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ABSTRACT
We present a scalable implementation of the Linearized Aug-
mented Plane Wave method for distributed memory sys-
tems, which relies on an efficient distributed, block-cyclic
setup of the Hamiltonian and overlap matrices and allows
us to turn around highly accurate 1000+ atom all-electron
quantum materials simulations on clusters with a few hun-
dred nodes. The implementation runs efficiently on stan-
dard multi-core CPU nodes, as well as hybrid CPU-GPU
nodes. The key for the latter is a novel algorithm to solve
the generalized eigenvalue problem for dense, complex Her-
mitian matrices on distributed hybrid CPU-GPU systems.
Performance tests for Li-intercalated CoO2 supercells con-
taining 1501 atoms demonstrate that high-accuracy, trans-
ferable quantum simulations can now be used in throughput
materials search problems. While our application can bene-
fit and get scalable performance through CPU-only libraries
like ScaLAPACK or ELPA2, our new hybrid solver enables
the efficient use of GPUs and shows that a hybrid CPU-GPU
architecture scales to a desired performance using substan-
tially fewer cluster nodes, and notably, is considerably more
energy efficient than the traditional multi-core CPU only
systems for such complex applications.

1. INTRODUCTION
Quantum simulations have reached a level of maturity and

predictiveness that makes them useful as inexpensive screen-
ing tools in a materials design process [6, 35]. In such a com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

putation, ab initio electronic structure methods are applied
to thousands or tens of thousands of inorganic compounds,
in order to compute materials properties targeted by the
design process. The present approach is to run the ab ini-
tio code on all known inorganic materials compounds and
store away computed properties in a database for later use
in screening.

A much more flexible approach would be to use a materials
database in conjunction with a powerful suite of first princi-
ples electronic structure codes that can be run dynamically
during the screening process in order to compute, on the fly,
observable quantities that are specific to the design goals of
a particular project. Such an idea would have been unrealis-
tic a few years ago. But with continued exponential perfor-
mance improvements of supercomputers and computational
methods, this will be feasible in the near future as computers
reach exascale performance. Therefore, it is worth preparing
implementations of electronic structure methods for such a
proposition of materials design.

The more accurate and canonically applicable an elec-
tronic structure method is across many different classes of
materials, the more appropriate it will be for materials de-
sign. Evidently, since the computation must be repeated
thousands or tens of thousands of times, the methods must
be efficient and individual calculations must be executed
on the smallest possible resource in a reasonable amount
of time. Furthermore, to be a flexible design tool, the meth-
ods must be applicable to large enough systems. Due to the
nearsightedness property of electronic matter [28, 38], the
size of systems treated in accurate electronic structure com-
putation will have to be ”only” on the order of 1000 atoms
– we will refer to this here as the ∼1000 atom problem.

Modern electronic structure methods rely on the Kohn-
Sham approach [29] to density functional theory (DFT) [24],
in which the exponential complexity of the many-body Schrödinger
equation is reduced to a computational traceable problem
with polynomial complexity. They require the solution of
the Kohn-Sham equation:



[
1

2
∇2 + Vs(r)

]
ψi(r) = εiψi(r), (1)

where the complex valued solutions ψi(r) describe auxiliary
single electron orbitals. The effective potential:

Vs(r) = Vext(r) +

∫
ρs(r

′)

|r− r′|d
3r′ + VXC [ρs(r)] (r), (2)

consists of an external potential Vext that includes the ionic
potential of the nuclei, the classical coulomb contribution

that is also called the Hartree potential VH(r) =
∫ ρs(r′)
|r−r′|d

3r′,

and the (non-classical) exchange and correlation contribu-
tions of all other electrons in the systems VXC. ρs =

∑
i∈occ. |ψi|

2

is the electron density determined from the modulus square
of all occupied orbitals. The charge density and the electron
potential must be iterated to convergence, thus the Kohn-
Sham equations must be solved many times. This is called
the self-consistent field (SCF) approach.

Accuracy and computational complexity in quantum sim-
ulations is determined primarily by the levels of approxima-
tions used for the Vext +VH and VXC, respectively. A hierar-
chy of approximations, called Jacob’s ladder [37], exists for
the latter. The simplest, and by now most established, ap-
proximations to VXC depend on the electron density (Local
Density Approximation – LDA) and its gradient (General-
ized Gradient Approximation – GGA). More accurate mod-
els, such as meta-GGA, hybrid functionals that use Hartree-
Fock exchange or self-interaction corrections, and methods
based on perturbation theory such as RPA, MP2, and GW,
although highly promising, are still in a research state, and
their usability across many different compounds is not yet
well established. In contrast, LDA and GGA based simula-
tions can be applied to all known inorganic compounds, their
limitations are well understood, and are thus applicable for
high-throughput screening of materials.

Reliable solutions to the Kohn-Sham equations within the
LDA and GGA class of approximations rely on dense rep-
resentations of the Kohn-Sham Hamiltonian operator Hs =
− 1

2
∇2 +Vs that turns the solution of the Kohn-Sham equa-

tion into a generalized eigenvalue problem. Approximations
to Vext + VH are often used to reduce the size of the sub-
space over which the eigenvalue problem must be solved.
Today’s most widely used electronic structure packages use
element dependent pseudo potentials [43, 10] that adsorb
the core electrons, leaving only the valence electrons and
a ”soft” potential in the Kohn-Sham equations that can be
efficiently treated with a simple plane wave basis set. The
gain in computational efficiency of such an approximation is
tremendous: the relevant subspace that has to be considered
in a 1000-atom calculation has dimensions of only 5,000 to
10,000, and a variety of techniques have been developed to
solve this problem efficiently.

However, despite a vast amount of effort spent on develop-
ing transferable pseudo potentials, their use and validation
remains an art that requires experience and a generally ac-
cepted standard still has yet to emerge. Thus, all-electron
methods that do not approximate Vext +VH remain the only
alternative for truly canonical simulations. But since these
methods operate on a much larger Hilbert space, they are
computationally expensive and thus have so far not been
used for materials screening.

In the present contribution we give a novel implemen-
tation of the Linearized Augmented Plane Wave (LAPW)
method [3, 40, 18] for distributed hybrid multi-core archi-
tectures. LAPW is an all-electron method that does not
approximate Vext +VH, and provides the most accurate and
robust solution to the Kohn-Sham equations that is appli-
cable to all classes of materials known today – it is used
as a gold standard against which other electronic structure
methods are calibrated [31]. The implementation we present
in section 3 allows us to solve the ∼1000 atom scale prob-
lem with good turnaround time on a few hundred nodes
with commodity multicore CPU and hybrid CPU-GPU ar-
chitectures alike. Unlike previous implementations, it does
not rely solely on k-point parallelization, but uses an effi-
cient distributed setup of Hamiltonian and overlap matrices,
and relies on effective distributed memory eigensolvers. For
standard multicore CPU systems, the implementation uses
ScaLAPACK and the ELPA libraries, where the best per-
formance is achieved with the latter. For hybrid CPU-GPU
architectures we have implemented a new distributed mem-
ory two-stage solver for the generalized eigenvalue problem
of dense, complex Hermitian matrices, which we will discuss
in section 4. Performance results are given for both, dis-
tributed multi-core and hybrid CPU-GPU architectures in
section 5.

2. RELATED WORK
The LAPW implementation is available in several pack-

ages - WIEN2k (www.wien2k.at), FLEUR (www.flapw.de),
Exciting (exciting-code.org), and Elk (elk.sourceforge.net) -
- that are typically applied to smaller systems with a few
tens of atoms due to their computational cost. At this
scale the method can be parallelized over the k-points in
the Brillouin zone integration, and the eigenvalue problems
at each k-point are solved with a shared memory model.
The present work represents a paradigm shift in scale that
requires a fundamentally different implementation strategy.
At 1000 atoms scale, the Brillouin zone integral is reduced
to an individual point and the memory requirements for the
eigenvalue problem cannot be economically accommodated
on individual nodes – hence our focus is on a distributed
memory implementation. The implementation we give here
is open source and can be incorporated into the above men-
tioned packages – work along these lines is already under
way to provide support for ∼1000 atom scale LAPW calcu-
lations in a future release of the Exciting code.

A distributed eigensolver for the type of eigenvalue prob-
lems considered here has long been available within the ScaLA-
PACK package [8]. A more efficient implementation has
been given by [5, 34] and relies on a similar two-stage al-
gorithm that we use here. Both ScaLAPACK and ELPA
libraries were used for the CPU-only benchmarks of our im-
plementation of the LAPW method on distributed multi-
core architecture.

An implementation for the eigensolvers used in electronic
structure codes on a hybrid CPU-GPU system [23] is avail-
able within the MAGMA library. This has been generalized
to systems that have multiple GPUs on a node [22] with large
shared random access memory. The present 1,000 atom scale
computations would require nodes with a terabyte of RAM
or more. Hence, the present contribution will complement
this previous work, enabling large quantum simulations on
a distributed cluster of commodity CPU-GPU nodes with



typical memory size of 32GB.

3. LAPW METHOD WITH DISTRIBUTED
MEMORY

The gist of the LAPW method consists of basis functions
that follow a quasi analytic construction, similar to the plane
waves in the pseudopotential methods, and that are efficient
in reproducing the strong variations of the wave-functions
near the nuclei. This is achieved by partitioning the space
into non-overlapping spheres centered around the atoms and
realizing the strongly varying potential is nearly spherically
symmetric near the origin. Between the spheres the poten-
tial varies slowly. Thus, the Kohn-Sham orbitals can be
expanded in plane waves in the interstitial regions and in
atomic-like functions u`ν(r)Y`m(r̂) inside the spheres, where
the radial components u`ν(r) are orthogonalized n-th order
(with zero-order being a function itself) energy derivatives
of the radial Schrödinger equation solutions[3]:

u`ν(r) ≡ ∂nν

∂nνE
u`(r, E)

∣∣∣
E=Eν

, (3)

∫ RMT

0

u`ν(r)u`′ν′(r)r
2dr = δ``′δνν′ . (4)

Hence, the LAPW basis functions are given by:

ϕG+k(r) =


∑
L

Oα∑̀
ν=1

Ak
αLν(G)uα`ν(r)YL(r̂) r ∈ MTα

1√
Ω
ei(G+k)r r ∈ I,

(5)
where L ≡ {`,m} denotes the angular momentum and az-

imuthal quantum numbers and
∑
L ≡

∑`max
`=0

∑`
m=−`. The

matching coefficients Ak
αLν(G) are chosen to ensure continu-

ity of the basis functions (and if possible of their derivatives)
on the boundaries of the sphere α. The overlap matrix is
given by:

Ok
GG′ = 〈ϕG+k|ϕG′+k〉

=
∑
αLν

Ak∗
αLν(G)Ak

αLν(G′) + Θ(G−G′), (6)

where Θ(G) is a Fourier transform of the unit step function1.
For an efficient high-performance implementation of these

methods, it is important to note that the contribution of the
overlap matrix inside the spherical regions is nothing but a
multiplication of two matching coefficient arrays with the
summation over a composite index {α,L, ν}. Similarly, the
Hamiltonian matrix can be written in a form that involves
matrix-matrix multiplications:

Hk
GG′ = 〈ϕG+k|Ĥ|ϕG′+k〉

=
∑
αLν

Ak∗
αLν(G)Bk

αLν(G′)

+
1

2
(G + k)(G′ + k)Θ(G−G′) + Ṽs(G−G′), (7)

where Ṽs(G) is a Fourier transform of the effective Kohn-
Sham potential multiplied by the unit step function, and

1unit step function Θ(r) is defined to be 0 in the muffin-tin
region and 1 in the interstitial

array Bk
αLν(G) can be considered as a result of the appli-

cation of the muffin-tin Hamiltonian
∑
L h

α
L(r)RL(r̂) to the

array of matching coefficients:

Bk
αLν(G) =

∑
L3
L2ν2

Ak
αL2ν2(G)hα`νL3`2ν2〈YL|RL3 |YL2〉

+
1

2

∑
ν2

Ak
αLν2(G)uα`ν(Rα)u′α`ν2(Rα)R2

α. (8)

The second part of Eq. (8) is a surface contribution to ki-
netic energy2 and

hα`νL3`2ν2 =

∫ RαMT

0

uα`ν(r)hαL3
(r)uα`2ν2(r)r2dr (9)

〈YL|RL3 |YL2〉 =

∫∫
Y ∗L (θ, φ)RL3(θ, φ)YL2(θ, φ) sin θdφdθ

(10)
are, respectively, the radial Hamiltonian integrals and com-
plex Gaunt coefficients.

For ∼1000 atom problems, the resulting generalized eigen-
value problem must be solved for a dense, complex Hermi-
tian matrix with dimension of order 105. Since in a materials
design problem these simulations will have to run primar-
ily on large parallel supercomputers that cannot hold these
matrices on individual nodes, the implementation must be
designed for distributed memory architectures. Thus the un-
derlying arrays must be partitioned in such a way that the
above construction can be executed with minimum commu-
nication and results in Hamiltonian and overlap matrices
that have the desired block-cyclic data distribution of the
distributed eigensolver.

The matrix multiplies in equations (6) and (7) imply a
block-cyclic distribution for the array Ak

αLν(G) of matching
coefficients, where G-vector and composite {α,L, ν} indices
are distributed respectively, over the columns and rows of
a 2D MPI grid. This distribution, however, is very ineffi-
cient for the computation of the auxiliary array Bk

αLν(G)
(Eq. 8); the reason being, that in order to compute a lo-
cal panel of B-coefficients, the sum over {L2, ν2} indices
is needed which may run out of scope of the current MPI
rank. This is a well known problem when, for some opera-
tions (e.g., FFT used in pseudopotential methods), it would
be better to have the entire array on a node, whereas for
others the data needs to be distributed. We solve this prob-
lem, as illustrated in Fig. (1), by replicating A-coefficients
as slices of whole vectors created on the row ranks of the
MPI grid. The memory overhead that we have to pay for
such data replication is comparable to the size of the local
panel (typically ∼1.5 Gb for a 10K×10K complex matrix
panel). The slices of A are defined for the entire composite
index {α,L, ν} and for only ∼ 1/NMPI

row fraction of G-vectors
assigned to a column of MPI ranks. The corresponding slice
of B-coefficients is computed locally using Eq. (8) before
scattering B back to the panels of the block-cyclic distribu-
tion. The second sliced panel data storage, which we have
introduced in the LAPW formalism here, may be useful in
iterative subspace diagonalization methods as well, where

2surface contribution to kinetic energy can be derived

form the Green’s identity
∫
S
f(∇g)d~S =

∫
V

(
f(∇2g) +

(∇f)(∇g)
)
dV
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Figure 1: (color online) ‘Panel’ and ‘slice’ storage of the data. For parallel linear algebra operations, arrays
must be distributed in a block-cyclic fashion over a 2D grid of MPI ranks. In order to perform a local operation
on a whole vector, the slices of vectors are gathered from panels or created locally on the corresponding row
ranks of the MPI grid. To perform a distributed operation with PBLAS or ScaLAPACK the vectors are
shuffled to the ’panel’ storage.

current hybrid CPU-GPU implementations use a data lay-
out that constantly requires data exchange between ”band”
and ”G-vector” partitioning [26] and rely on expensive MPI
all-to-all communications. In our proposed scheme NMPI

col

chunks of the data are redistributed between NMPI
row ranks

which reduces the communication cost by a factor of NMPI
col .

Algorithm 1 Distributed Hamiltonian and overlap matrix
setup

1: precompute Hamiltonian radial integrals and plane-wave
coefficients of the interstitial potential

2: create local panels of matching coefficients Ak
αLν(G)

with {α,L, ν} index distributed over rows and G-vector
index distributed over columns of the MPI grid.

3: create local slices of matching coefficients Ak
αLν(G) with

a full {α,L, ν} index and a G-vector index which is dis-
tributed in a block-cyclic manner over the columns and
additionally split over the rows of the MPI grid.

4: create slice of matrix Bk
αLν(G) using the slice of

Ak
αLν(G) matrix

5: change to a ’panel’ storage for B-matrix
6: compute muffin-tin contribution to the overlap matrix

using pzgemm: A∗ ×A→ Ok
GG′

7: compute muffin-tin contribution to the Hamiltonian ma-
trix using pzgemm: A∗ ×B→ Hk

GG′

8: add interstitial contribution to the overlap and Hamil-
tonian matrices

The general procedure of setting up the Hamiltonian and
overlap matrices is described in Algorithm 1. When this is
done the generalized eigen-value problem:∑

G′

Hk
GG′CikG′ = εik

∑
G

Ok
GG′CikG′ , (11)

is solved and the lowest eigenvectors are found. It is pos-
sible to use the iterative diagonalization technique and re-
duce the computational cost [9], however the ‘safe default’
of major LAPW community codes is to solve the general-
ized eigen-value problem with the brute force dense matrix
diagonalization.

After computing the eigenvectors, Kohn-Sham wave func-
tions are created. We use the following wave function rep-

resentation:

ψi(r) =


∑
Lν

F ikαLνu
α
`ν(r)YL(r̂) r ∈ MTα∑

G

1√
Ω
ei(G+k)rCikG r ∈ I,

(12)

where CikG are the eigenvectors of the generalized eigenvalue
problem and the muffin-tin expansion coefficients F ikαLν are
obtained from the matrix-matrix multiplication between the
eigenvectors and matching coefficients:

F ikαLν =
∑
G

Ak
αLν(G)CikG . (13)

The wave functions (represented by matrices F and C) are
initially distributed in the block-cyclic manner which is not
convenient for the charge density construction. Great sim-
plification is achieved by switching to the ’slice’ storage for
the wave functions. In that case each MPI rank in the grid
gets the subset of the whole wave function and computes its
contribution to the charge density. At the end, the charge
density is reduced over all MPI ranks and the full charge
density is obtained.

The last step of the DFT self-consistency loop consists of
generating new Hartree and exchange-correlation potentials.
These operations are trivially parallelizable and will not be
discussed in the context of the present work.

4. SOLUTION OF THE EIGENVALUE PROB-
LEM ON DISTRIBUTED HYBRID CPU-
GPU ARCHITECTURES

Solving the generalized Hermitian-definite eigenvalue prob-
lem is one of the main bottlenecks that dominates many
electronic structure computations [27, 4, 40], and in partic-
ular prevents from scaling LAPW-based methods to larger
numbers of atoms.

Stated more generically, the need of many applications
motivates the development of modern distributed eigensolvers
for generalized Hermitian-definite problems of the form:

Ax = λBx, (14)

where A is a Hermitian matrix and B is Hermitian positive
definite. Solving (14) requires four phases:



1. Generalized to standard eigenvalue transforma-
tion phase: the matrix B is decomposed using a
Cholesky factorization into B = LLH , where H de-
notes conjugate-transpose. The resulting L factors are
used to transform (14) to a standard Hermitian eigen-
problem is Asz = λz, where As = L−1AL−H . Af-
ter solving the standard Hermitian eigenproblem, the
eigenvectors X of the generalized problem (14) are
computed by back-solving with the Cholesky factor,
X = L−HZ. The technique to solve the standard
Hermitian (symmetric) eigenproblem Asz = λz, i.e.,
finding its eigenvalues Λ and eigenvectors Z so that
As = ZΛZH , and follows the three phases described
below [17, 2, 36];

2. Reduction phase: orthogonal matrices Q are applied
on both the left and the right side ofAs to reduce it to a
tridiagonal form matrix T = QTAsQ – hence, these are
called “two-sided factorizations.” Note that the use of
two-sided orthogonal transformations guarantees that
As has the same eigenvalues as the reduced matrix T ,
and the eigenvectors of As can be easily derived from
those of the reduced matrix (step 4);

3. Solution phase: an eigenvalue solver such as the di-
vide and conquer (D&C), the multiple relatively robust
representations (MRRR), the bisection algorithm, or
the QR iteration method computes the eigenvalues Λ
and eigenvectors E of the tridiagonal matrix T , so that
T = EΛEH , yielding Λ to be the eigenvalues of As;

4. Back transformation phase: if required, the eigen-
vectors Z of As are computed by multiplying E by
the orthogonal matrices Q used in the reduction phase
Z = QE.

The classical approach, implemented in LAPACK, follows
the procedure above. The most time consuming is the re-
duction phase [17]. The reduction algorithm is blocking – a
current block of columns (panel) is factored and the trans-
formations used in the panel factorization are accumulated
and applied at once to the trailing matrix as Level 3 BLAS.
The panel factorization requires computing Level 2 BLAS
symmetric matrix-vector products with the entire trailing
matrix, and thus is a slow, memory bound computation.
Furthermore, the approach features data dependencies and
artificial synchronization points between the panel factoriza-
tion and the trailing submatrix update steps that prevent
the use of standard techniques to increase the intensity of
the computation (e.g., look-ahead), where the slow panel
factorizations are computed on the CPUs and overlapped
with trailing matrix updates on the GPUs (used extensively
in the one-sided LU, QR, and Cholesky factorizations). As a
result, the algorithm follows an expensive fork-and-join par-
allel model, preventing overlap between the CPU and the
GPU computation, as well as hiding CPU-GPU communi-
cation costs by overlapping them with GPU computations.
Peak performance model: The reduction to tridiagonal
proceeds by computing a Hermitian matrix-vector product
(zhemv: 8l2 flop, where l is the size of the Householder reflec-
tor at step i) and an update every nb steps (zher2k: 8nbk

2

flop, where k is the size of the trailing matrix at a step i).

For all the steps ( n
nb

steps), the total flop count is:

flop = 8

n−1∑
l=1

l2 + 8nb

(n−nb)/nb∑
k=0

k2 ≈ 8

3
n3 +

8

3
n3, (15)

where the first 8/3 n3 flops are in zhemv and the second
8/3 n3 are in zher2k. The peak performance Ppeak can be
expressed as:

Ppeak =
flop

t
=

16/3 n3

tzhemv + tzher2k

=
2

P−1
zhemv + P−1

zher2k

=
2Pzher2kPzhemv

Pzher2k + Pzhemv

≤ 2Pzher2kPzhemv

Pzher2k
= 2Pzhemv,

(16)

where t is the time for the tridiagonalization routine, and
tzhemv and tzher2k are the times spent in zhemv and zher2k,
respectively. The zhemv routine (pzhemv for distributed) is
memory bounded, hence its performance Pzhemv is limited
by the memory bandwidth. Thus, Eq. (16) guarantees a low
performance behavior of the classical tridiagonal reduction
algorithm.

Recent research has been concentrated on the develop-
ment of new algorithms, known as“two-stage”algorithms [30,
7, 20, 21, 33, 19], where a first stage uses Level 3 BLAS
operations to reduce As to band form, and a second stage
further reduces the matrix to the proper tridiagonal form.
We developed our distributed eigensolver based on the “two-
stage” techniques that allow us to exploit more parallelism,
and use accelerator hardware more efficiently. The bases
of the implementation of the distributed hybrid eigensolver
presented in this paper is a GPU-enabled hybrid implemen-
tation of PBLAS. This implementation allows the user to
call the PBLAS routines not only with matrices located in
the host memory, but also with matrices located on the GPU
memory. It is provided by CRAY through the libsci acc li-
brary. This library is an extension to LibSci, the CRAY
implementation of CPU-only BLAS, LAPACK, PBLAS and
ScaLAPACK. In the following section we describe the details
of our implementation.

4.1 Transformation from generalized to stan-
dard eigenvalue

The Cholesky decomposition is the first step of the trans-
formation from generalized to standard eigenvalue problem.
Matrix B is distributed among the compute nodes in a 2D
block cyclic fashion with block size nd. Fig. 2a shows the
notations used. The diagonal block Bii is always located
on one node, while the panel Bi is owned by one column of
nodes. We use the right-looking standard algorithm, that
proceeds panel by panel, performing a single-node Cholesky
decomposition on the diagonal block Bii = LiiL

H
ii (Lii is

stored in Bii). For this operation the single node hybrid
Cholesky distribution provided by libsci acc (zpotrf) is used.
Then, to update the rest of the panel Li = BiL

−H
ii , pztrsm is

used. In the next step the trailing matrix must be updated
in the following way: BT = BT − LiLHi . This operation is
performed with the rank-k update pzherk. The width of the
panel nb can be chosen such that nb is a divisor of the block
size nd. To avoid unnecessary copies between the hosts and
the GPUs, matrix B resides in the GPU memory that also
contributes to keeping the GPU busy as much as possible.
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Figure 2: a) Notation used in the description of the
transformation from generalized to standard eigen-
problem. Aii is the diagonal block, Ai is the panel,
and AT is the trailing matrix. b) Description of the
reduction to band form (stage 1), panel factoriza-
tion, and trailing matrix update. c) An example of
the bulge chasing that shows the shared data region
between two nodes.

In the next step we need to compute As = L−1AL−H .
This corresponds to the ScaLAPACK pzhegst routine. The
matrices A and L are distributed in a 2D block cyclic way
with block size nd as in the Cholesky decomposition (nota-
tion in Fig. 2a). Each step of this algorithm, which proceeds
panel by panel, can be split in four phases (the full algorithm
can be found in [23]): (1) compute the diagonal block Aii,
(2) partially update the panel Ai, (3) update the trailing
matrix AT , and (4) finish the update of the panel Ai. To
increase the parallelism of this routine we use the same ap-
proach we used in [22], where phase (4) is delayed at the end
of the routine since phases (1-3) of the next steps do not de-
pend on it. This allows the final update of all the panels to
be done in parallel, increasing the parallel efficiency.

Similarly to the Cholesky decomposition, phase (1) re-
quires a single node hybrid implementation. Phases (2-4)
require only PBLAS routines, in particular pztrsm, pzhemm,
pzher2k, and pzgemm. Similarly to the Cholesky decompo-
sition, the width of the panel nb can be chosen such that nb
is a divisor of the block size used in the 2D block-cyclic dis-
tribution nd. The matrices A and L are stored in the GPU
memory to avoid unnecessary copies, and to keep the GPU
as busy as possible.

In the last step of the generalized eigensolver the eigen-
vectors must be back-solved with the Cholesky factor L,
X = L−HZ. This operation is performed using the pztrsm
routine.

4.2 Distributed Hybrid CPU-GPU Two-stage
Tridiagonal Reduction

The two-stage reduction first reduces the dense Hermi-
tian Matrix As to band form (band reduction). The band
reduction is compute efficient since it replaces the memory-
bound matrix-vector product, present in the classical one-
stage tridiagonal reduction, with compute-intensive matrix-
matrix product. However, the resulting matrix is banded,
instead of tridiagonal, and needs an additional step (“bulge
chasing”) to be reduced to tridiagonal form.

4.2.1 First Stage: Hybrid CPU-GPU Band Reduc-
tion

The first stage applies a sequence of block Householder
transformations to reduce a Hermitian dense matrix to Her-
mitian band form. This stage has been shown to have a

good data access pattern and large portion of Level 3 BLAS
operations [13, 15, 23]. It also enables the efficient use of
GPUs by minimizing communication and allowing overlap
of computation and communication. The Hermitian dense
matrix As is distributed in a 2D block cyclic way with block
size nd. The algorithm proceeds panel by panel, performing
a distributed QR decomposition for each panel to generate
the transformation defined by the Householder reflectors V
(i.e., an orthogonal transformation) required to zero out el-
ements below the nb-th subdiagonal. Then, the generated
Householder transformation is applied from the left and the
right to the trailing Hermitian matrix, according to

AT = AT −WV H − VWH , (17)

where V and T define the blocked Householder transforma-
tion and W is computed as

W = X − 1
2
V THV HX, where (18)

X = AV T.

Since the panel factorization consists of a QR factorization
performed on a panel shifted by nb rows below the diago-
nal, the panel factorization by itself does not require any
operation on the data of the trailing matrix, making it an
independent task. This allows the algorithm to start the fac-
torization of the panel of step i+ 1 after its update, hence,
the computation of the panel factorization can be overlapped
with the computation of the rest of the trailing matrix.

The hybrid CPU-GPU implementation is described be-
low. First, on the CPU, we compute the QR decomposition
(pzgeqrf) of the distributed panel at step i (red panel of
Fig. (2b)). Once the panel factorization of step i is finished,
we compute W on the GPUs, as defined by equation (18),
using Level 3 parallel BLAS. Once W is computed, the trail-
ing matrix update defined by equation (17) can be performed
using pzher2k. In order to allow overlap between CPU and
GPU computation, the trailing matrix update is split into
two pieces. First, the panel of the next step (i + 1) (dark
green panel of Fig. (2b)) is updated on the GPUs. Then, the
remainder of the trailing submatrix is updated on the GPUs
using pzher2k, which overlaps with the factorization of the
panel of step i + 1 on the CPUs. In this way, a part of the
panel factorization and the associated communication are
hidden by overlapping with GPU computation. This proce-
dure is similar to the look-ahead technique typically used in
the one-sided dense matrix factorizations.

4.2.2 Second Stage: Cache-Friendly Computational
Kernels

The band matrix Ab is further reduced to the tridiago-
nal form T using the bulge chasing technique. This proce-
dure annihilates the extra off-diagonal elements by chasing
the created fill-in elements down to the bottom right side
of the matrix using successive orthogonal similarity trans-
formations. Each annihilation of the nb non-zero element
below the off-diagonal of the band matrix is called a sweep.
This stage involves memory-bound operations and requires
the band matrix to be accessed from multiple disjoint loca-
tions. In other words, there is an accumulation of substantial
latency overhead each time different portions of the matrix
are loaded into cache memory, which is not compensated for
by the low execution rate of the actual computations (the so-
called surface-to-volume effect). To overcome these critical
limitations, we used a bulge chasing algorithm to use cache



friendly kernels combined with fine grained memory aware
tasks in an out-of-order scheduling technique, which consid-
erably enhances data locality. We refer the reader to [23,
20] for a detailed description of the technique.

This stage is, in our opinion, one of the main challenges
for the hybrid distributed algorithm, as it is difficult to track
the data dependencies and move data between nodes. We
describe the technique using the simple example illustrated
in Fig. (2c). In order to minimize the amount of data that
must be communicated, we define a ghost region which cor-
responds to the region between the solid and the dashed
vertical black line in Fig. (2c). The region contains the data
that moves back and forth between two nodes. In order to
analyze the data movement in this region, denote the tasks
that correspond to the elimination of the first two sweeps by
the red color in Fig. (2c). The computational tasks gener-
ated by sweep 2 partially overlap with the tasks generated
by sweep 1. In particular, the data used by the first five
tasks of sweep 2, which are represented by the green color
in Fig. (2c, overlap with those of sweep 1. The tasks that
affect data on the border between two nodes require special
attention (for example the fifth green task of sweep 2) to
track the data dependencies between different tasks of dif-
ferent sweeps. For example, it can be observed that the data
used by the fifth green task of sweep 2 overlap the fifth one
from sweep 1 by one extra column to the right. Note that
since the fifth task of sweep 1 has been allocated to node 0,
it will be beneficial to only get one column from node 1 and
let node 0 compute the fifth task of sweep 2. As a result,
for every sweep, one column of the ghost region is sent to
the previous rank processor. This is repeated for nb sweeps,
then at the level, all the data of the ghost region becomes
owned by processor 0, hence it must be sent back to node 1.

We implemented the second stage to execute entirely on
the CPUs of the different nodes. The main motivations are
the large communication requirements of the algorithm and
the fact that the accelerators perform poorly when dealing
with memory-bound fine-grained computational tasks (such
as bulge chasing). We dedicated a specific thread per node
to manage the communication. The computational tasks
are distributed among the remaining threads. This allows
for hiding the communication needed by the algorithm.

Just as we established with Eq. (15) for the classic one-
stage approach, we can do the same for our two-stage im-
plementation:

flop = 4
3
n3(compute bounded)︸ ︷︷ ︸

first stage

+ 6nbn
2(memory bounded)︸ ︷︷ ︸

second stage

=
4

3
n3 + Θ(n2),

(19)

where n is the matrix size and nb is the bandwidth of the
band matrix after the first stage. The cubic-order (first
stage) operation is performed with Level 3 BLAS. The sec-
ond stage only performs a small (and decreasing with n) per-
centage of the flops by using custom kernels for the bulge-
chasing [20]. Clearly, all of the cubic-order flops are per-
formed using the Level 3 BLAS. Unfortunately, since the
band matrix can be distributed only in a 1D block cyclic
way, the scaling of the second stage is limited.

4.2.3 Tridiagonal eigenvalue solver

The divide and conquer (D&C) algorithm, introduced by
Cuppen [11] computes all the eigenvalues and eigenvectors
of the real tridiagonal matrix T . Many serial and parallel
implementations of the Cuppen eigensolver have been pro-
posed in the past [12, 16, 25, 39, 41, 42]. The overall D&C
algorithm approach splits the problem into two subproblems
(the son nodes). They represent a rank-one modification of
the parent node. Each of the son subproblems can then
be solved independently. The split process can be repeated
recursively, and a binary tree that represents all the sub-
problems can be built. In the end, starting from the bottom
row of the tree, the suproblems are merged to get the final
solution. The merge phase proceeds in the following way.
The size n matrix T is split into two subproblems: T1 of
size n1, and T2 of size n2 = n − n1 (see (20)). Let the
son subproblems already be solved and their solutions be

T1 = Ẽ1Λ̃1Ẽ1
T

and T2 = Ẽ2Λ̃2Ẽ2
T

, where (Λ̃j , Ẽj), j = 1, 2
are the eigenpairs of the matrix Tj . The rank-one modi-
fication eigenproblem is then solved finding the eigenpairs
(Λ̃0, Ẽ0). The eigenvalues and eigenvectors of T are then
computed using:

T =

(
T1 0
0 T2

)
+ ρvvT

=

(
Ẽ1 0

0 Ẽ2

){(
Λ̃1 0

0 Λ̃2

)
+ ρuuT

}(
Ẽ1 0

0 Ẽ2

)T
=

(
Ẽ1 0

0 Ẽ2

)(
Ẽ0Λ̃0Ẽ0

T
)(

Ẽ1 0

0 Ẽ2

)T
= EΛET .

(20)
The D&C implementation we present in this work is based

on the ScaLAPACK implementation, but has been modi-
fied in the following way: (1) the eigenvector matrices E,

Ẽ1, and Ẽ2 are located in the GPU memory, (2) the eigen-

vectors of the rank-1 modification Ẽ0 are generated by the
CPUs and copied to the GPUs, allowing us to perform the
matrix-matrix multiplication directly on the GPUs, and (3)
the last merge step is modified such that only the requested
percentage of the eigenvectors are computed, reducing the
total amount of computation.

4.3 Back Transform the Eigenvectors of the
Two Stage Technique

In the context of the two-stage approach, the first stage
reduces the original dense matrix As to a band matrix Ab =
QH1 AsQ1, and the second, bulge-chasing stage reduces the
band matrix Ab to the tridiagonal form T = QH2 AbQ2.
Thus, when the eigenvectors matrix Z of As are requested,
the eigenvectors matrix E resulting from the tridiagonal
eigensolver needs to be back transformed by the Householder
reflectors generated during the reduction phase, according to

Z = Q1Q2 E, (21)

where Q1 and Q2 are defined by the Householder reflectors
(V1, τ1) and (V2, τ2) generated during the two-stage reduc-
tion.

From a practical standpoint, the back transformation Q2

is not as straightforward as the one of Q1. In particular,
because of the complications of the bulge-chasing mecha-
nism, the order in which the Householder reflectors need to
be applied, and the overlap of the data regions they modify,
makes this task more complex. In order to achieve very good
scalability and performance, the main focus of the imple-



Figure 1: Left: The distribution and the order of application of the House-
Holder reflector blocks. Right: The distribution of the matrix of the eigen-
vectors

2 Implementation

The House-Holder reflector blocks are divided in two categories. The first
category is composed by the reflectors that will involve only one row of MPI
ranks in the application (black border in Fig. 1), while the second category
is composed by the reflectors that involve two rows of MPI ranks (red border
in Fig. 1). In Fig. 2 one can see one example for the first category (purple
border) and one for the second category (orange border).

Figure 2: Left: the purple block belongs to the first category, while the
orange block belongs to the second category. Right: The parts of the matrix
of the eigenvectors involved in the computation.

For the first category the implementation is straightforward:

Algorithm 2 implementation for the first category

1: Broadcast, among the nodes in the row, the reflector block V .
2: build T ,
3: copy V and T to the GPU,
4: compute W1 = V HEl,
5: compute W2 = V T ,
6: compute El = El � W2W1.

2

Figure 3: Left: The distribution and the order of
application of the Householder reflector blocks V2.
Right: The distribution of the eigenvectors matrix.

Figure 1: Left: The distribution and the order of application of the House-
Holder reflector blocks. Right: The distribution of the matrix of the eigen-
vectors

2 Implementation

The House-Holder reflector blocks are divided in two categories. The first
category is composed by the reflectors that will involve only one row of MPI
ranks in the application (black border in Fig. 1), while the second category
is composed by the reflectors that involve two rows of MPI ranks (red border
in Fig. 1). In Fig. 2 one can see one example for the first category (purple
border) and one for the second category (orange border).

Figure 2: Left: the purple block belongs to the first category, while the
orange block belongs to the second category. Right: The parts of the matrix
of the eigenvectors involved in the computation.

For the first category the implementation is straightforward:

Algorithm 2 implementation for the first category

1: Broadcast, among the nodes in the row, the reflector block V .
2: build T ,
3: copy V and T to the GPU,
4: compute W1 = V HEl,
5: compute W2 = V T ,
6: compute El = El � W2W1.

2

Figure 4: The data regions affected by the diamond
shape block. The green diamond with purple bor-
der belong to the first category while the yellow
diamond with yellow border belong to the second
category.

mentation is to create compute intensive operations to take
advantage of the efficiency of Level 3 BLAS. To this end, we
implemented a technique that accumulates and groups the
Householder reflectors. Our technique is represented by the
diamond-shaped region in Fig. (3), where each diamond is
considered one block, and the arrows represent the depen-
dency order that their application needs to follow.

In a distributed environment, the data is distributed among
the nodes and, a difficulty of applying Q2, described above,
needs to be carefully handled. Fig. (3) illustrates the distri-
bution of both the eigenvectors matrix and the Householder
reflectors V2, where each color represents a node. We can
observe that the diamond blocks of V2 are divided into two
categories. The first category consists of the diamond blocks
that modify (touch) the data of only one row of the node grid
(for example the green diamond with purple border modifies
the data owned by the third row of processors highlighted
by the purple border of Fig. (4)), while the second category
is composed of those that affect the data owned by two rows
of the node grid (the yellow diamond with yellow border
modifies the data owned by the first and the second row
of processors highlighted by the yellow border of Fig. (4)).
Each Householder reflector group of the first category must
be broadcast among its corresponding row of the node grid,
then the application of the Householder transformation de-
fined by the block is independent among the different nodes.
On the other hand, the portion of the eigenvectors, modi-
fied by the application of the transformation defined by each
Householder reflector group of the second category, is shared
between two rows of the node grid. Therefore the block must
be broadcast between the two rows of nodes and the appli-
cation of the transformation requires a sum reduce between
the two rows. In our implementation, the CPUs manage
the communication and the GPUs apply the Householder
transformations, hence, there is an overlap between com-

munication and computation, since during the application
of the Householder transformation defined by the current
block, the CPUs can broadcast the next block.

The back transformation of Q1 is similar to the classical
back transformation for the one-stage algorithm that corre-
sponds to the pzunmqr routine of ScaLAPACK. It involves
efficient Level 3 parallel BLAS kernels and therefore is per-
formed efficiently on the GPUs.

Note that when the eigenvectors are required, the two-
stage approach has the extra cost of the back transformation
ofQ2, i.e., 8n2k flops, where k is the number of the computed
eigenvectors. However, experiments show that even with
this extra cost the overall performance of the generalized
eigensolver using the two-stage approach can be faster than
the solvers using the one-stage approach, especially when
only a fraction of the eigenvectors is required, since the extra
operations depend linearly on k.

5. RESULTS
We now turn to characterizing the performance of a com-

plete ∼1000 atom electronic benchmark run in terms of time
and energy to solution on distributed CPU and hybrid CPU-
GPU architectures, implementing the algorithms discussed
in the previous sections. The system used to run our bench-
mark is a 28-cabinet Cray XC30 with a fully populated third
dimension of the dragonfly network. All compute nodes of
the system have an 8-core Intel Xeon E5-2670 multi-core
CPU and one NVIDIA K20X GPU. In a performance com-
parison between a distributed multi-core and a hybrid CPU-
GPU implementation, we keep the total number of sockets
involved in the computation constant. That is, we compare
the performance of the multi-core implementation running
on the CPUs of 2n nodes with corresponding hybrid CPU-
GPU implementation running on n nodes.

The Cray XC30 platform is equipped with advanced soft-
ware and hardware features for monitoring energy consump-
tion [14]. Since in the present work we are interested in com-
paring energy to solution between a CPU-only and a hybrid
CPU-GPU implementation, we have used only the power
sensors on the blade that measure the consumption of the
nodes. Off-node components such as the Aires network and
blowers are ignored. Power consumption of the idle GPU
has been subtracted from the energy measurements we re-
port for CPU-only runs.

5.1 Full LAPW application benchmark
The algorithms described in section 3 have been imple-

mented in a new LAPW library SIRIUS[1], which was cre-
ated within the work package eight (WP8) of the PRACE
second implementation phase (PRACE-2IP) project with
the main goal of finding major performance bottlenecks in
the ground-state calculations in both Exciting (exciting-code.org)
and Elk (elk.sourceforge.net) codes. SIRIUS invokes archi-
tecture dependent backends and the appropriate distributed
eigensolvers. A performance analysis of the latter will be
given in the next sub-section.

For the test case we choose a full-potential DFT ground
states simulation of a Li-ion battery cathode. A unit cell
with a Li-intercalated CoO2 supercell containing 432 for-
mula units of CoO2 and 205 atoms of lithium (1501 atoms
in total) was created. The Li sites were randomly populated
to produce a ∼50% intercalation. Initial unit cell parame-
ters were taken from Ref. [32]. This example represents the



broad class of problems such as diluted magnetic semicon-
ductors, energy formation of vacancies, impurity levels in
band insulators, alloys, etc., where the large supercell setup
is required. Below, we demonstrate that the full-potential
simulations of large unit cells are feasible in a acceptable
time (∼17 minutes per SCF iteration) with a reasonable
amount of resources in terms of hardware and energy. We
setup3 a single Γ-point calculation with ∼115000 basis func-
tions and ∼7900 lowest bands to compute, and we mea-
sured the execution time of major parts of the DFT self-
consistency cycle. The results are collected in Table 5.1,
where we report, in columns, the time for the eigenvalue
problem setup, eigenvalue problem solution, total DFT it-
eration time, and the rest of the DFT cycle, which incor-
porates construction of the wave-functions, construction of
the new charge density, and calculation of the new effec-
tive potential. At the moment, only the Hamiltonian and
overlap matrix setup and eigenvalue solvers are GPU-aware
and the rest of the code is executed on the CPU. We con-
sider 196-node hybrid CPU-GPU run with one MPI rank
and eight OpenMP threads per node (‘14×14 (1R:8T) hy-
brid’ in the table) as a reference point because it corresponds
to the minimum amount of nodes on which the calculation
fits and at the same time it gives the best ∼54 node-hours
per iteration measure. The hardware footprint of this run is
392 sockets. For the CPU-only run we setup two alternative
configurations: 28×28 MPI grid with 2 MPI ranks per node
and 4 OpenMP threads per MPI rank (with ScaLAPACK
and ELPA2 solvers), as well as a 20×20 MPI grid with a
single MPI rank and 8 OpenMP threads per node (ELPA2
solver). The hardware footprint of the former is 392 active
sockets, and 400 active sockets for the latter, which is com-
parable to the 392-socket hybrid reference configuration. As
we will see in the next section, the ELPA2 eigenvalue solver
is more efficient with more MPI ranks per socket and fewer
OpenMP threads per rank. However, a memory limitation
in the entire application forces us to use the configurations
with fewer MPI ranks per socket and more OpenMP threads.

The results in Table 5.1 show that the CPU-only runs are
much more efficient when using the ELPA2 library for the
eigensolver rather than ScaLAPACK. In terms of time and
energy to solution, the 28×28 and the 20×20 MPI grid con-
figurations are approximately the same, which is not surpris-
ing since they use about the same number of active sockets.
The hybrid reference run with 14×14 nodes is about 15%
faster than CPU-only runs with ELPA2, and a factor of
2 more energy efficient. We have also performed a 20×20
MPI grid hybrid run on an equivalent number of CPU-GPU
nodes, i.e. with 800 active sockets or two times as many as
the other runs. This larger hybrid run is about 30% faster
and more energy efficient than the CPU-only runs, and has
the fastest time to solution of all configurations. However,
the smaller of the two hybrid runs is more efficient in terms
of both throughput and energy to solution. These results
will have to be considered in large materials design simula-
tions.

5.2 Eigensolver benchmark
Given the dominance of the generalized eigenvalue prob-

lem in the full LAPW runs presented in the previous section,

3the following LAPW parameters were used: RMT = 1.72
a.u., `APW

max = `Vmax = `ρmax = 8, |G|max = 20 a.u.−1,
RMT × |G + k|max = 7

set H,O HC = εOC the rest total energy

28×28 (2R:4T)
ScaLAPACK

382.5 3166.8 69.2 3618.5 39.46

28×28 (2R:4T)
ELPA2

383.2 705.3 63.6 1152.1 17.40

20×20 (1R:8T)
ELPA2

374.0 720.5 61.1 1155.6 16.9

14×14 (1R:8T)
hybrid

159.9 741.8 84.8 986.5 8.27

20×20 (1R:8T)
hybrid

96.9 652.1 58.9 807.9 12.49

Table 1: Execution time (in seconds) and energy
consumption (kWh) per iteration of major parts of
the CPU-only and hybrid CPU-GPU versions of the
LAPW code
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Figure 5: Weak scaling of time and energy of
ELPA2, being run with different configurations,
compared to the hybrid generalized eigensolver.
The hybrid solver is executed on (n/10240)2 nodes,
while ELPA2 is on 2 (n/10240)2 nodes, where n is the
matrix size.

and the similarity in performance between the ELPA2 CPU
only and the hybrid CPU-GPU implementations stipulated
by the results in table 5.1, we will now give a more thorough
performance study of the eigensolvers on the two architec-
tures. In order to properly gauge the hybrid implementation
of our new, distributed hybrid CPU-GPU eigensolver, we
compare the performance on n hybrid nodes to 2n cpu-only
nodes running the distributed multi-core version of ELPA.

Fig. (5) presents the weak scaling of time and energy to
solution of the generalized eigenvalue solvers, when different
percentages of the eigenvectors are required. The applica-
tion runs on (n/10240)2 nodes, where n is the matrix size.
This quantity of nodes represents the minimum amount of
resources needed by the hybrid solver to execute. In partic-
ular, the solver is bounded by the quantity of GPU mem-
ory in the NVIDIA K20X. ELPA2 is executed on twice as
many nodes (2 (n/10240)2) using only the CPUs, to satisfy
the socket to socket comparison model. We run ELPA2 with
four different configurations. The configurations are denoted
by (NrR:NtT), where Nr is the number of MPI ranks per
socket and Nt is the number of threads per MPI rank. Since
each configuration holds NrNt = 8, this means all cores of
each socket are always used. The ELPA2 solver runs more
efficiently in the configurations that have more MPI ranks.
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Figure 6: Weak scaling of time end energy of
ELPA2, being run with different configuration, com-
pared to the hybrid generalized eigensolver. The hy-
brid solver is executed on 2 (n/10240)2 nodes, while
ELPA2 on 4 (n/10240)2 nodes, where n is the matrix
size.

However, as we have seen in the previous section, memory
limitations in the full application may force us to use fewer
MPI ranks per socket and more OpenMP threads. The hy-
brid (CPU-GPU) implementation is a factor 1.5× to 2×
faster than the most efficient configuration of the ELPA2
(CPU-only) implementation. The hybrid architecture is 2
times more energy efficient than the distributed multi-core
architecture.

Fig. (6) shows the results with double of the nodes used
in Fig. (5), i.e., 2 (n/10240)2 for the hybrid solver, and
4 (n/10240)2 for ELPA2. In this case the hybrid implemen-
tation and the fastest ELPA2 configuration require compa-
rable time to solve the same problem. However, the hybrid
architecture is between 2 and 2.5 times more energy efficient
than the CPU-only architecture.

6. SUMMARY AND CONCLUSIONS
We have presented a high-performance implementation

of the LAPW methods and demonstrated the feasibility of
∼1000 atom ground state calculations with good turnaround
time on clusters with a few hundred nodes. Since the two
major time-consuming parts of the LAPW methods – the
setup and solution of the generalized eigenvalue problem –
both have algorithmic complexity O(N3

atom), each must be
implemented in a scalable way. One key ingredient for this
new implementation is thus a distributed setup of the LAPW
Hamiltonian and overlap matrix that runs on both multi-
core CPU and hybrid CPU-GPU nodes alike, and results
in the same block-cyclic data distribution used by common
linear algebra libraries such as ScaLAPACK. Furthermore,
we have introduced a dual ‘panel-slice’ storage of the rele-
vant arrays, which allows performing local and distributed
operations on the data efficiently at the expense of a small
increase in memory size.

On standard multi-core nodes, the distributed eigenvalue
problem for dense Hermitian matrices has been solved with
the corresponding routines of the ScaLAPACK and ELPA2
libraries, where clearly the best performance and scalabil-
ity is achieved with the latter. For hybrid CPU-GPU sys-
tems we have discussed in detail a novel algorithm that im-
plements a two-stage solver on computer architectures with

heterogeneous, GPU accelerated nodes.
We have presented performance benchmarks with realistic

calculations that use a Li-intercalated CoO2 super cell with
1501 atoms. We execute a full SCF iteration step in less
than 20 minutes on 196 hybrid CPU-CPU nodes and about
30 minutes on an equivalent number of 400 CPU sockets.
These results show that highly accurate and transferable
quantum simulations are now usable for high-throughput
materials search problems, given the necessary computing
capabilities. All our benchmark runs show that energy effi-
ciency significantly favors the hybrid CPU-GPU architecture
over a traditional multi-core architecture.

Furthermore, the implementation and results we presented
demonstrate how complex codes and algorithms can be im-
plemented in a performance portable way for such diverse
architectures as multi-core and hybrid CPU-GPU systems.
Key to this is the separation of concerns, where the complex-
ity of hardware-specific programming models can be hidden
into libraries, be it general linear algebra packages such as
ELPA and MAGMA, or domain specific libraries such as the
SIRIUS library introduced here for the LAPW and similar
methods to solve the electronic structure problem in mate-
rials.
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