqye13 >>
Pyemo In our testing machine, the maximum performance of
dgemv is about 14 Gflop/s while the performance of Level 3
BLAS is more than 280 Gflop/s. As consequence, the upper
bound limit of the performance that the reduction to band al-
gorithm can reach is always less than 2.5 the performance

ically based on the number of elements needed to be swapped.

Figure 4 shows the performance of the reduction on CPUs
vs. Xeon Phi. As analyzed, the reduction on the Xeon-Phi
is about 2.5x faster than on the CPUs. The Xeon-Phi im-
plementation is native (uses only the Phi) and thus the CPU
is idle or can performs other work. We have implemented
a hybrid version that uses both CPU and Phi. Since the re-
duction is bound by the dgemv performance and also since
both the dgemv and the dgemm performance achieve higher
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Figure 3. Performance bound for Intel Xeon Phi

ratio on the Phi, the hybrid implementation was around 5%
slower and consumed more resources. For the hybrid version
the dgemv and the dgemm are performed on the Phi, other-
wise the performance drops down more than 15%. So, only
the Level 1 BLAS operations are computed on the CPU since
the CPU can handle better Level 1 routines. However, the
cost of copying a vector back and forth between the CPU and
the Phi at every step is negating the gain obtained and slows
down the overall performance by 5%.

EXPERIMENT RESULTS

We performed a set of experiments to compare the perfor-
mance of our proposed Hessenberg reduction using stabilized
elementary transformations with the classical reduction that
uses Householder transformations on both CPUs and Xeon-
Phi. For the comparison we use the dgehrd routine from
MKL for CPUs, as well as for the Phi in native mode (us-
ing only the Xeon-Phi). We illustrate in Figure 5 the re-
quired elapsed time in seconds to perform either the classi-
cal dgehrd or our MAGMA _Elementary on both CPU and
Phi. First of all, we should mention that both implemen-
tations (Magma_Elementary or MKL_Householder) are op-
timized and reach their theoretical upper bounds on either
CPUs or Phi. As expected, our proposed Elementary reduc-
tion implementation is between 20% to 30% faster than the

Figure 4. Accelerating the Hessenberg reduction on Xeon Phi

Householder one on either the CPU or Phi architecture. Ac-
cording to equations (7) and (8), the Elementary transfor-
mations reduce the amount of Level 3 BLAS operations by
62% while keeping the same amount of Level 2 operations.
This results in reducing the overall cost of the Hessenberg
reduction by 20%. The other optimizations that we have im-
plemented, such as finding the pivot and directly scaling the
corresponding vector at the same time as well as the opti-
mized parallel row/column swapping, gave us an additional
5% to 10% improvement. Finally, our proposed Elementary
implementation showed fast and efficient reduction to Hes-
senberg form and was accelerated by more than 2.3x by the
use of the Xeon-Phi coprocessors.
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Figure 5. Performance comparison of CPUs vs. Xeon Phi

CONCLUSIONS AND FUTURE WORK

We derived for a first time a blocked algorithm for the re-
duction to upper Hessenberg form using stabilized elemen-
tary transformations and developed highly optimized imple-
mentations for multicore CPUs and Xeon Phi coprocessors.
The blocking significantly imroved the performance of the
approach, and even made it 20 to 30% higher than the stan-
dard, Householder-based approach. Still, both approaches are
memory bound as they feature the same amount of flops in



Level 2 BLAS operations. We designed a model for the theo-
retical peak for both approaches that clearly shows their limi-
tations, and also illustrates how optimal our implementations
are. In particular, we reach up to 95% of the peak on multi-
core CPUs and up to about 80% on the Xeon Phi architecture.
Our future work will explore the feasibility of using random
butterfly transformations to avoid the need for pivoting, while
still getting acceptable stability. Further, we will study the re-
duction of nonsymmetric matrices to band or tridiagonal form
using elementary transformation.
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