
Towards Achieving Performance Portability
Using Directives for Accelerators

M. Graham Lopez∗, Verónica Vergara Larrea†
Wayne Joubert†, Oscar Hernandez∗

∗Computer Science and Mathematics Division
†National Center for Computational Sciences

Oak Ridge National Laboratory
Oak Ridge, TN

{lopezmg,vergaravg,joubert,hernandez}@ornl.gov

Azzam Haidar‡, Stanimire Tomov‡, Jack Dongarra‡
‡Innovative Computing Laboratory

University of Tennessee
Knoxville, TN

{haidar,tomov}@eecs.utk.edu
dongarra@cs.utk.edu

Abstract—In this paper we explore the performance portability
of directives provided by OpenMP 4 and OpenACC to program
various types of node architectures with attached accelerators,
both self-hosted multicore and offload multicore/GPU. Our goal
is to examine how successful OpenACC and the newer of-
fload features of OpenMP 4.5 are for moving codes between
architectures, how much tuning might be required and what
lessons we can learn from this experience. To do this, we use
examples of algorithms with varying computational intensities
for our evaluation, as both compute and data access efficiency
are important considerations for overall application performance.
We implement these kernels using various methods provided by
newer OpenACC and OpenMP implementations, and we evaluate
their performance on various platforms including both X86 64
with attached NVIDIA GPUs, self-hosted Intel Xeon Phi KNL, as
well as an X86 64 host system with Intel Xeon Phi coprocessors.
In this paper, we explain what factors affected the performance
portability such as how to pick the right programming model,
its programming style, its availability on different platforms, and
how well compilers can optimize and target to multiple platforms.

I. INTRODUCTION AND BACKGROUND

Performance portability has been identified by the U.S.
Department of Energy (DOE) as a priority design constraint
for pre-exascale systems such as those in the current CORAL
project as well as upcoming exascale systems in the next
decade. This prioritization has been emphasized in several
recent meetings and workshops such as the Application Readi-
ness and Portability meetings at the Oak Ridge Leadership
Computing Facility (OLCF) and the National Energy Research
Scientific Computing Center (NERSC), the Workshop on

This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

This paper is authored by an employee(s) of the United States Government
and is in the public domain. Non-exclusive copying or redistribution is
allowed, provided that the article citation is given and the authors and agency
are clearly identified as its source.

Portability Among HPC Architectures for Scientific Applica-
tions held at SC15 [1], and the DOE Centers of Excellence
Performance Portability Meeting [2].

Looking at the DOE CORAL project architectures [3], there
are two main node-architecture types: one with heterogeneous
accelerators represented by IBM Power based systems with
multiple NVIDIA Volta GPUs per node [4], [5]; and the
other with homogeneous third-generation Intel Xeon Phi based
nodes [6]. With both of these hardware “swimlanes” for
applications to target, writing performance portable code that
makes efficient use of all available compute resources in
both shared and heterogeneous memory spaces is at present a
non-trivial task. The latest OpenMP 4.5 specification defines
directives-based programming models that can target both
traditional shared memory execution and accelerators using
new offload capabilities. However, with growing support from
compilers, the degree to which these models succeed is not
yet clear in the context of the different node-architectures
enumerated above. While shared memory programming has
been available in, and the main focus of, the industry-standard
OpenMP specification for more than a decade, the recent 4.0
and 4.5 versions have introduced support for offloading to
heterogeneous accelerators. While the shared memory model
can support some types of self-hosted accelerators, the offload
model has been introduced to further support heterogeneous
accelerators with discrete memory address spaces.

In this paper we want to understand if there is a sin-
gle programming model (and which programming style) can
be used to program host multicore, homogeneous and het-
erogeneous accelerators and what the potential performance
or productivity tradeoffs might be. Here, we extend some
of our previous work [7] by porting algorithms of various
computational intensities to each of the shared memory and
offload style of OpenMP, as well as OpenACC with both
host and accelerator targeting. We use various compilers on
both homogeneous and heterogeneous hardware platforms
and compare the performance of the directives variants to
platform-optimized versions of the algorithms where available
as provided in 3rd-party libraries and use these as a “baseline”
for the best-case performance. Otherwise, we compare to

2016 Third Workshop on Accelerator Programming Using Directives

978-1-5090-6152-5 2016

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/WACCPD.2016.9

13

2016 Third Workshop on Accelerator Programming Using Directives

978-1-5090-6152-5 2016

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/WACCPD.2016.9

13

machine theoretical peak FLOPS (for compute-bound kernels)
or bandwidth (for memory-bound kernels). We also discuss
our experiences of using OpenMP 4.5 and OpenACC and
the issues that we identified which can affect performance
portability. We summarize these experiences to reflect the
current “state of the art” for achieving performance portability
using directives.

II. RELATED WORK

Perhaps the most portable option for developers writing
code is standardized language features such as co-arrays and
‘do concurrent,’ present in the Fortran standard [8] since 2008.
Recently, new parallelization features have been proposed [9]
for inclusion in the C++17 standard. However, due to the
slow-moving nature of standardization and implementations,
these features presently remain inadequate for accelerator
programming with heterogeneous compute capabilities and
memory hierarchies.

Two new efforts that have gained notoriety for performance
portability are Kokkos [10] and RAJA [11]. They both rely
on C++ language features that allow the application developer
to target multiple architectures with a single implementation.
However, these solutions are not available to C or Fortran ap-
plications unless foreign function interfaces are used, undoing
some of the convenience that these projects try to provide.

OpenCL is a programming model designed specifically for
performance portability across accelerator architectures, and it
has been evaluated in this context [12], [13], [14]. However,
OpenCL is a lower-level model than directives, requiring
explicit representation of the computational kernels in a style
similar to CUDA. While using programming models like
OpenCL can benefit performance, some application developers
find difficult to maintain or optimize the code for multiple
architectures, specially since some of its optimizations are not
portable.

Directives-based programming has been supported [15] on
the Intel Xeon Phi accelerator platform even before OpenMP
4.0. This model supported both “native” and “offload” modes
which, respectively, run code locally on the device or send
isolated kernels for execution in a manner similar to GPUs.
Additional directives-based models have included PGI com-
piler accelerator directives, CAPS HMPP, OpenMPC [16] and
hiCUDA [17]. Previous studies [18] of the directives-based
approach for GPU programming showed that, with additional
code transformations, performance comparable to that of hand-
tuned CUDA can be achieved in some cases [19].

As interest increases in performance portable program-
ming models for accelerators, there has been an increase
in published studies of the same. Some recent examples
include a thorough head-to-head comparison of the Open-
ACC and OpenMP programming styles [20], but no direct
performance evaluations were provided. Another examination
of both OpenMP and OpenACC was undertaken when the
SPEC ACCEL [21] benchmarks suite was ported [22] from
OpenACC to OpenMP. However, at this stage, only the Intel
Xeon Phi architecture was targeted by the OpenMP offload

directives, so there was no sense of performance portability
across multiple architectures provided. A more comprehensive
effort has been provided by Martineau et al. [23], where the
TeaLeaf mini-app was ported to many programming models
and covered host CPU, NVIDIA GPU, and Intel Xeon Phi
architectures. This was a broad effort to examine programming
models and architectures, but it only used a single application
example and did not focus on the suitability of directives
specifically for performance portability.

III. DIRECTIVE-BASED PROGRAMMING
MODELS FOR ACCELERATORS

A. OpenMP and OpenACC
OpenMP is the de-facto standard API for shared memory

programming with widespread vendor support and a large user
base. It provides a set of directives to manage, synchronize,
and assign work to threads that share data. Recently, with the
adoption of OpenMP 4.0 and 4.5, the OpenMP shared memory
programming model was extended to support accelerators,
and this substantially changed the programming model from
previous versions of the API. The OpenMP “fork-join” model
was extended with the introduction of device constructs for
programming accelerators. These constructs allow compute-
intensive code regions to be offloaded to accelerator devices
where new OpenMP environments can be instantiated. For
this, OpenMP 4.5 uses the target construct to create a
data environment on the device and then execute the code
region on that device. OpenMP 4.5 provides target data
directives that can map data to/from the accelerator and
update that data on both the host and accelerator within the
target data regions. In addition, OpenMP 4.0 added the
teams, distribute and SIMD directives that can be used
to describe different types of parallelism.

OpenACC is another specification focused on directive-
based ways to program accelerators. The OpenACC program-
ming model is similar to OpenMP 4.5, but its directives focus
on accelerator programming and are more “descriptive” than
“prescriptive” in nature. The idea is that it is best for the user
to describe the parallelism and data motion in a more general
way via directives so that the OpenACC compiler can have
more freedom to map the parallelism to the hardware. The
goal of this approach is to be able to map the parallelism of an
application to targets with different architectural characteristics
using the same source code in a performance portable style.
The user can also provide additional clauses (or hints) to the
compiler to further specify and improve this mapping and code
generation.

The OpenACC acc loop directive can distribute the loop
iterations across gangs, workers, or vectors. It is also possible
to use the acc loop directive to distribute the work to
gangs while still in worker-single and vector-single mode.
For OpenACC (and OpenMP), it is possible in some cases
to apply loop directives like collapse to multiple nested
loops to flatten the loop iteration space that we want to
parallelize. We can also specify a worker or vector clause
to distribute the iterations across workers or vectors. If we

1414

only specify acc loop, use acc kernels or use acc
parallel, the compiler has the option to decide how to map
the iteration space across gang, workers, or vectors. This is an
important feature of OpenACC because it gives the compiler
the freedom to pick how to map the loop iterations to different
loop schedules that take advantage of the target accelerator
architecture.

B. OpenACC and OpenMP 4.5 differences

There are still significant stylistic differences between these
two specifications, but they are converging in terms of features
and functionality. One of the most significant differences is
their philosophy: the “descriptive” philosophy of OpenACC
vs. the “prescriptive” approach of OpenMP 4.5 that may
impact the way code is written and the performance portability
of the resulting parallelism. For example, OpenMP 4.5 has
no equivalent for the acc loop directive in OpenACC. In
OpenACC, the developer can specify that a loop is parallel
and the compiler will determine how to distribute the loop it-
erations across gangs, workers, or vectors. In OpenMP 4.5, the
programmer has to specify that a loop is parallel but also how
the work in the loop should be distributed. This also applies
to any loop in a loop nest that is marked with acc loop
parallel. The only way to accomplish this in OpenMP is
to use the combined directive omp teams distribute
parallel for simd with a collapse clause, which
collapses the iteration space across perfectly nested loops. The
final schedule used is implementation-defined. For example,
Intel compilers that target SIMD instructions will pick one
team and several parallel threads with SIMD instructions.
Compilers that target GPUs will pick parallelizing over teams
and parallel threads or SIMD regions (executed by threads).
This works well for perfectly nested parallel loops, however,
it does not work when the loop nests are imperfect or have
function calls. At the time of this writing, it seems likely
that future OpenMP specifications will provide a directive
equivalent to acc loop.

C. Writing OpenMP 4.5 using a Performance
Portable style

To write OpenMP in a “Performance Portable style” we
need to exploit certain behaviors of the OpenMP 4.5 acceler-
ator model execution that are implementation-defined, and as
such, are left for the compiler to optimize the code for specific
architectures. This is described in [24]. For example, when
a teams construct is executed, a league of thread teams is
created, where the total number of teams is implementation-
defined but must be less than or equal to the number of teams
specified by the num_teams clause. If the user does not
specify the num_teams clause, then the number of teams
is left completely to the implementation.

Similarly, the maximum number of threads created per team
is implementation-defined. The user has the option to specify
a thread_limit clause that gives an upper bound to the
implementation-defined value for the number of threads per
team. The purpose of this implementation-defined behavior is

to allow the compiler or runtime to pick the best value for a
given target region on a given architecture. If a parallel region
is nested within a teams construct, the number of threads in
a parallel region will be determined based on Algorithm 2.1 of
the OpenMP 4.5 specification [25]. A user can request a given
number of threads for a parallel region via the num_threads
clause.

For work-sharing constructs such as distribute
and parallel for/do, if no dist_schedule or
schedule clauses are specified, the schedule type is
implementation-defined. For a SIMD loop, the number
of iterations executed concurrently at any given time is
implementation-defined, as well. The preferred number of iter-
ations to be executed concurrently for SIMD can be specified
via the simdlen and safelen clauses, respectively.

An example of writing OpenMP in “performance portable”
style can be seen when using the Intel 16.2 compiler, which
sets the default value for num_teams to one and attempts
to use all the number of threads available on the host. When
using an Intel Xeon Phi as an accelerator in offload mode, the
Intel compiler reserves one core on the co-processor to manage
the offloading, and uses all the remaining threads available
on the Intel Xeon Phi (Knights Corner) for execution. On the
other hand, the Cray 8.4.2 compiler, by default, uses one team
and one thread when running on the host. When running on
the GPU, however, if there is a nested parallel region within
a team, it defaults to one thread per parallel region. Writing
OpenMP in a performance portable style is made more difficult
when the user is required to force the compiler to use specific
number of teams (e.g. using num_teams(1).

Another example of an implementation-dependent behavior
can be observed in the LLVM compiler, which defaults to
schedule(static,1) for the parallel loops when exe-
cuted inside a target region that is offloaded to a GPU. The
OpenMP 4.5 Cray compiler implementation picks one thread
to execute all parallel regions within a target teams
region (the equivalent of num_threads(1)). Due to the
slightly different interpretations of the OpenMP specification,
it is crucial to understand how the specific compiler being
used implements a particular feature on different platforms,
and more studies are needed to understand this.

D. Representative Kernels
In order to study the performance portability of accelerator

directives provided by OpenMP 4 and OpenACC, we chose
kernels that can be found in HPC applications, and we
classified them loosely based on their computational intensity.

Dense Linear algebra: Dense linear algebra (DLA) is
well represented on most architectures in highly optimized
libraries based on BLAS and LAPACK. As benchmark cases
we consider the daxpy vector operation and the dgemv dense
matrix-vector product operation. For our tests we compare
our OpenMP 4 and OpenACC implementations against Intel’s
MKL implementation on the Xeon host CPU and Xeon Phi
platforms, and we compare against CUBLAS for the GPU-
accelerated implementation on Titan.

1515

Jacobi: Similarly to previous work [7] studying various
OpenMP 4 offload methods, we include here data for a Jacobi
iterative solver for a discretized, constant-coefficient partial
differential equation. This is a well-understood kernel for
structured grid (the 2-D case is represented here) and sparse
linear algebra computational motifs. Its behavior is similar to
that of many application codes, and the Jacobi kernel itself
is used, for example, as part of implicit grid solvers and
structured multigrid smoothers.

HACCmk: The Hardware Accelerated Cosmology Code
(HACC) is a framework that uses N-body techniques to
simulate fluids during the evolution of the early universe.
The HACCmk [26] microkernel is derived from the HACC
application and is part of the CORAL benchmark suite. It
consists of a short-force evaluation routine which uses an
O(n2) algorithm using mostly single-precision floating point
operations.

1) Parallelization of DLA kernels: Here we study two linear
algebra routines that are representative of many techniques
used in real scientific applications such as Jacobi iteration,
Gauss-Seidel methods, Newton-Raphson, among others. We
present an analysis of the daxpy and dgemv routines, each
with two different versions: Non-transpose and Transpose. The
daxpy and dgemv kernels are well-understood by compilers,
specified in the BLAS standard, and implemented in all BLAS
libraries. daxpy takes the form of y ← y + αx for vectors x
and y and scalar α. dgemv takes the form y ← βy + αAx
or alternatively y ← βy + αATx for matrix A, vectors x
and y, and scalars α and β. These are referred to as the
non-transpose (“N”) and transpose (“T”) forms, respectively.
The two routines are memory bound and their computational
patterns are representative of a wide range of numerical
methods. The main differences between them is that:

• daxpy is a single loop operating on two vectors of
contiguous data that should be easily parallelizable by the
compiler; daxpy is the more memory bandwidth-bound
operation (than dgemv) with unit stride data access;
daxpy on vectors of dimension n requires 2n element
reads from memory and n element writes;

• dgemv is two nested loops that can be parallelized
row- or column-wise, resulting in data accesses that are
contiguous or not, and where reductions are required or
not (depending on the transpose option as well).

Listing 1 shows the code used for the daxpy operation with
OpenMP 4 directives; the OpenACC version used similarly
straightforward directives based on the equivalent OpenACC
syntax. The code consists of a data region specifying arrays
to transfer to and from the accelerator and a parallel region
directing execution of the DAXPY loop to the device. For the
OpenMP 4.5 version we did not specify an OpenMP SIMD
directive in the inner loop since this vectorization pattern was
recognized by all the tested compilers (Intel, PGI and Cray).

Listing 2 shows the code for the dgemv operation, N
case. The code has a similar structure including a data region
but also several loops including a doubly-nested loop and

do ub le a lpha , ∗x , ∗y ;
i n t n ;
pragma omp t a r g e t d a t a map (t o : x [0 : n]) &

map (t o f r o m : y [0 : n])
{

i n t i ;
pragma omp t a r g e t teams
{

pragma omp d i s t r i b u t e p a r a l l e l f o r
f o r (i =0 ; i<m; i ++)

y [i] += a l p h a ∗ x [i] ;
} / / t eams

} / / d a t a

Listing 1. OpenMP 4 version of daxpy

do ub l e a lpha , be ta , ∗x , ∗y , ∗A;
i n t m, n ;
pragma omp t a r g e t d a t a map (t o :A[0 :m∗n]) &

map (t o : x [0 : n]) map (t o f r o m : y [0 :m]) &
map (a l l o c : tmp [0 :m])

{
i n t i , j ;
d o u b l e prod , x v a l ;
pragma omp t a r g e t teams
{

pragma omp d i s t r i b u t e p a r a l l e l f o r &
p r i v a t e (prod , xva l , j)

f o r (i =0 ; i<m; i ++) {
prod = 0 . 0 ;
f o r (j =0 ; j<n ; j ++)

prod += A[i +m∗ j]∗x [j] ;
tmp [i] = a l p h a ∗ prod ;

}
i f (b e t a == 0 . 0) {

pragma omp d i s t r i b u t e p a r a l l e l f o r
f o r (i =0 ; i<m; i ++)

y [i] = tmp [i] ;
} e l s e {

pragma omp d i s t r i b u t e p a r a l l e l f o r
f o r (i =0 ; i<m; i ++)

y [i] = b e t a ∗ y [i] + tmp [i] ;
} / / i f

} / / t eams
} / / d a t a

Listing 2. OpenMP4 version of dgemv/N

if statement. Additionally, the non-stride-1 access poses a
challenge for compilation to efficient code.

Here, in listing 3 we show the OpenACC equivalent code to
allow a direct comparison for this acclerator-portable use-case.

Our parallelization strategy consisted of giving the minimal
information to the compilers via OpenMP 4.5 and OpenACC
to give them the freedom to generate good optimized code to
target multiple architectures.

2) Parallelization of Jacobi: The Jacobi kernel utilized for
this study was derived from the OpenMP Jacobi example
available at [27]. The original code, written in Fortran, is paral-
lelized using OpenMP’s shared programming model (OpenMP
3.1). As described in [7], in order to compare different
programming models the Jacobi kernel was first transformed
to OpenMP’s accelerator programming model (OpenMP 4),
and then it was compared to the shared programming model
when offloaded to the GPU via the omp target directive.
In this work, the Jacobi kernel was also ported to OpenACC.
To port the shared OpenMP 3.1 code to OpenACC, we added
a parallel loop construct to each of the two main loops
inside the Jacobi subroutine. In addition, we added a data

1616

do ub l e a lpha , be ta , ∗x , ∗y , ∗A;
i n t m, n ;
pragma acc d a t a pcopy in (A[0 :m∗n]) &

pcopy in (x [0 : n]) pcopy (y [0 :m]) &
c r e a t e (tmp [0 :m])

{
i n t i , j ;
d o u b l e prod , x v a l ;
{

pragma acc p a r a l l e l l oo p gang &
p r i v a t e (prod , xva l , j)

f o r (i =0 ; i<m; i ++) {
prod = 0 . 0 ;
f o r (j =0 ; j<n ; j ++)

prod += A[i +m∗ j]∗x [j] ;
tmp [i] = a l p h a ∗ prod ;

}
i f (b e t a == 0 . 0) {

pragma acc p a r a l l e l l oo p gang
f o r (i =0 ; i<m; i ++)

y [i] = tmp [i] ;
} e l s e {

pragma acc p a r a l l e l l oo p gang
f o r (i =0 ; i<m; i ++)

y [i] = b e t a ∗ y [i] + tmp [i] ;
} / / i f

} / / t eams
} / / d a t a

Listing 3. OpenACC version of dgemv/N

construct outside the main do while loop to specify which
arrays and variables should be copied to the device (copyin),
which need to be copied back to the host using copyout
and allocated on the device via create. Finally, since the
solution computed in the device is needed for each iteration, an
update clause was added to the do while control loop. We
did not specify a loop schedule or if the the acc loop was
gang, worker or vector, to let the compiler pick the strategy
for optimization and performance portability.

Additional optimizations were explored to improve perfor-
mance. Given that the two main do loops are doubly-nested
loops, we added a collapse(2) to the parallel loop
directive. We also tested the performance impact of using the
-ta=tesla:pinned option at compile time to allocate data
in CUDA pinned memory, as well as the -ta=multicore
option to run OpenACC on the CPU host.

3) Parallelization of HACCmk: The HACCmk kernel [26]
as found in the CORAL benchmark suite has shared memory
OpenMP 3.1 implemented for CPU multicore parallelization.
There is one for loop over particles, parallelized with omp
parallel for, which contains a function call to the bulk of
the computational kernel. This function contains another for
loop over particles to make overall two nested loops over the
number of particles and the O(n2) algorithm as described by
the benchmark. A good optimizing compiler should be able
to automatically vectorize all of the code within the inner
function call to achieve good shared memory performance.

We have observed that the Cray 8.5.0 and Intel 16.0.0 com-
piler, for example, can successfully vectorize all the statements
of the inner procedure. This is the first instance where the
amount of parallelization obtained will critically depend on
the quality of the compiler implementation.

In order to transform this code to the OpenMP accelerator

offload model, we created a target region around the original
OpenMP 3.1 parallel region. Since this region contains two
main levels of parallelism, we decided to parallelize the outer
level across teams and OpenMP threads within the teams
using the distribute parallel for construct, which
allows the compiler to choose the distribution of iterations to
two dimensions of threads. In this case, the Cray compiler
automatically picked one thread for the parallel for as
an implementation-defined behavior when targeting a GPU.
The Intel compiler, in comparison, picked one team when
targeting self-hosted Xeon Phi processors. We relied on the
firstprivate default for scalars in the target region and the
map(tofrom:*) default map for the rest of the variables,
except for xx, yy and zz arrays, which are needed only in the
accelerator.

We added an omp declare target construct to the
Step10 subroutine which is called from within the outer loop.
For the inner level of parallelism, we explicitly added an omp
simd construct with a reduction clause on the variables
xi, yi and zi inside the Step10 subroutine to provide an
extra hint to the compiler to vectorize the inner loop. We did
this in order to ensure maximum vectorization since most of
the performance of this kernel depends on vectorization for
multicore architectures.

For the OpenACC version of the HACCmk microkernel,
we parallelized the outer loop level with the acc parallel
loop which calls the subroutine Step10. However, the Cray
8.5.0 OpenACC compiler would not allow a reduction
clause on the acc loop vector construct within an acc
routine gang region. This required us to manually inline
the entire subroutine. This is an OpenACC implementation
problem, as OpenACC 2.5 allows this. The PGI 16.5 compiler
was able to apply the reduction correctly. We inlined the
routine to be able to experiment with both compilers (PGI
and Cray) and have a single version of the code. The inner
loop was marked with acc loop with a private and reduction
clause. For the OpenACC version we did not specify any loop
schedule in the acc loop to allow the compiler pick the
best schedule for the target architecture (e.g., in this case the
GPU or multicore). We did this to both test the quality of the
optimization of the OpenACC compiler and to measure how
performance portable is OpenACC across architectures.

IV. RESULTS

In this section, we present results obtained from porting the
previously described kernels to directives-based programming
models and then examine some issues affecting their perfor-
mance portability. For this paper, we use the following systems
for the evaluations.

The OLCF Titan [28] Cray XK7 contains AMD Interlagos
host CPUs connected to NVIDIA K20X GPUs. For the OLCF
Titan system, a compute node consists of an AMD Interlagos
16-core processor with a peak flop rate of 140.2 GF and a peak
memory bandwidth of 51.2 GB/sec, and an NVIDIA Kepler
K20X GPU with a peak single/double precision flop rate of
3,935/1,311 GF and a peak memory bandwidth of 250 GB/sec.

1717

pragma omp d e c l a r e t a r g e t
vo id
S tep10 (i n t count1 , f l o a t xxi , f l o a t yyi ,

f l o a t z z i , f l o a t f s r rmax2 , f l o a t mp rsm2 ,
f l o a t ∗xx1 , f l o a t ∗yy1 , f l o a t ∗zz1 ,
f l o a t ∗mass1 , f l o a t ∗dxi , f l o a t ∗dyi ,
f l o a t ∗ d z i) ;

pragma omp end d e c l a r e t a r g e t
i n t main () {
. . .

pragma omp t a r g e t teams p r i v a t e (dx1 , dy1 , dz1)&
pragma omp map (t o : xx [0 : n] , yy [0 : n] , zz [0 : n])
pragma omp d i s t r i b u t e p a r a l l e l f o r
f o r (i = 0 ; i < c o u n t ; ++ i) {

Step10 (n , xx [i] , yy [i] , zz [i] , f s r rmax2 ,
mp rsm2 , xx , yy , zz , mass , &dx1 ,
&dy1 , &dz1) ;

vx1 [i] = vx1 [i] + dx1 ∗ f c o e f f ;
vy1 [i] = vy1 [i] + dy1 ∗ f c o e f f ;
vz1 [i] = vz1 [i] + dz1 ∗ f c o e f f ;

}
. . .
}
vo id
S tep10 (. . .) {
. . .

pragma omp simd p r i v a t e (dxc , dyc , dzc , r2 , m, f) &
pragma omp r e d u c t i o n (+ : xi , y i , z i)
f o r (j = 0 ; j < c o u n t 1 ; j ++) {

dxc = xx1 [j] − x x i ;
dyc = yy1 [j] − y y i ;
dzc = zz1 [j] − z z i ;
r2 = dxc ∗ dxc + dyc ∗ dyc + dzc ∗ dzc ;
m = (r2 < f s r r m a x 2) ? mass1 [j] : 0 . 0 f ;
f = powf (r2 + mp rsm2 , −1.5) −

(ma0 + r2 ∗(ma1 + r2 ∗(ma2 +
r2 ∗(ma3 + r2 ∗(ma4 + r2∗ma5))))) ;

f = (r2 > 0 . 0 f) ? m ∗ f : 0 . 0 f ;
x i = x i + f ∗ dxc ;
y i = y i + f ∗ dyc ;
z i = z i + f ∗ dzc ;

}
. . .
}

Listing 4. OpenMP 4.5 version of HACCmk

For this platform, Cray compilers are used, with versions 8.4.5
and 8.5.0. See [7],

The NICS Beacon Intel Phi Knights Corner system [29]
compute nodes contain two 8-core Xeon E5-2670 processors
and four 5110P Intel Phi processors. Each Intel Xeon pro-
cessor has a peak flop rate of 165 GF and a peak memory
bandwidth of 51.2 GB/sec, which translates to combined peak
rates for the two CPUs of 330 GF and 102.4 GB/sec. Each Intel
Xeon Phi processor has peak double precision performance of
1,011 GF and a peak memory bandwidth of 320 GB/sec. For
the results presented here, Intel compilers were used on this
system, with version 16.0.1 from the Intel XE Compiler suite
version 2016.1.056 and version 16.0.3 20160415.

The Intel Xeon Phi KNC 7120 processor used for the DLA
evaluations is composed of 64 processors running at 1.24 GHz
with a maximum memory bandwidth of 352 GB/sec; the KNL
7250 uses 68 processors running at 1.4 GHz and an MCDRAM
memory bandwidth of 420+ GB/sec. The Intel Xeon Haswell
processor E5-2650 v3 is composed of 10 cores running at 2.3
GHz (3 GHz max turbo frequency) with a maximum memory
bandwidth of 68 GB/sec.

i n t main () {
. . .

pragma acc p a r a l l e l p r i v a t e (dx1 , dy1 , dz1) &
pragma acc copy (vx1 , vy1 , vz1) &
pragma acc cop y i n (xx [0 : n] , yy [0 : n] , zz [0 : n])
pragma acc loop gang
f o r (i = 0 ; i < c o u n t ; ++ i) {
. . .

pragma acc loop v e c t o r &
pragma acc p r i v a t e (dxc , dyc , dzc , r2 , m, f) &
pragma acc r e d u c t i o n (+ : xi , y i , z i)
f o r (j = 0 ; j < n ; j ++) {

dxc = xx [j] − xx [i] ;
dyc = yy [j] − yy [i] ;
dzc = zz [j] − zz [i] ;
r2 = dxc ∗ dxc + dyc ∗ dyc + dzc ∗ dzc ;
m = (r2 < f s r r m a x 2) ? mass [j] : 0 . 0 f ;
f = powf (r2 + mp rsm2 , −1.5) −

(ma0 + r2 ∗(ma1 + r2 ∗(ma2 +
r2 ∗(ma3 + r2 ∗(ma4 + r2∗ma5))))) ;

f = (r2 > 0 . 0 f) ? m ∗ f : 0 . 0 f ;
x i = x i + f ∗ dxc ;
y i = y i + f ∗ dyc ;
z i = z i + f ∗ dzc ;

}
dx1 = x i ;
dy1 = y i ;
dz1 = z i ;
vx1 [i] = vx1 [i] + dx1 ∗ f c o e f f ;
vy1 [i] = vy1 [i] + dy1 ∗ f c o e f f ;
vz1 [i] = vz1 [i] + dz1 ∗ f c o e f f ;

}
. . .
}

Listing 5. OpenACC 2.5 version of HACCmk

A. Dense Linear Algebra

We ran an extensive set of experiments to illustrate our
findings. Figures 1-8 illustrate the performance results in
double precision (DP) arithmetic for the daxpy, the dgemv
“N” and the the dgemv “T” kernels, respectively, for the
four types of hardware and in both offload and self-hosted
configurations. We use the same code to show its portability,
sustainability, and ability to provide close to peak performance
when used in self-hosted model, on a KNC 7120, KNL 7250,
CPU and when using the offload model on the KNC 7120 and
a K20X GPU. We also present the OpenACC implementation
using either the Cray or the PGI compiler.

The basic approach to performance comparisons for the
DLA kernels is to compare performance for a range of
problem sizes, using custom kernels written with OpenMP or
OpenACC directives and, when appropriate, comparisons with
system libraries (MKL for Intel processors and cuBLAS for
GPUs). The figures show the portability of our code across
a wide range of heterogeneous architectures. In addition to
the portability, note that the results confirm the following
observations. Our implementation achieves good scalability,
is competitive with the vendor optimized libraries, and runs
close to the peak performance. In order to evaluate the
performance of an implementation we rate its performance
compared to what we refer to as practical peak which is the
peak performance that can be achieved if we consider the
computation time is zero. For example, the daxpy routine
reads the two vectors x and y and then writes back y. Overall,
it reads and writes 3n elements (that in DP equals to 24n

1818

Matrix size
1.e5 5.e5 1.e6 5.e6 1.e7 5.e7 1.e8

G
flo

p/
s

0

2

4

6

8

10

12

14

16

18
Performance study of the daxpy on GPU K20X

cuBLAS v7.5
Our using Cray 8.5.0 & OMP 4.0 offload
Our using Cray 8.5.0 & OpenACC offload
Our using PGI 16.5 & OpenACC offload
Roofline based on the achievable Bandwidth 192 GB/s

Fig. 1. Performance measurement of the daxpy kernel on GPU K20X using
three different method of offloading and comparing to the vendor optimized
cuBLAS Library.

bytes) and performs 2n operations. So, if we consider that
the computation time is near zero and the operation is entirely
memory bandwidth bound, then the time to perform the daxpy
operation will be the time to R/W the 24n bytes which
is B/(24n) seconds, where B denotes the achievable peak
bandwidth measured in Bytes/s. Thus, the peak performance is
P = flops/time = B/12. To show this, we plot the practical
peak performance that each of these routines can achieve based
on the achievable bandwidth B. The value of B is noted in the
graphs. The roofline bandwidth limit is shown for each case,
and the performance is reported in Gflop/s.

Our goal is to perform as many DLA operations as possible
on the discrete accelerator between data transfers with the
host. For this reason, we present timings for the kernel
only, without the transfers. Experiments show that the first
kernel, from a sequence of kernel calls, may be slower and
thus unrepresentative for the rest; therefore, we perform a
“warmup” kernel call after the transfer and prior to the actual
“timing call,” to eliminate this effect. Also, to ensure the
kernel has completed before the final timer call, a single-word
update to host is performed to cause a wait for the possibly
asynchronous kernel to complete.

1) daxpy: For the daxpy test case, our implementation
demonstrates performance portability across all tested hard-
ware. The code of this routine is simple: it operates on vectors
(i.e., contiguous data) and thus the compiler is able to perform
an excellent job optimizing it for the target hardware. We
also compared the self-hosted model on KNC with the offload
model and, as illustrated in Figure 2, both implementations
reach the same performance. Similarly, the same code per-
forms well on the K20X GPU, a recent Xeon CPU, and the
recent Xeon Phi KNL 7250.

2) dgemv: Figures 4-8 show a performance comparison
for the dgemv ”non-transpose” routine of our offload model
on KNC vs. both: our code running in self-hosted model
on the KNC and the Intel MKL dgemv in native mode on
the KNC. Our self-hosted results are important since they
allow us to understand the performance of our code despite

the effect of the offload directives. The comparison with the
self-hosted and the MKL native shows the efficiency of the
OpenMP 3.1 directive in getting performance close to the
optimized routine. The comparison between our model (self-
hosted vs. offload) shows the portability behavior of the code
and the possible overhead that could be introduced by the
offload model. As shown, the offload model does not affect
the performance of the kernel in any of the dgemv cases. More
impressive is that this behavior has been demonstrated across
multiple platforms (GPUs, KNC, etc). We note that the lower
performance behavior shown for the dgemv non-transpose
case on the KNC is due to the fact that the parallelization is
implemented in such a way that every thread is reading a row
of the matrix. This means that every thread reads data that is
not contiguous in memory. On the CPU and KNL, we believe
that due to the size of the L3 level of cache and to the hardware
prefetch, the code can still give acceptable results close to
the MKL library and about 70% of the achievable peak.
Because of the lack of hardware prefetching and the complex
memory constraints of KNC, one might propose writing a
more complex and parametrized kernel to reach better results.
For the GPU case, the results are mixed; the Cray compiler,
with OpenMP 4 or OpenACC, is able to nearly match the
cuBLAS performance, but the PGI compiler with OpenACC
generates poorly performing code. The dgemv transpose case
is considered more data access friendly where each thread
reads a column of the matrix meaning reading consecutive
elements. For this case, we can see that our implementation
performs as well as the libraries and achieves performance
numbers close to the peak on all the considered platforms.
Due to the simple structure of the code and stride-1 accesses,
all compiler and directive combinations performed near peak
performance on the GPU.

B. Jacobi
The results obtained from comparing the performance of

OpenMP 3.1 (shared memory) with the OpenMP 4.0 (acceler-
ator) and OpenACC versions of the Jacobi kernel are shown

Matrix size
1.e5 5.e5 1.e6 5.e6 1.e7 5.e7 1.e8

G
flo

p/
s

0

2

4

6

8

10

12

14

16

18
Performance study of the daxpy on Xeon Phi 7210

Intel MKL native (16.0.3)
Our with OMP 4.0 (e.g., offload model)
Our with OMP 4.0 self hosted OMP 3.1 (e.g., native model)
Roofline based on the achievable Bandwidth 200 GB/s

Fig. 2. Performance measurement of the daxpy kernel on Xeon Phi KNC
7120 using the offload model and comparing to itself in native model and to
the vendor optimized Intel MKL Library.

1919

Matrix size
1.e5 5.e5 1.e6 5.e6 1.e7 5.e7 1.e8

G
flo

p/
s

0
5

10
15
20
25
30
35
40
Performance comparison of the daxpy on CPU and KNL

KNL 7250 Roofline based on the achievable Bandwidth of 420 GB/s
Our with OMP 4.0 self hosted OMP 3.1 on KNL 7250
Intel MKL (16.0.3) on KNL 7250
E5-2650 v3 Roofline based on the achievable Bandwidth of 88 GB/s
Our with OMP 4.0 self hosted OMP 3.1 on CPU E5-2650 v3 Haswell
Intel MKL (16.0.3) on CPU E5-2650 v3 Haswell

Fig. 3. Performance measurement of the daxpy kernel on either a Xeon Phi
KNL 7250 or recent CPU E5-2650 v3 running OMP4 as native model and
comparing it to the vendor optimized Intel MKL Library.

Matrix size
1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

G
flo

p/
s

0
5

10
15
20
25
30
35
40
45
50

Performance study of the dgemv "N" on GPU K20X

cuBLAS v7.5
Our using Cray 8.5.0 & OMP 4.0 offload
Our using Cray 8.5.0 & OpenACC offload
Our using PGI 16.5 & OpenACC offload
Roofline based on the achievable Bandwidth 192 GB/s

Fig. 4. Performance measurement of the dgemv ”N” kernel on GPU K20X
using three different method of offloading and comparing to the vendor
optimized cuBLAS Library.

in Figure 9. The OpenACC version of the kernel achieves the
highest performance for both the PGI 16.5 and CCE 8.5.0. The
OpenMP 4 (accelerator) version when offloaded to the GPU
results in better performance than the OpenMP 3.1 (shared)
version executed natively on the Intel Xeon Phi, and than
the OpenMP 4 (accelerator) version when executed on the
Intel Xeon Phi and offloaded to itself. When running the
OpenMP 3.1 (shared) and OpenMP 4 (accelerator) version in
native mode, we see similar performance results, though the
shared version results in slightly higher performance. For this
kernel, the lowest performance was observed when running the
OpenMP 4 (accelerator) version on the host and offloading to
the Intel Xeon Phi.

Ref. [7] explains in detail the two different execution
modes possible on our two test platforms. For Titan, there
are standard using only the CPU, and offload running the
executable on the CPU and offloading to the GPU. For Beacon,
three different execution modes are possible: standard running
only on the CPU, offload running the executable on the CPU
and offloading to the Intel Xeon Phi, and also native or self-

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

G
flo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

Performance study of the dgemv "N" on Xeon Phi 7120
Intel MKL native (16.0.3)
Our with OMP 4.0 (e.g., offload model)
Our with OMP 4.0 self hosted OMP 3.1 (e.g., native model)
Roofline based on the achievable Bandwidth 200 GB/s

Fig. 5. Performance measurement of the dgemv ”N” kernel on Xeon Phi
KNC 7120 using the offload model and comparing to itself in self-hosted
model and to the vendor optimized Intel MKL Library.

Matrix size
1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

G
flo

p/
s

0
5

10
15
20
25
30
35
40
45
50

Performance study of the dgemv "T" on GPU K20X

cuBLAS v7.5
Our using Cray 8.5.0 & OMP 4.0 offload
Our using Cray 8.5.0 & OpenACC offload
Our using PGI 16.5 & OpenACC offload
Roofline based on the achievable Bandwidth 192 GB/s

Fig. 6. Performance measurement of the dgemv “T” kernel on GPU K20X
using three different method of offloading and comparing to the vendor
optimized cuBLAS Library.

hosted mode running on the Intel Xeon Phi directly.
In the case of OpenACC version, the optimizations de-

scribed in III-D2 did not result in a significant perfor-
mance improvement. The results shown here include the
collapse(2) directive for the first loop in the jacobi sub-
routine. We also tried using the -ta=multicore directive
for OpenACC, and observed that it was not working correctly.
Results from those experiments are not included here.

C. HACCmk
Figure 10 shows the HACCmk speedup of the OpenMP

4.5 (offload) and OpenACC versions when running on an
NVIDIA K20x GPU as compared to the OpenMP shared
memory running on a Bulldozer AMD using 8 host CPU
threads since each floating point unit is shared between 2 of the
16 physical cores. The OpenMP 4.5 and OpenACC versions
always outperform the shared memory version running on the
CPU. This is what we would expect given the K20x compute
capabilities. For the Cray compiler, the speedups achieved
when using OpenMP 4.5 offload and OpenACC are similar
for small problem sizes, but there is a gap when the problem

2020

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

G
flo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

Performance study of the dgemv "T" on Xeon Phi 7120
Intel MKL native (16.0.3)
Our with OMP 4.0 (e.g., offload model)
Our with OMP 4.0 self hosted OMP 3.1 (e.g., native model)
Roofline based on the achievable Bandwidth 200 GB/s

Fig. 7. Performance measurement of the dgemv “T” kernel on Xeon Phi
KNC 7120 using the offload model and comparing to itself in self-hosted
model and to the vendor optimized Intel MKL Library.

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

G
flo

p/
s

0
10
20
30
40
50
60
70
80
90

100
110
120

Performance comparison of the dgemv on KNL 7250

Roofline based on the achievable Bandwidth 420GB/s
dgemv T our with OMP 4.0 self hosted OMP 3.1
dgemv T Intel MKL (16.0.3)
dgemv N our with OMP 4.0 self hosted OMP 3.1
dgemv N Intel MKL (16.0.3)

Fig. 8. Performance measurement of the dgemv kernels both “N” and “T”
on a Xeon Phi KNL 7250 running OMP4 as self-hosted model and comparing
it to the vendor optimized Intel MKL Library.

size increases. There can be two explanations for this. One
is that the forced manual inlining (see Sec. III-D3) helped
the OpenACC compiler pick better loop schedules for the
loops, with an additional possibility being that this helped to
eliminate temporary variables within the gang that are mapped
to shared memory, reducing the shared memory footprint. We
observed less OpenACC speedup when using the PGI 16.5
compiler. This may be related to the way PGI scheduled the
acc loops or if it was able to use the GPU shared memory
efficiently and resource utilization.

At the time of the writing, when we tried to use OpenMP 4.5
offload and OpenACC to run on the the AMD processor, we
did not see good speedups. The Cray implementation serialized
the OpenMP 4.5 version and it did not support this mode for
OpenACC. The PGI 16.5 performance was slower than the
baseline OpenMP 3.1 version running on the AMD processor.
We think it may be related on the quality of the code generated
for the SSE instructions such as the support of the powf vector
intrinsic since this code is very sensitive for the compiler to
generate good vectorization. When we increased the number

Fig. 9. Jacobi kernel. Memory bandwidth of OpenMP 3.1 (shared memory),
OpenMP 4 (offload) and OpenACC versions of Jacobi when running on
Beacon and Titan. The OpenMP 3.1 (shared memory) model was measured
on a 16-core AMD Opteron processor using 16 threads.

Fig. 10. HACCmk kernel. Speedup of OpenMP 4.5 (offload) and OpenACC
running on GPUs and Xeon Phi when compared to OpenMP shared memory
running on a Bulldozer AMD using 8 threads.

of threads using the extension ACC_NUM_CORES we did not
see any improvement.

When HACC OpenMP 4.5 self-hosted on the Xeon Phi sys-
tem and running on 240 OpenMP threads, we saw significant
improvements over the baseline. The Intel compiler was able
to vectorize all the instructions in the Step10 routine. As the
problem sized increased, we see significant improvements in
performance because it is able to exploit the long vector units
on the Xeon Phi.

V. DISCUSSION AND CONCLUSIONS

Directives like OpenMP 4 and OpenACC are designed
to give programmers a way to express parallelism in their
applications so that compilers can map this parallelism to
significantly different hardware architectures. Because this
is a difficult expectation, compiler implementations are still
determining the optimal ways to fulfill these performance
portability requirements. This means that application devel-
opers must be aware of general differences that arise from
using directives on different platforms and compilers.

2121

There are several examples of “lessons learned” that applied
to all of the kernels that we studied. All of these apply
to the compiler versions used on this study. The value for
OpenMP teams will be supplied by the Cray compiler, and
a single thread is supplied for parallel for. However,
the Intel compiler will choose 1 team and multiple threads for
parallel for. Similarly, the Cray compiler maps SIMD
parallelization to a GPU threadblock, while the Intel compiler
converts SIMD in actual vector instructions for the Xeon Phi.
These types of differences are of course necessary to map to
varying architectures, but to achieve optimal portability, the
application developer must be aware of them.

During the development of this study, we made other
small discoveries that turned out to be critical to achieving
performance portability and the results that we have presented.
In the following section, we explain some of these in the
context of the application kernel that exposed the finding.

Lessons from DLA
We found with the DLA that performance portability is

possible using directives across multiple architectures when
we have good optimizing compilers. For DAXPY, all pro-
gramming approaches for all tested platforms (OpenMP4/Phi,
OpenMP3.1/Phi, OpenMP4/GPU, OpenACC/GPU) were able
to roughly track the performance of the respective optimized
linear algebra libraries (MKL, cuBLAS). For DGEMV/T the
same was true. However, for DGEMV/N, for some cases
this was true (OpenMP3.1/Phi 7250, OpenMP4/GPU/Cray
compiler, OpenACC/GPU/Cray compiler), but for other cases
(OpenMP4/Phi 7120, OpenMP3.1/Phi 7120, OpenACC/G-
PU/PGI compiler) the user-written code highly underper-
formed the optimized libraries due to the difficulty of the
compiler optimizing the non-stride-1 arithmetic as well as
slightly more complex code logic having to do with multiple
parallel loops.

For the well-performing cases, the code for the respective
methods was written in a natural way without requiring exces-
sive effort for manual code transformations. Since the kernels
are very fundamental in nature, it seems likely that compiler
implementors would include these or similar cases in their
performance regression suites, hence the good performance.
For DAXPY and DGEMV/N, this is a success story for the
compilers and directives-based methods since they were all
able to generate nearly-optimal code. For DGEMV/T however,
the added complexities created challenges which for some
compilers were insurmountable. We also learned that the
omp simd directive is not needed to achieve performance
portability when compilers have good automatic vectorization
capabilities.

Lessons from Jacobi
Jacobi is another example where we were able to achieve

good performance portability across architectures using the
OpenMP 4.5 accelerator programming model. Performance
depends on OpenMP programming style and on which hard-
ware mode is being used. The best performance was achieved
when we ran OpenMP 4.5 in Xeon Phi self-hosted mode and
when OpenMP 4.5 was used in the offloading for GPUs.

We also learned that OpenACC as a programming model
is usually simpler to use than OpenMP. Both the PGI and
CCE implementations of OpenACC were able to achieve good
performance with minimal effort. When converting the code to
OpenACC, the PGI compiler was able to automatically insert
the loop schedules and levels of parallelism such as gang
and vector directives on both of the main loops inside the
kernel. One of the goals of OpenACC directives is to give this
flexibility to compiler. The drawback of using OpenACC is
its poor or lacking implementations on multiple architectures
(such as Xeon Phi or CPU). This impacts its usability for
performance portability as of now.

When we tried offloading both OpenACC and OpenMP
4.5 to CPU multicores, this resulted in poor performance
due to implementations not being optimized yet in the Cray
and PGI compilers. We were able to successfully compile
OpenMP 4.5 on Xeon Phi. The performance is good when
running in OpenMP 4.5 accelerator model on self-hosted
mode vs offloading target regions to the Xeon Phi from
CPU. OpenMP 4.5 accelerator model was able to achieve
comparable performance to OpenMP 3.1 in self-hosted mode,
which supports the idea that the OpenMP 4.5 accelerator
model is performance portable. This was very encouraging as
we can use the OpenMP accelerator model as a performance
portable programming style that can achieve good performance
across multiple architectures.

Lessons from HACCmk When using the same compiler,
the performance gap between OpenACC and OpenMP 4.5
can be small when the OpenMP 4.5 parallelization strategy
(e.g. loop schedules, etc) matches the one picked by the
OpenACC compiler. Also their difference in performance is
small when using the same compiler to compile both versions.
One of our findings is that the performance of OpenACC
depends on the ability of the compiler to generate good
code. We observed a significant performance variation between
OpenACC compiled with Cray 8.5.0 and with PGI 16.5. Fur-
ther investigation showed a significant performance variation
when we tried PGI 16.7. This tells us that compilers play a
significant role on the the level of performance portability of
a programming model. When we compiled OpenMP 4.5 to
run self-hosted on the Xeon Phi, the Intel compiler ignores
the target directives. These includes omp teams, omp
distribute, omp declare target or any form of
a target combined directives. Because of this behavior, we
had to transform the combined directive omp distribute
parallel for to individual directives omp distribute
and omp parallel for.

The omp simd directive is extremely useful for perfor-
mance portability, not only to specify parallelism for offload-
ing to accelerators, but depending on the implementation,
it can be critical to achieve good levels of vectorization
across compilers when there exist different levels of support
for automatic vectorization. Compilers are not yet able to
consistently identify these opportunities in all cases, so it
must be used to ensure that vectorization is used where
appropriate. Although, GPUs do not have vector units, the

2222

SIMD directive can be helpful to identify potential very fine-
grained parallelism that can be executed by SMT threads
(e.g. GPU warps) and the programmers can increase the
performance portability of the model. We were able to achieve
good OpenMP 4.5 performance on GPUs and self-hosted Xeon
Phi. However, it would be helpful if future Intel compilers
support the combined target directives.

VI. FUTURE WORK

There is a wealth of future study that presents itself in
this area. Some straightforward technical tasks are to further
round out the portability aspect of the exploration with more
platforms and implementations. Unfortunately, these were
out of scope for the current study due to limited public
availability or functionality of implementations. Additionally,
exploring more examples from application kernels such as
those found in the CORAL and other application readiness
programs would tell us more about real-world effectiveness of
these directives based approaches for performance portability.
However, finding or generating architecture-specific, hand-
optimized versions of these custom kernels is much more
difficult in these cases.

We observed sensitivity of the performance (and therefore
overall performance portability) to not only the choice of a
programming model, its programming style, and quality of
the compiler implementation, but also the compilation opti-
mizations requested by the user. A thorough parameter space
exploration of compiler options, directive clause arguments,
and runtime environment setup is necessary to more fully
understand these effects. Unfortunately, the requirement of
manually specifying such parameters is typically antithetical to
a performance portable strategy. When such a large parameter
space exists, autotuning presents itself as a likely candidate
for improvement of the model, both from a performance as
well as usability point of view. Such a parameter space explo-
ration could also better inform the SPEC ACCEL committee’s
prescriptions for writing performance portable OpenMP 4 as
described in Sec. III-C, and help determine if these guidelines
are sufficient for application kernels.

This paper focused heavily on the performance and porta-
bility of expressing the fine-grained parallelism of application
kernels using directives. However, various coarse-grained par-
allelization schemes such as tasking are needed to efficiently
address multiple levels of compute and memory heterogene-
ity. How to productively couple these different models of
expressing parallelism and the performance implications of
the choices made about granularity, etc., are not yet well-
understood, but thought to be critical to achieving exascale
performance for real-world applications.

VII. ACKNOWLEDGEMENTS

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, under contract number DE-
AC05-00OR22725.

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.

This material is based upon work supported by the National
Science Foundation under Grant Awards No. 1137097, No.
ACI-1339822 and by the University of Tennessee through
the Beacon Project. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation or the University of Tennessee.

Research sponsored by the Laboratory Directed Research
and Development Program of Oak Ridge National Laboratory,
managed by UT-Battelle, LLC, for the U. S. Department of
Energy. The project was sponsored via the LDRD project
7897: ”SharP: SHARed data-structure centric Programming
paradigm for Scientific Applications”

REFERENCES

[1] T. Williams, K. Antypas, and T. Straatsma, “2015 workshop on
portability among HPC architectures for scientific applications,”
in The International Conference for High Performance Computing,
Networking, Storage, and Analysis, November 2015. [Online]. Available:
http://hpcport.alcf.anl.gov/

[2] R. Neely, J. Reinders, M. Glass, R. Hartman-Baker, J. Levesque,
H. Ah Nam, J. Sexton, T. Straatsma, T. Williams, and C. Zeller,
“DOE centers of excellence performance portability meeting,” https:
//asc.llnl.gov/DOE-COE-Mtg-2016/, 2016.

[3] “CORAL fact sheet,” http://www.anl.gov/sites/anl.gov/files/CORAL
[4] “Summit: Scale new heights. discover new solutions.”

https://www.olcf.ornl.gov/summit/.
[5] “Sierra advanced technology system,”

http://computation.llnl.gov/computers/sierra-advanced-technology-
system.

[6] “Aurora,” http://aurora.alcf.anl.gov/.
[7] V. Vergara Larrea, W. Joubert, M. G. Lopez, and O. Hernandez,

“Early experiences writing performance portable OpenMP 4 codes,”
in Proc. Cray User Group Meeting, London, England. Cray
User Group Incorporated, May 2016. [Online]. Available: https:
//cug.org/proceedings/cug2016 proceedings/includes/files/pap161.pdf

[8] J. Reid, “The new features of fortran 2008,” SIGPLAN Fortran
Forum, vol. 27, no. 2, pp. 8–21, Aug. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1408643.1408645

[9] J. Hoberock, “Working draft, technical specification for c++ ex-
tensions for parallelism,” http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2014/n4071.htm, 2014.

[10] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202 – 3216, 2014, domain-Specific Languages and High-Level
Frameworks for High-Performance Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731514001257

[11] R. D. Hornung and J. A. Keasler, “The RAJA portability layer: Overview
and status,” https://e-reports-ext.llnl.gov/pdf/782261.pdf, 2014.

[12] E. Calore, S. F. Schifano, and R. Tripiccione, “On Portability, Perfor-
mance and Scalability of an MPI OpenCL Lattice Boltzmann Code,”
Euro-Par 2014: Parallel Processing Workshops, Pt Ii, vol. 8806, pp.
438–449, 2014.

[13] S. J. Pennycook and S. A. Jarvis, “Developing Performance-Portable
Molecular Dynamics Kernels in OpenCL,” 2012 Sc Companion: High
Performance Computing, Networking, Storage and Analysis (Scc), pp.
386–395, 2012.

[14] C. Cao, M. Gates, A. Haidar, P. Luszczek, S. Tomov, I. Yamazaki,
and J. Dongarra, “Performance and portability with opencl for
throughput-oriented hpc workloads across accelerators, coprocessors,
and multicore processors,” in Proceedings of the 5th Workshop on
Latest Advances in Scalable Algorithms for Large-Scale Systems, ser.

2323

ScalA ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 61–68.
[Online]. Available: http://dx.doi.org/10.1109/ScalA.2014.8

[15] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High Performance
Programming. Burlington, MA: Morgan Kaufmann, 2013.

[16] S. Lee and R. Eigenmann, “OpenMPC: extended OpenMP program-
ming and tuning for GPUs,” in Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’10. IEEE Computer Society, 2010, pp.
1–11.

[17] T. D. Han and T. S. Abdelrahman, “hi CUDA: a high-level directive-
based language for GPU programming,” in Proceedings of 2nd Workshop
on General Purpose Processing on Graphics Processing Units. ACM,
2009, pp. 52–61.

[18] O. Hernandez, W. Ding, B. Chapman, C. Kartsaklis, R. Sankaran, and
R. Graham, “Experiences with high-level programming directives for
porting applications to GPUs,” in Facing the Multicore-Challenge II.
Springer, 2012, pp. 96–107.

[19] S. Lee and J. S. Vetter, “Early evaluation of directive-based GPU
programming models for productive exascale computing,” in Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE Computer Society Press, 2012,
p. 23.

[20] S. Wienke, C. Terboven, J. C. Beyer, and M. S. Müller, Euro-Par 2014
Parallel Processing: 20th International Conference, Porto, Portugal,
August 25-29, 2014. Proceedings. Cham: Springer International
Publishing, 2014, ch. A Pattern-Based Comparison of OpenACC and
OpenMP for Accelerator Computing, pp. 812–823. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-09873-9 68

[21] G. Juckeland, W. Brantley, S. Chandrasekaran, B. Chapman, S. Che,
M. Colgrove, H. Feng, A. Grund, R. Henschel, W.-M. W. Hwu,
H. Li, M. S. Müller, W. E. Nagel, M. Perminov, P. Shelepugin,
K. Skadron, J. Stratton, A. Titov, K. Wang, M. Waveren, B. Whitney,
S. Wienke, R. Xu, and K. Kumaran, High Performance Computing
Systems. Performance Modeling, Benchmarking, and Simulation: 5th

International Workshop, PMBS 2014, New Orleans, LA, USA, November
16, 2014. Revised Selected Papers. Cham: Springer International
Publishing, 2015, ch. SPEC ACCEL: A Standard Application Suite for
Measuring Hardware Accelerator Performance, pp. 46–67. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-17248-4 3

[22] G. Juckeland, A. Grund, and W. E. Nagel, “Performance Portable
Applications for Hardware Accelerators: Lessons Learned from SPEC
ACCEL,” in Parallel and Distributed Processing Symposium Workshop
(IPDPSW), 2015 IEEE International, May 2015, pp. 689–698.

[23] M. Martineau, S. McIntosh-Smith, M. Boulton, and W. Gaudin, “An
Evaluation of Emerging Many-Core Parallel Programming Models,” in
Proceedings of the 7th International Workshop on Programming Models
and Applications for Multicores and Manycores, ser. PMAM’16. New
York, NY, USA: ACM, 2016, Conference Proceedings, pp. 1–10.

[24] G. J. et. al, “From describing to prescribing parallelism: Translating the
SPEC ACCEL OpenACC suite to OpenMP target directives,” in ISC
High Performance 2016 International Workshops, P3MA, June 2016.

[25] OpenMP Architecture Review Board, “OpenMP Application Pro-
gram Interface. Version 4.5,” http://www.openmp.org/mp-documents/
openmp-4.5.pdf, November 2015.

[26] “HACCmk,” https://asc.llnl.gov/CORAL-benchmarks/Summaries/
HACCmk Summary v1.0.pdf.

[27] J. Robicheaux, “Program to solve a finite difference equation using
Jacobi iterative method,” http://www.openmp.org/samples/jacobi.f.

[28] W. Joubert, R. K. Archibald, M. A. Berrill, W. M. Brown, M. Eisenbach,
R. Grout, J. Larkin, J. Levesque, B. Messer, M. R. Norman, and et al.,
“Accelerated application development: The ORNL Titan experience,”
Computers and Electrical Engineering, vol. 46, May 2015.

[29] R. G. Brook, A. Heinecke, A. B. Costa, P. Peltz Jr., V. C. Betro, T. Baer,
M. Bader, , and P. Dubey, “Beacon: Deployment and application of Intel
Xeon Phi coprocessors for scientific computing,” Computing in Science

and Engineering, vol. 17, no. 2, pp. 65–72, 2015.

2424

