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ABSTRACT

In this paper we present an optimized GPU co-design of the In-
duced Dimension Reduction (IDR) algorithm for solving linear sys-
tems. Starting from a baseline implementation based on the generic
BLAS routines from the MAGMA software library, we apply opti-
mizations that are based on kernel fusion and kernel overlap. Run-
time experiments are used to investigate the benefit of the distinct
optimization techniques for different variants of the IDR algorithm.
A comparison to the reference implementation reveals that the in-
terplay between them can succeed in cutting the overall runtime by
up to about one third.
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1. INTRODUCTION

Krylov subspace iterative methods [20] are among the most pop-
ular methods for solving large sparse linear systems of the form
Ax = b which arise in many scientific and engineering fields. Against
the background of an increasing number of computer systems fea-
turing hardware accelerators like GPUs [11, 2], significant research
focuses on how these methods can be designed to benefit from
the computing power of the accelerators. Possible paths range
from outsourcing individual computations to the device, to port-
ing the complete algorithm to the accelerator. A straightforward
way to use accelerators in Krylov subspace solvers is to offload all
matrix and vector computations to the device using library func-
tions. In many cases, this results in significant acceleration of
the algorithm [8]. However, even larger improvements are often
available when replacing library-based functions with application-
specific kernels that keep data in local memory as much as possi-
ble. This concept of “kernel fusion” in particular pays off as al-
gorithms working on sparse matrices are typically memory-bound,
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and merging multiple linear algebra routines into a single kernel re-
duces the pressure on the memory bandwidth [6]. Aside from that,
the acceleration of the sparse matrix-vector product needed to gen-
erate the Krylov subspace [20], which is often the computationally
most expensive part of the algorithms, is often the subject of tuning.
Finally, some algorithms allow for overlapping computation and
communication by executing multiple kernels concurrently. This,
however, not only requires the algorithm to contain computations
that are not directly dependent and can be executed in a flexible or-
der, but furthermore will only result in noticeable benefits if not all
computations are memory-bound.

Although Krylov subspace solvers are usually memory-bound
when applied to sparse problems, they may contain parts that ben-
efit from using concurrent kernel execution. Identifying these parts
can be challenging, especially as overlapping kernels can conflict
with kernel fusion, e.g., in case two kernels use the same data to
update two distinct vectors. In this paper we address the interplay
of these two optimization techniques when porting the Induced Di-
mension Reduction (IDR [22]) algorithm to NVIDIA GPUs. We
structure the rest of the paper as follows. First, in Sect. 2 we provide
an overview of related work on strategies for accelerating Krylov
subspace methods on GPUs. We then briefly review the IDR algo-
rithm and its variants in Sect. 3. Section 4 and Sect. 5 contain the
main contributions of this work:

e We discuss the GPU implementation of IDR and the possible
optimization steps such as the fusion of multiple linear alge-
bra operations into a single kernel, and overlapping different
computations by running multiple GPU kernels in concurrent
fashion.

e We investigate the trade-off between kernel fusion and ker-
nel overlap for a memory-bound matrix addition for different
levels of data reuse.

e We apply optimization steps expected to provide benefit to a
reference implementation based on BLAS function calls.

e We analyze the performance benefit of the distinct optimiza-
tion steps for the IDR implementation.

We conclude with a summary of the results and some ideas for
future work in Sect. 6.

2. RELATED WORK

Several open-source software packages provide GPU-support for
Krylov subspace solvers [15, 3, 17, 14]. These often provide sig-
nificantly higher performance than native CPU implementations [8,
12, 13]. For the IDR algorithm, the benefits of GPU-acceleration
were investigated in [10]. There is also literature available on the



concept of merging multiple linear algebra operations into one sin-
gle algorithm-specific kernel in order to reduce pressure on the de-
vice memory. In [9] the authors have shown that kernel fusion can
be realized for BLAS1 and dense BLAS2 operations by using a
source-to-source compiler. No automatic fusion of sparse linear
algebra operations is addressed, however. In [23] the authors com-
bine CUDA kernels in iterative sparse linear system solvers, but
only consider kernels that provide the same functionality and have
no dependencies among them. Explicit kernel coding was used
in [4], where the authors have shown how custom-designed kernels
improve performance and energy-efficiency of a GPU implementa-
tion for the Conjugate Gradient iterative solver. In [6] this idea was
transferred to the BICGSTAB algorithm, and combined with the
acceleration of the sparse matrix vector product. Also, a general
model estimating the savings was introduced. In [25] the authors
take a structured approach to improve performance and energy effi-
ciency by way of kernel fusion. Kernel fusions are categorized into
the classes “inner thread,” “inner thread block,” and “inter thread
block,” and their effects on performance and energy efficiency are
investigated by using two general benchmarks. For sparse linear
system solvers, a deeper analysis on the first category can be found
in [5], where a precise characterization of the kernels and the pos-
sibility of merging them into one single kernel is presented.

3. INDUCED DIMENSION REDUCTION

The Induced Dimension Reduction (IDR) algorithm is a robust
framework for deriving iterative solvers for large nonsymmetric lin-
ear systems of equations. It is based on the Krylov subspace idea,
and was first introduced by P. Sonneveld and M. B. Gijzen in [22].
Numerous variants exist to enhance the solver’s convergence, sta-
bility, or parallelism level [21, 24, 19]. However, they all share the
idea of exploiting the following central theorem [22]:

THEOREM 1. (IDR) Let A be any matrix in CN*N, let vy be any
nonzero vector in CV, and let Gy be the complete Krylov space
KN(A,vg). Let P denote any (proper) subspace of CN such that
P and Gq do not share a nontrivial invariant subspace of A, and
define the sequence Gj,j=1,2,... as

Gj=(I-wjA)(Gj_1NP)
where the @; are nonzero scalars. Then
1. G;CGj_forall j>0.
2. Gj={0} for some j <N.

One popular variant of Theorem 1 is IDR(s) which can be con-
structed by considering s independent, standard normally distributed,
shadow vectors py, pa, ..., ps to solve a smaller system of equations
based on the iterative residuals [24]. The smaller system represents
a set of polynomials that force the generated residuals to be in sub-
spaces G, thus enforcing the convergence of x; after, at most N,
dimension-reduction steps.

An improved variant of the IDR algorithm is the biortho-variant
including smoothing [24]. The approach uses the iteration residuals
with the assumption that each residual is the first vector in the next
reduced subspace G 1. Faster convergence is achieved by taking
advantage of the biorthogonality property
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where p; are orthonormal shadow vectors. A comprehensive col-
lection of research efforts and a more detailed derivation of the al-
gorithm can be found at [1].

4. OPTIMIZING IDR ON GPUS

A GPU implementation for main loop of the IDR(s)-biortho al-
gorithm enhanced with smoothing is provided in pseudocode in
Fig. 1. For convenience, we extracted the smoothing option into
Fig. 2. This implementation uses, exclusively, BLAS1 and BLAS2
functions as part of the MAGMA software library to express the
algorithm. This BLAS-based implementation will also serve as a
baseline to quantify the architecture-specific tuning in Sect. 5. Our
co-design supports heterogeneous execution via a single interface
of the MAGMA library which allows mapping the IDR algorithm
to both CPU and GPU systems effectively.

The optimization steps we apply to this baseline implementation
are the fusion of BLAS functions into algorithm-specific kernels,
and the concurrent execution of GPU kernels. In general, these op-
timization steps are not independent, as overlapped kernels cannot
be fused, and fusing two kernels into one removes the possibility of
overlapping. Depending on the amount of data reused, the one or
other may provide larger benefits. For a memory-bound algorithm,
we use a small experiment to analyze this issue. More precisely,
we compute two matrix sums, where the second sum partly reuses
addends from the first sum, see Figure 3. A parameter K is used
to control how much of the data gets reused: For K = 0 the two
sums are identical, for increasing K = 0 the amount of data reused
decreases. Using two distinct kernels allows for concurrent execu-
tion using different streams. Also, in Figure 3, both additions are
merged into one single kernel, such that data gets reused.

Figure 3 reports runtime and achieved memory bandwidth of
both options for increasing K. Especially for the smaller problem
size, we see some benefit of launching the two kernels in concur-
rent fashion (left-hand side of Figure 3). The fused kernel requires
reading from distant memory locations, resulting in a lower mem-
ory bandwidth. As long as the addends do not overlap, executing
two independent kernels (in concurrent fashion) gives better perfor-
mance. If data is shared by the two sums, the fused kernel catches
up. For 10% overlap (corresponding to reducing the memory trans-
fers by 6%), the runtime of the two independent and overlapped
kernels is matched. Completely overlapping the addends reduces
the memory transfers by one third, resulting in 33% runtime im-
provement for this memory-bound operation. We conclude that for
memory-bound algorithms, larger performance benefits can be ex-
pected from reusing data already read into local memory (kernel
fusion) than from overlapping data reload with a previous compu-
tation (concurrent execution). Kernels sharing only scalar values,
or being completely data-independent, benefit more from overlap-
ping than from fusing, as the overhead of reading a scalar value
multiple times is small compared to the benefits of more consecu-
tive memory reads. We apply the two optimization techniques with
respect to these premises.

For the kernel fusion, we use the classification proposed in [5]
to sort the operations into groups depending on whether the input
and output vectors can be mapped to the GPU thread block align-
ment. We then ignore all kernels that have no data dependency
nor share any data beside scalars. Also, we do not consider fusing
the sparse matrix vector product generating the Krylov subspace
with any other operations. The motivation is that MAGMA sup-
ports multiple storage formats for sparse matrices, and we want to
keep the flexibility of switching between the respective sparse ma-
trix vector kernels. Although replacing the sequence of axpys to
update U in the inner biorthogonalization (line 27 in Fig. 1) with
a matrix vector product outside this loop does not require the im-
plementation of an algorithm-specific kernel, it may be considered
as kernel fusion at it combines a set of BLAS1 functions into one
BLAS?2 function.



do {
numiter++;
// £ =P’ r
magma_dgemv (CT ,P.nrows ,P.ncols,1.,P.val,P.nrows,r.val,1,0.,f.val,1);
// shadow space loop
for (k = 0; k < s; ++k) { sk = s - k;
magma_dcopy (sk ,&f.val[k],1,c.vall[k],1); // f(k:s) = c(k:s)
magma_dcopy (M.nrows*M.ncols ,M.val,1,M1.val,1); // M = Ml
// f(k:s) = M(k:s,k:s) c(k:s)
magma_dgesv_gpu(sk,c.ncols,M1.val [kxM1.1d+k],M1.nrows,piv,c.val[k],c.nrows ,&info);
magma_dcopy (dof ,r.val,1,v.val,1); // r = v
// v =1 - G(:,k:s8) c(k:s)
magma_dgemv(N,G.nrows ,sk,-1.,G.val [k*G.1d],G.nrows,c.val[k],1,1.,v.val,1);
// U(C:,k) = om * v + U(:,k:s) c(k:s)
magma_dgemv(N,U.nrows ,sk,1.,U.val[k*U.1d],U.nrows,c.vall[k],l,om,v.val, 1);
magma_dcopy (U.nrows ,v.val,1,U.val [k*xU.1d],1); // v = U(:,k)
magma_d_spmv(1l.,A,v,0.,v,queue); // G(:,k) = A v
magma_dcopy (G.nrows ,z.val,1,G.val [kxG.1d],1);
for (i = 0; i < k; ++i) {
// alpha = <P(:,1i),G(:,k)> / M(i,i)
alpha = magma_ddotc(P.nrows ,P.val[i*P.1d],1,G.val[k*G.1d],1);
magma_dgetvector (1 ,M.val [i*M.1d+1i],1,&mkk,1);
alpha = alpha / mkk;
// G(C:,k) = G(:,k) - alpha * G(:,1i)
magma_daxpy (G.nrows ,-alpha,G.val[i*G.1d],1,G.val[k*G.1d],1);
// UC:,k) = U(:,k) - alpha * U(:,i)
magma_daxpy (U.nrows ,-alpha,U.val[i*U.1d],1,U.val[k*U.1d],1);
}
// M(k:s,k) = P(:,k:s)’ G(:,k)
magma_dgemv (CT ,P.nrows ,sk,1.,P.val[k*xP.1d],P.nrows,
G.val[k*G.1d],1,0.,M.val[k*M.1d+k] ,1);
magma_dgetvector (1,&f.val[k],1,&fk,1);
beta = fk / mkk; // beta = f(k) / M(k,k)
magma_daxpy (dof ,beta ,U.val [k*xU.1d],1,x->val,1); // x = x + beta * U(:,k)
magma_daxpy (dof ,-beta,G.val [k*G.1d],1,r.val,1); // r = r - beta * G(:,k)
magma_dsmoothing (.. .); // smoothing operation
if (nrmr <= tolb) return; // check convergence
if ((kx + 1) < s) {
// f(k+1:8) = f(k+1:s) - beta * M(k+1:s,k)
magma_daxpy (sk-1,-beta,M.val [k*M.1d+(k+1)],1,&f.val[k+1],1);

numiter++;

}
magma_dcopy (dof ,r.val,1,z.val,1);
magma_d_spmv(1l.,A,v,0.,t,queue); // t = A v
nrmt = magma_dznrm2 (dof ,t.val,1); /7 11tll
tr = magma_ddotc(dof ,t.val,1l,r.val,1); // tr = <t,r>
rho = fabs(MAGMA_Z_REAL(tr) / (armt * nrmr); // rho = tr / (lltl] * |lzcll)]
om = tr / (nrmt * nrmt); // om = tr / ClItll * |ltll])
magma_daxpy (dof ,om,z.val,1,x->val,1); // x = x + om * Vv
magma_daxpy (dof ,-om,t.val,1,r.val,1); // r =1 - om * t
magma_dsmoothing (.. .); // smoothing operation
if (nrmr <= tolb) return; // check convergence
} while (numiter < maxiter);
Figure 1: GPU implementation of IDR in pseudocode using the MAGMA library.
if (smoothing == 1) {
magma_dcopy (dof ,rs.dval ,1,t.dval,1); // rs =t
magma_daxpy (dof ,-1.,r.dval,1,t.dval,1); // t = rs - r
nrmt = magma_dznrm2 (dof ,t.dval,1); // 11t
gamma = magma_ddotc (dof ,t.dval,1,rs.dval,1); // gamma = <t,rs>
gamma = gamma / (nrmt * nrmt); // gamma = gamma / (llt]|| *x []t]])
magma_daxpy (dof ,-gamma ,t.dval ,1,rs.dval,1); // rs = rs - gamma * t
magma_dcopy (dof ,xs.dval,1,t.dval,1); // xs =t
magma_daxpy (dof ,-1. ,x->dval,1,t.dval,1); // t = xs - x
magma_daxpy (dof ,-gamma ,t.dval ,1,xs.dval,1); // xs = xs - gamma * t
nrmr = magma_dznrm2 (dof ,rs.dval,1); // nrmr = ||rs]||
} else {
nrmr = magma_dznrm2 (dof ,r.dval,1); } // nrmr = ||r]|]|

Figure 2: Pseudocode of the smoothing option in IDR implemented using the MAGMA software library.
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Figure 3: Comparing runtime (top) and achieved memory bandwidth (bottom) for running two independent (overlapped) kernels or the
merged option for computing the two matrix sums. The left-hand side results are for a small problem ( 32,768 x 32; 1,024 GPU thread
blocks of size 32 x 32), the right-hand side results for a large problem (matrix size 1,048,576 x 32; 32,768 GPU thread blocks of size

32 x 32).

Similarly, the solution approximation update in line 34 (Fig. 1)
can be handled by a matrix vector product outside the respective
loop if no smoothing is used. Smoothing is essential for a mono-
tone residual decay as can be seen by comparing left- and right-
hand side in Fig. 5 in the experimental evaluation in Sect. 5. There-
fore, we keep smoothing as an option in our algorithm. Custom-
designed kernels are required in the smoothing option (Fig. 2). The
computation of ¢ = rs — r (line 2,3) as well as the computation of
xs =xs —Y(xs —x) (line 8-10) can be realized with higher efficiency
in one kernel, respectively. The baseline implementation also con-
tains, in several places, a set of two consecutive dot products shar-
ing one vector (line 46,47 in Fig. 1, and line 4,5 in Fig. 2).

The recently proposed merged dot product [6] allows for fusing
these. For this case, the performance benefits not only come from
reusing one vector, but also from combining the computationally
expensive parallel reduction phases into one. We must emphasize
that we do not apply all fusions that are possible, only those that
turned out to be beneficial for performance, and do not conflict
with kernel overlaps providing larger improvement. Similarly, we
do not push concurrency of kernels to the limit. Running concur-
rent kernels requires switching between the GPU stream and care-
ful synchronization. For runtime improvement, this overhead has
to be compensated for by the kernel overlap.

Figure 4 shows a dependency graph for one iteration of the IDR(s)
algorithm with smoothing enabled. The graphs are colored to repre-
sent the different regions of the algorithm (e.g., loops and smooth-
ing), this helps identify which steps are suitable for overlapping.
Additional overlapping can be attained if the graph is constructed
for s > 1 and multiple iterations. We now outline several key con-
cepts of CUDA-enabled GPUs and the MAGMA library that enable
effective 2-way and 3-way concurrency with few explicit synchro-
nization points.

e The default stream is synchronous with respect to CPU and
GPU. Any execution in this stream synchronizes all other

streams, unless a stream is created with the cudaStreamNon-
Blocking flag.

e Asynchronous transfers require CPU page-locked memory.

e Concurrency requires operations to be handled by different
streams — given that sufficient resources are available.

e Operations get added to streams in issue order; this enforces
a synchronization signal between streams but not within them.

o MAGMA reduction operations that return a scalar value (e.g.,
dot and norm) are synchronous with respect to the CPU.

Based on these concepts, our optimized version makes use of three
streams: one using cudaStreamNonBlocking flag, and two non-
default streams. All scalar values are allocated in page-locked mem-
ory, and the leading dimension of the matrices are aligned to 32
bytes. Reduction operations are used as implicit synchronization
points, kernel-kernel operations are issued in breadth first order,
and transfer-kernel-transfer operations are issued in depth first or-
der. Another essential modification to permit maximum concur-
rency is to rearrange the structure of the loops by unrolling the loop
until a dependency that requires a synchronization is hit. Both loop
levels in the IDR(s) algorithm were unrolled using this strategy.

In the optimized version, we overlap the following routines and
refer to the code shown in Fig. 1 in case smoothing is enabled. The
first gemv (lines 4) and general solver (line 10) are taken out of the
loop and overlapped with the final smoothing operation. This gen-
eral solver was transformed into a triangular solver since the matrix
M is lower triangular, and its transfer (line 8) is unrolled and over-
lapped with the first smoothing operation. The solution approxima-
tion of the next inner iteration (line 34) is handled concurrently with
the biorthogonalization loop, and for cases with s > 1, the update
of f as well. A 3-way overlap occurs after the biorthogonalization
loop between the gemv (line 30), scalar transfer (line 32), and the



U(:,k) = U(:,k) - a*U(:,i)
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Figure 4: Dependency graph for a single iteration of IDR(s)
biortho-variant enhanced with smoothing. The colors correspond
to specific regions of the algorithm: blue — main loop, yellow —
shadow space loop, green — biorthogonalization loop, and red —
smoothing steps.

update of U (line 27) using a gemv kernel. It is worth mentioning
that residual and solution updates in the smoothing operation are
overlapped as well as memory transfers of internal work arrays. Fi-
nally, the next iteration computations of lines 4,7,10 are executed
in concurrent fashion with the current residual updates and conver-
gence check (lines 51,53). After these modifications, the optimized
IDR(s) variant requires explicit synchronization calls for the non-
blocked stream at the end of both the shadow space and main loops.
The remaining streams make use of implicit synchronization points
provided by scalar reduction computations.

S. EXPERIMENTAL RESULTS

5.1 Experiment setup

The GPU results for this paper are obtained from a Tesla K40
GPU which belongs to the Kepler line of NVIDIA’s hardware ac-
celerators and has a theoretical peak performance of 1,682 GFlop/s
(double precision). On the GPU, the 12 GB of main memory, ac-
cessed at a theoretical bandwidth of 288 GB/s, is sufficiently large
to keep all the matrices and all the vectors needed in the iteration
process. The baseline GPU results were obtained from using the
iterative solver package of the MAGMA open source software li-
brary [14] linked to NVIDIA’s cuBLAS [18] and cuSPARSE li-
brary [17] in version 7.0. For the optimized version, algorithm-
specific kernels were implemented in the CUDA language, version

matrix abbrev  #nonzeros (nnz) Size (n) nnz/n

AIRFOIL_2D AIR 259,688 14214 18.27
PRES_POISSON PRE 715,804 14,822 48.29
TREFETHEN_20000  TRE 554,466 20,000  27.72
BMWCRAI BMW 10,641,602 148,770  71.53
INLINE_1 INL 38,816,170 503,712 77.06
APACHE_2 APA 4,817,870 715,176 6.74
LDOOR LDO 42,493,817 952,203  44.63
BONEO10 BONE 47,851,783 986,703  48.50
ECOLOGY_2 ECO 4,995,991 999,999 5.0
G3_CIRCUIT G3 7,660,826 1,585,478 4.83

Table 1: Key characteristics of the test matrices ordered according
to their dimension.

7.0 [16]. For the experiments, we use a set of test matrices taken
from the University of Florida matrix collection (UFMC, [7]). The
IDR algorithm does not require the system matrix to be symmet-
ric. We selected a mix of symmetric and nonsymmetric matrices to
cover a broad spectrum with respect to dimension and sparsity (see
Table 1 for some key characteristics). The specific sparsity pattern
and symmetry characteristics are not relevant for this performance
evaluation as the implementation of the sparse matrix vector prod-
uct remains outside the scope of the optimization process.

5.2 Convergence and Performance

To ensure the algorithm’s correctness, in Fig. 5 we compare the
convergence of the basic GPU implementation with the conver-
gence of a MATLAB reference implementation taken from [1]. We
analyze shadow space dimensions 1, 2, 4, and 8. The left-hand
side of Fig. 5 shows the jagged convergence pattern for both imple-
mentations, which is characteristic for the basic IDR(s) algorithm.
While already small rounding differences in the computation of dot
products result in significant differences concerning the residual for
a specific iteration count, the implementations have very similar
average convergence rates. This becomes more obvious when en-
abling the smoothing option, see the right-hand side of Fig. 5.

To quantify the overhead of using larger shadow space dimen-
sions, in Table 2 we list the actual runtimes (and normalized to
the shadow space dimension 1) needed by the baseline GPU im-
plementation to execute 100 iterations. The solution of the small
dense systems required for the minimization process results in a su-
perlinear runtime increase for larger shadow space dimensions. We
notice that the relative runtime increase is smaller when smoothing
is enabled.

Next, we apply the optimization steps outlined in Sect. 4. Fig. 6
reports the runtime improvement obtained from of the distinct op-
timization levels of the GPU implementation over the CPU code.
Again, we address both, the basic IDR(s) (left-hand side plots) and
the IDR(s) using smoothing (right-hand side plots). The graphs
in the first line illustrate the runtime improvement obtained from
kernel fusion: we replaced the generic BLAS functions with the
algorithm-specific kernels introduced in Sect. 4. Kernel fusion pro-
vides larger improvements for the smoothed IDR(s), as algorithm-
specific kernels significantly reduce the memory transfers in the
smoothing operation. Furthermore, we observe that the algorithm-
specific kernels are in particular beneficial when working with small
shadow space dimensions s. The bottom of Fig. 6 combines the
kernel fusion with kernel overlap. As expected, concurrent kernel
execution is in particular attractive when overlapping the loops for
the distinct shadow spaces.

Furthermore, concurrent kernel execution provides larger bene-
fits to the unsmoothed IDR(s). This is expected as combining the
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No smoothing Smoothing

Matrix IDR(1) IDR(2) IDR(4) IDR(8) IDR(1) IDR(2) IDR(4) IDR(8)

AIR 0.0340 (1) | 0.0361 (1.06) | 0.0414 (1.22) | 0.0521  (1.53) || 0.0501 (1.) | 0.0511 (1.02) | 0.0573 (1.14) | 0.0684  (1.37)
PRE 0.0409 (1) | 0.0427 (1.04) | 0.0475 (1.16) | 0.0585 (1.43) || 0.0587 (1) | 0.0590 (1.01) | 0.0630  (1.07) | 0.0742  (1.26)
TRE 0.0409 (1) | 0.0414 (1.01) | 0.0485 (1.19) | 0.0576  (1.41) || 0.0544 (1) | 0.0571  (1.05) | 0.0622  (1.14) | 0.0733  (1.35)
BMW 0.1714 (1) | 0.1764  (1.03) | 0.1875 (1.09) | 0.2115 (1.23) || 0.2010  (1.) | 0.2063  (1.03) | 0.2171  (1.08) | 0.2410  (1.20)
INL 0.5444 (1) | 05573  (1.02) | 05817 (1.07) | 0.6364 (1.17) || 0.6045 (1) | 0.6179  (1.02) | 0.6412 (1.06) | 0.6951  (1.15)
APA 03192 (1) | 03367 (1.05) | 03715 (1.16) | 0.4465 (1.40) || 0.3952 (1.) | 0.4132 (1.05) | 0.4473 (1.13) | 0.5223 (1.32)
LDO 0.9050 (1) | 09293  (1.03) | 09738 (1.08) | 1.0740 (1.19) 1.0003  (1.) | 1.0254 (1.03) | 1.0687 (1.07) | 1.1690  (1.17)
BONE 0.9628 (1. | 09870 (1.03) | 1.0333 (1.07) | 1.1373  (1.18) 1.0610 (1) | 1.0852  (1.02) | 1.1316  (1.07) | 1.2368 (1.17)
ECO 04214 (1) | 04438 (1.05) | 0.4898 (1.16) | 0.5954 (1.41) || 0.5186 (1.) | 0.5433  (1.05) | 0.5895 (1.14) | 0.6960  (1.34)
G3 0.6540 (1) | 0.6918 (1.06) | 0.7631  (1.17) | 09242 (1.41) || 0.8011 (1.) | 0.8393  (1.05) | 0.9095 (1.14) | 1.0701 (1.34)

Table 2: Absolute runtimes in seconds (and normalized to the runtime for shadow space dimension 1) for 100 iterations of the basic GPU

implementation of IDR(s).

x-updates (line 34 in Figure 1) into a matrix vector product outside
the shadow space loop allows to completely overlap this operation.
Looking at the interplay of the optimization steps, larger runtime
reduction (up to 33%) can be achieved for smoothing enabled. As
expected, the benefits are larger when targeting smaller test matri-
ces, as for those the cost of the sparse matrix vector product is not
necessarily dominating the algorithm.

6. SUMMARY

In this paper, we have shown how a GPU implementation of the
IDR(s) algorithm and an enhanced variant featuring a smoothing
step for better convergence properties can be accelerated by apply-
ing kernel fusion and the concept of overlapping kernels. A runtime
analysis revealed that custom-designed kernels are particularly at-
tractive for small shadow space dimensions, while kernel overlap
provides significant benefits when running the smoothed variant in
combination with large shadow space dimensions. Combining the
optimization steps we succeed in cutting the overall runtime by up
to about one third.

In future, we will look into operations that are not memory bound
for a more comprehensive study on whether kernel fusion or ker-
nel overlap should be preferred. The overall goal is a theoretical
model that allows to identify the optimal choice depending on the
algorithm and hardware characteristics.
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