JID: PARCO [m3Gsc;January 10, 2018;20:12]

Parallel Computing 000 (2018) 1-16

Contents lists available at ScienceDirect ~ |'&

SYSTEMS & APPLICATIONS.

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Variable-size batched Gauss-Jordan elimination for
block-Jacobi preconditioning on graphics processors

Hartwig Anzt®®, Jack Dongarra®“d, Goran Flegar®, Enrique S. Quintana-Orti®*

2 Karlsruhe Institute of Technology, Germany

b Innovative Computing Lab (ICL), University of Tennessee, Knoxville, TN, USA

¢Oak Ridge National Laboratory, USA

dSchool of Computer Science, University of Manchester, United Kingdom

¢ Dept. Ingenieria y Ciencia de Computadores, Universidad Jaume I, Castellon, Spain

ARTICLE INFO ABSTRACT

ATH'C’_E history:) In this work, we address the efficient realization of block-Jacobi preconditioning on graph-
Received 6 April 2017 ics processing units (GPUs). This task requires the solution of a collection of small and
Revised 5 December 2017 independent linear systems. To fully realize this implementation, we develop a variable-
Accepted 29 December 2017 . .o . e .
- . size batched matrix inversion kernel that uses Gauss-Jordan elimination (GJE) along with
Available online xxx
a variable-size batched matrix-vector multiplication kernel that transforms the linear sys-

Keywords:

Batched algorithms
Matrix inversion
Gauss-Jordan elimination
Block-Jacobi

Sparse linear systems

tems’ right-hand sides into the solution vectors. Our kernels make heavy use of the in-
creased register count and the warp-local communication associated with newer GPU ar-
chitectures. Moreover, in the matrix inversion, we employ an implicit pivoting strategy that
migrates the workload (i.e., operations) to the place where the data resides instead of mov-
ing the data to the executing cores. We complement the matrix inversion with extraction
and insertion strategies that allow the block-Jacobi preconditioner to be set up rapidly. The

Graphics processor experiments on NVIDIA’s K40 and P100 architectures reveal that our variable-size batched

matrix inversion routine outperforms the CUDA basic linear algebra subroutine (cuBLAS)
library functions that provide the same (or even less) functionality. We also show that the
preconditioner setup and preconditioner application cost can be somewhat offset by the
faster convergence of the iterative solver.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Solving large, sparse-linear systems of equations is a prevailing problem in scientific and engineering applications that
involve the discretization of partial differential equations (PDEs). A standard approach to tackle these problems combines a
Krylov method with a preconditioner that accelerates the iterative solution process [1]. In the context of high-performance
computing, the efficiency of the preconditioner depends on the parallel scalability of both the preconditioner generation
(prior to the iterative solve) and the preconditioner application (at each step of the iterative solve).

Using preconditioners based on Jacobi (diagonal scaling) and block-Jacobi typically renders moderate improvements to
the convergence of the iterative solver [1]. These acceleration techniques are nevertheless reasonably attractive as block-

* Corresponding author.
E-mail addresses: hanzt@icl.utk.edu (H. Anzt), dongarra@icl.utk.edu (J. Dongarra), flegar@uji.es (G. Flegar), quintana@uji.es, quintana@icc.uji.es (E.S.
Quintana-Orti).

https://doi.org/10.1016/j.parco.2017.12.006
0167-8191/© 2018 Elsevier B.V. All rights reserved.

Please cite this article as: H. Anzt et al., Variable-size batched Gauss-Jordan elimination for block-Jacobi preconditioning
on graphics processors, Parallel Computing (2018), https://doi.org/10.1016/j.parco.2017.12.006

https://doi.org/10.1016/j.parco.2017.12.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
mailto:hanzt@icl.utk.edu
mailto:dongarra@icl.utk.edu
mailto:flegar@uji.es
mailto:quintana@uji.es
mailto:quintana@icc.uji.es
https://doi.org/10.1016/j.parco.2017.12.006
https://doi.org/10.1016/j.parco.2017.12.006

JID: PARCO [m3Gsc;January 10, 2018;20:12]

2 H. Anzt et al./Parallel Computing 000 (2018) 1-16

diagonal scaling introduces very small computational overhead to the solver iteration. Furthermore, the application of a
Jacobi-type preconditioner is inherently parallel and, therefore, highly appealing for massively parallel architectures.

In [2] we proposed a batched routine for the generation of a block-Jacobi preconditioner using the explicit inversion
of the diagonal blocks. Precisely, we designed a variable-size batched routine for matrix inversion on graphics processing
units (GPUs) based on Gauss-Jordan elimination (GJE) [3]. Furthermore, we introduced an implicit pivoting strategy in the
GJE procedure that replaces row-swapping with a migration of the workload (i.e., operations) to the thread that owns the
necessary data, which allowed us to realize the complete inversion process in thread-local registers. For the block-Jacobi
preconditioner generation, the inversion process needs to be combined with routines that extract the diagonal blocks from
the sparse data structure that stores the coefficient matrix. This extraction step can be costly, particularly for matrices with
an unbalanced nonzero distribution. In response, we developed an extraction routine that balances coalescent data access,
workload imbalance, and use of shared memory.

In this paper, we extend our previous work in [2] with new contributions, listed below.

» We propose a modified version of our variable-size batched GJE (BGJE) inversion routine for GPUs that can invert several

blocks per warp. This avoids idle CUDA cores and operations on dummy values when processing a matrix batch where

each matrix is less than or equal to 16 x 16.

We introduce a new variant of the extraction procedure that requires a much smaller amount of shared memory. This

strategy transposes the diagonal blocks at the time they are extracted from the sparse coefficient matrix, inverts the

transposed diagonal block, and ultimately writes the inverse of the transpose in transposed mode. The result provides

a functionality equivalent to the original block inversion but reduces the amount of shared memory in the block size,

utilized during the inversion procedure, from quadratic to linear only.

o We replace the general sparse matrix-vector multiplication kernel in the preconditioner application with a specialized
variant that exploits the block-diagonal structure of the preconditioner matrix. This accelerates the application of the
block-Jacobi preconditioner in the iterative solution process.

Our results revealed that these modifications can render significant performance improvements, particularly when target-
ing batches consisting of small blocks like those appearing in block-Jacobi preconditioning for problems arising from finite
element method (FEM) discretizations.

The rest of the paper is structured as follows. In Section 2 we offer a short review of Jacobi-type iterative solvers and
batched routines for linear algebra. In Section 3 we further elaborate on the batched Gauss-Jordan elimination (BGJE) pro-
cedure presented in [2], and we describe the batched kernels and highlight the major improvements in the block-Jacobi
generation step, extraction step, and preconditioner application. In Section 4 we report on our extensive evaluation of the
new BGJE routine on NVIDIA’s K40 and P100 GPUs. Particularly, we focus on the performance acceleration produced by the
modifications of the original BGJE. Finally, in Section 5 we summarize our contributions and the insights gained from the
experimental evaluation.

2. Background and related work
2.1. Block-Jacobi preconditioning

Consider the linear system Ax = b, with the coefficient matrix A € R"™*", the right-hand side vector b € R", and the
sought-after solution x € R". The block-Jacobi method partitions the entries of the coefficient matrix as A= L+ D + U, where
D= (D1,Dy,..., Dy) contains a collection of blocks (of variable-size) located on the diagonal of A, while L and U comprise
the entries of A below and above those in D, respectively. For a starting solution guess x(%}, the iterative Jacobi solver can
then be formulated as:

XM= D1 (b— (A—D)xtF1)
=D 'h+Mxl-1 k=1,2,..., (1)
where the convergence is ensured if the spectral radius of the iteration matrix M = I — D~!A is smaller than one [1]. This
occurs, for instance, in diagonally-dominant systems [1].

In case it is well-defined, the (block-)Jacobi matrix can be used as preconditioner, transforming the original system Ax = b
into either the left-preconditioned system

D 'Ax=c (= D 'b), (2)
or the right-preconditioned system
AD"'y = b, 3)

with x = D~1y. Hereafter, we will consider the left-preconditioned case.

When integrated into a Krylov subspace-based solver, the application of a block-Jacobi preconditioner in (2) requires the
solution of the block-diagonal linear system (i.e., a linear system for each block D;). Alternatively, assuming the block-inverse
matrix D = D=1 is available, the block-diagonal scaling in (2) can be realized in terms of a matrix-vector multiplication with

Please cite this article as: H. Anzt et al., Variable-size batched Gauss-Jordan elimination for block-Jacobi preconditioning
on graphics processors, Parallel Computing (2018), https://doi.org/10.1016/j.parco.2017.12.006

https://doi.org/10.1016/j.parco.2017.12.006

JID: PARCO [m3Gsc;January 10, 2018;20:12]

H. Anzt et al./Parallel Computing 000 (2018) 1-16 3
1% Input : m x m nonsingular matrix block Di.
2|% Output : Matrix block Di overwritten by its inverse
3lp = [1:m];
4/for k = 1 : m
5 % explicit pivoting
6 [abs_ipiv, ipiv] = max(abs(Di(k:m,k)));
7 ipiv = ipiv+k-1;
8 [Di(k,:), Di(ipiv,:)] = swap(Di(ipiv,:), Di(k,:));
9 [p(k), p(ipiv)] = swap (p(ipiv), p(k));
10
11 % Jordan transformation
12 d = Di(k,k);
13 Di(:,k) =-[Di(1:k-1,k); 0; Di(k+1:m,k)] / d;% SCAL
14 Di = Di + Di(:,k) * Di(k,:); % GER
15 Di(k,:) = [Di(k,1:k-1), 1, Di(k,k+1:m)] / d;% SCAL
16| end
17|% Undo permutations
18/ Di(:,p) = Di;

Fig. 1. Simplified loop-body of the basic GJE implementation in Matlab notation using standard pivoting.

the inverse blocks Di = Dl?], i=1,2,...,N.In general, pre-computing explicitly the block-inverse D during the preconditioner
setup allows for faster preconditioner application in the iterative solver. However, when dealing with large blocks and sparse
data structures, the inversion of matrix D can become a bottleneck. On parallel architectures, it is possible to exploit the
pairwise independence of the diagonal blocks in D by generating their individual inverses in parallel.

2.2. GJE for matrix inversion

GJE has been proposed in the last years as an efficient method for matrix inversion on clusters of multicore processors
and many-core hardware accelerators [4,5]. In addition, in [2] we demonstrate the benefits of leveraging GJE for block-Jacobi
preconditioning on GPUs. When combined with partial pivoting, GJE is as stable as matrix inversion via the LU factorization.
At the same time, GJE avoids the workload imbalance that occurs in the LU-based approach due to computations with
triangular factors.

The basic algorithm for matrix inversion via GJE consists of a loop that comprises a pair of vector scalings (scAL) and a
rank-1 update (GER); see Fig. 1. The unblocked version of the GJE algorithm in this figure, based on Level-2 BLAS operations,
generally yields a poor exploitation of the memory hierarchy on current processors. However, this formulation can deliver
good performance when computing the inverses of small matrices, like those that usually appear in the context of block-
Jacobi preconditioning. Finally, the Level-2 BLAS version of GJE allows the integration of an implicit pivoting strategy, which
dramatically reduces explicit data movements.

2.3. GJE with implicit pivoting

To ensure numerical stability, GJE needs to include a pivoting strategy. On parallel architectures, the row swaps required
in the standard partial pivoting technique (Fig. 1, line 8) can be costly. This is particularly the case if the data is distributed
row-wise among the processor cores. In this scenario, the two cores holding rows k and ipiv need to exchange their data,
while the other cores remain idle. Although distributing the matrix column-wise resolves this problem, the load imbalance
is then just shifted to the pivot selection (line 6). As a response, in [2] we presented an implicit pivoting procedure which
avoids explicitly swapping data. Instead, it accumulates all swaps, and combines them when completing the GJE algorithm.
The paradigm underlying implicit pivoting is to move the workload to the thread owning the data, instead of keeping the
workload fixed to the thread index and reshuffling the data.

In standard GJE with explicit pivoting, the data required for operations performed on each row at iteration k (lines 12-15)
is located only in that particular row and the current pivot row ipiv (which was swapped with row k at the beginning of
the iteration). The operation applied on the distinct rows only depends on whether or not a certain row is the current pivot
row. Concretely, if a row is the current pivot (i.e., it lies on position k) the operation involves diagonal scaling; otherwise, it
requires the scaling of element k followed by an AXPY of the remaining elements. Hence, the actual order of the rows is not
important during the application of the Gauss—Jordan transformations, and the swaps can be postponed until the algorithm
is completed. This idea is illustrated in Fig. 2.

The selection of the pivot entry has to be modified when pivoting implicitly. In explicit pivoting, at iteration k, all pre-
vious pivots are located above the kth entry of the diagonal, and the potential pivot rows for the current iteration lie in
positions k:m. When using implicit pivoting, none of the rows have been swapped, so we need to keep track of the previ-
ously chosen pivots. At step k, the next pivot is chosen among the set of rows that were not yet selected as pivots. In Fig. 2,
the potential pivots are the entries in rows i with “p(i) =0" in lines 6-9.

Please cite this article as: H. Anzt et al., Variable-size batched Gauss-Jordan elimination for block-Jacobi preconditioning
on graphics processors, Parallel Computing (2018), https://doi.org/10.1016/j.parco.2017.12.006

https://doi.org/10.1016/j.parco.2017.12.006

JID: PARCO [m3Gsc;January 10, 2018;20:12]

4 H. Anzt et al./Parallel Computing 000 (2018) 1-16
1% Input : m x m nonsingular matrix block Di.
2|% Output : Matrix block Di overwritten by its inverse
3|p = zeros(1, m);
4/for k =1 : m
5 % implicit spivoting
6 abs_elems = abs(Di(:, k));
7 abs_elems(p > 0) = -1; % exclude already pivoted rows
8 [abs_ipiv, ipiv] = max(abs_elems) ;
9 p(ipiv) = k;
10
11 % Jordan transformation
12 d = Di(ipiv, k);
13 Di(:,k) =-[Di(1l:ipiv-1,k); 0; Di(ipiv+1l:m,k)] / d;% SCAL
14 Di = Di + Di(:,k) * Di(ipiv,:); % GER
15 Di(ipiv,:) = [Di(ipiv,1:k-1), 1, Di(ipiv,k+1:m)] / d;% SCAL
16| end

17|% Undo permutations
18| Di(p,:) = Di(:,p);

Fig. 2. Simplified loop-body of the basic GJE implementation in Matlab notation using implicit pivoting.

Since implicit pivoting does not change the execution order of the operations applied or the numerical values, this variant
of pivoting preserves the numerical properties of the algorithm.

2.4. Batched GPU routines

The qualifier “batched” identifies a procedure that applies the same operation to a large collection of data entities. In
general, the subproblems (i.e., the data entities) are all small and independent, asking for a parallel formulation that simul-
taneously performs the operation on several/all subproblems in order to yield a more efficient exploitation of the computa-
tional resources. Batched routines are especially attractive in order to reduce the overall kernel launch overhead on GPUs,
as they replace a sequence of kernel calls with a single kernel invocation. In addition, if the data for the subproblems is
conveniently stored in the GPU memory, a batched routine can orchestrate a more efficient (coalesced) memory access.

In recent years, the development of batched routines for linear algebra operations has received considerable interest be-
cause of their application in machine learning, astrophysics, quantum chemistry, hydrodynamics, and hyperspectral image
processing, among others. Examples of batched kernels for the dense BLAS appear in [6,7], and there exists a strong commu-
nity effort on designing a interface standard for these routines [8]. Aside from block-Jacobi, the adoption of batched routines
for efficient preconditioner generation has also been recently studied in the context of using approximate triangular solves
for incomplete factorization preconditioning [2,9].

3. Design of CUDA kernels

In [2] we designed a set of routines for the generation and application of block-Jacobi preconditioners via variable-size
BGJE. In this section we review the key concepts in [2], and introduce several improvements to further accelerate both the
generation and application of the preconditioner.

The generation of an inversion-based block-Jacobi preconditioner can be decomposed into three distinct steps: (1) ex-
traction of the diagonal blocks; (2) inversion of these blocks; and (3) insertion of the inverse blocks into the preconditioner
matrix. We visualize these steps for non-uniform block sizes in Fig. 3. The three steps can be realized as three separate
CUDA kernels, or in terms of a single kernel doing all steps in sequence. The experimental results in [2] suggest that, in
general, merging all operations into a single kernel results in higher performance. A reason for this is the reduced memory
transfer, as realizing the operations in a single kernel avoids the main memory accesses that are necessary to transfer data
between separate kernels. In this paper we therefore focus on merged kernels for generating block-inverse matrices.

The question of how to identify a convenient block structure for a given coefficient matrix and an upper bound limiting
the size of the diagonal blocks remains outside the focus of this paper. Here, for all experiments we use the supervariable
blocking routine available in MAGMA-sparse [10].

3.1. Variable-size batched Gauss-Jordan elimination

The central operation in the generation of an inversion-based block-Jacobi preconditioner is the inversion of the diagonal
blocks in D. These blocks are all square, of small dimension, and independent. In [2] we designed a variable-size BGJE routine
that assigns one CUDA warp (a group of 32 threads) to invert each diagonal block. The kernel is launched on a grid with the
number of warps covering the number of diagonal blocks. Within a warp, parallelism is realized by each thread handling one
row of the diagonal block. This limits the scope of the kernel to matrix batches where no matrix is of dimension larger than
32. As blocks of larger dimension are rarely encountered in the context of block-Jacobi preconditioning, the variable-size
batched GJE kernel perfectly fits this application scope [2].

Please cite this article as: H. Anzt et al., Variable-size batched Gauss-Jordan elimination for block-Jacobi preconditioning
on graphics processors, Parallel Computing (2018), https://doi.org/10.1016/j.parco.2017.12.006

https://doi.org/10.1016/j.parco.2017.12.006

JID: PARCO [m3Gsc;January 10, 2018;20:12]

H. Anzt et al./Parallel Computing 000 (2018) 1-16 5

®

Extract diagonal block from
sparse data structure.

'

\

%%%%%%@@%

@ ‘ Invert diagonal block. ‘

Insert inverse as diagonal block
into preconditioner matrix.

Fig. 3. Generation of the block-Jacobi preconditioner: (1) data extraction; (2) variable-size BGJE; (3) data insertion. The block structure is indicated with
orange circles, the original nonzero pattern with blue dots, and the block inverses with purple circles. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Handling the inversion with a single warp allows us to use two recent features of NVIDIA’s GPU architectures: increased
register count and warp shuffle instructions. In some detail, the data required by each thread (up to 32 data elements be-
longing to the matrix row) is first read into registers; the inversion is then computed using this data and communication
occurs via the warp shuffle instruction (avoiding main memory access during the inversion process); and finally, the com-
puted inverse is written back to main memory. In general, even though the diagonal blocks are sparse, their inverses are
dense. We therefore handle and store the diagonal blocks in dense format during the complete inversion process.

The pivoting process ensuring numerical stability requires to identify the pivot element, see line 8 in Fig. 2. Since the
matrix is distributed row-wise among the threads, this requires a parallel reduction. We realize this step via warp shuffles.
The same type of shuffles is also used to distribute the contents of the current pivot row Di(ipiv, k) required for the
operations in lines 12-15.

Multiple problems per warp. The variable-size BGJE presented in [2] assigns one warp to each diagonal block. In that work,
diagonal blocks of size k <32 were padded with dummy values to that dimension and the threads only execute the first k
iterations of the GJE algorithm. Obviously, for small blocks, this wastes a significant part of the computational resources,
as most of the threads then operate on dummy data. In this work, we improve the algorithm by allowing one warp to
handle multiple small problems simultaneously. Concretely, let k, denote the size of the largest block in the matrix batch
and p,, stand for the smallest power of 2 such that p, > kp; then, in our new approach, each warp processes 32/pn, blocks.
Proceeding in this manner, each group of pp, threads - we call it sub-warp - is assigned to one problem. The first k;, threads
in the sub-warp compute the inverse of a block of size k <k, by padding it with dummy values to size kp, and computing
only the first k steps of the inversion procedure. The rest of the threads in the sub-warp remain idle. The reason for choosing
pm as the sub-warp size is that the CUDA ecosystem supports warp shuffles for these sizes. Using k;; instead of p;; would
require additional operations to calculate the thread index. Finally, we do not consider “packing” blocks of different sizes
into one warp (e.g., one warp could process blocks of sizes 15 and 17), as this would require a preprocessing step in order
to determine which warp can process which set of blocks. Furthermore, it would also result in thread divergence between
the two parts of the warp.

3.2. Data extraction from the sparse coefficient matrix

As BGJE expects a collection of small dense blocks as input, these blocks need to be extracted from the sparse coefficient
matrix stored in CSR format [1]. We next review the two extraction strategies we implemented and compared in [2].

The first approach, named cached extraction, is a straight-forward method where each thread traverses a single matrix
row, (specifically, the row whose values will be required by this thread during inversion process,) and extracts the elements
that lie on the corresponding diagonal block. Since the CSR format is designed to favor accessing sparse matrix by rows, (i.e.,
it keeps the matrix entries in row-major order,) this will most likely result in non-coalescent memory access. Furthermore,
an unbalanced nonzero distribution in the coefficient matrix inevitably incurs load imbalance, as threads operating on short

Please cite this article as: H. Anzt et al., Variable-size batched Gauss-Jordan elimination for block-Jacobi preconditioning
on graphics processors, Parallel Computing (2018), https://doi.org/10.1016/j.parco.2017.12.006

https://doi.org/10.1016/j.parco.2017.12.006

JID: PARCO [m3Gsc;January 10, 2018;20:12]

6 H. Anzt et al./Parallel Computing 000 (2018) 1-16
Memory Cached extraction Shared extraction
requests (1 thread per row) (multiple threads per row) ¢ Thread
Element in
. 4 Z .
1 — Al diagonal block
| =
¢ .
N Element being
extracted
Element already
> * p extracted
. f \ sol0le
[Ilndh 4 , Current memory
* 7 “ transaction

w
[]
oo/oe
N
X3

’ 4
4 * ‘
* ol o
N
el B
5] * J
L= _|*
. K
row-ptr col-indices row-ptr col-indices Shared memory

Fig. 4. Illustration of the memory requests for the cached extraction and shared extraction (left and right, respectively). We assume warps of 4 threads
and memory transactions of 4 values. We only show the accesses to the vector storing the col-indices of the CSR matrix structure; the access to the actual
values induces far less overhead, as these memory locations are accessed only if a location belonging to a diagonal block is found. In that case, the access
pattern is equivalent to the one used for col-indices.

rows will remain idle while the remaining threads extract the data from their rows. Both effects impair the performance of
the extraction step.

As a response to these issues, in [2] we proposed an alternative shared extraction method. The key idea is to eliminate
non-coalescent memory access and (potential) load imbalance at the cost of using shared memory. Precisely, all threads of
the warp collaborate on the extraction of the block by accessing each row containing part of the block in a coalesced mode
(see Fig. 4). The diagonal block is then converted to dense format and stored into shared memory by writing the extracted
values into the appropriate locations in shared memory, see right-hand side in Fig. 4. Once the extraction of a block is
completed, each thread reads the values of the row assigned to it from shared memory. This strategy makes all memory
accesses coalescent and alleviates load imbalance. The shared memory usage, however, can constrain the number of warps
active per multiprocessor. On “older” GPU architectures we observed that the shared extraction strategy can result in lower
performance due to this issue.

Reduced usage of shared memory. We improve the situation by radically reducing the amount of shared memory employed
in the shared extraction step. This is possible because the inverse of a matrix A can be computed by first obtaining the
inverse of AT and then transposing the result (i.e., ((AT)~1)T = A-1). Extracting the transpose of the diagonal block is much
easier as the ith elements of all columns are available as soon as the ith row is extracted to shared memory. This means that
all threads can already read the ith row-value of the transposed block into registers before proceeding with the extraction
of the next row. Thus, the extraction of the transpose block from the sparse matrix structure can be “interleaved” with the
retrieval of the values from shared memory into the registers. As a result, the same shared memory locations used to store
row k of the diagonal block can be re-used in the following step of the extraction. This reduces the total amount of shared
memory required to that necessary to keep a single row of the diagonal block.

In case multiple blocks are assigned to each warp, a straight-forward extension of the strategy is to let each sub-warp
extract the block assigned to it. This would, however, result in non-coalesced memory access. Coalesced memory access can
be preserved by extracting all blocks handled by the warp in sequence, using all threads of the warp and enough shared
memory to store one row of the largest matrix in the batch.

After the inversion of a diagonal block is completed, the result is written back to main memory. Realizing the afore-
described extraction step in reverse order, we store the inverse of the transposed block in transposed mode - which is the
inverse of the original block.

Please cite this article as: H. Anzt et al., Variable-size batched Gauss-Jordan elimination for block-Jacobi preconditioning
on graphics processors, Parallel Computing (2018), https://doi.org/10.1016/j.parco.2017.12.006

https://doi.org/10.1016/j.parco.2017.12.006

JID: PARCO [m3Gsc;January 10, 2018;20:12]

H. Anzt et al./Parallel Computing 000 (2018) 1-16 7
3.3. Preconditioner application

Once the block-inverse is generated, the block-Jacobi preconditioner can be applied in terms of a sparse matrix-vector
product (sPmv).

Structure-aware spmv. We improve the performance of the block-Jacobi preconditioner by replacing the generic sparse
matrix-vector product with a specialized kernel that exploits the block structure of the preconditioner matrix. In detail, we
use a variable-size batched dense matrix-vector multiplication (GEMv) to multiply the distinct block inverses D;! with the
appropriate vector segments. As in the preconditioner generation, the blocks are distributed among the (sub-)warps, with
each (sub-)warp handling the multiplication for one vector segment. In contrast to the elements of the matrix, which are all
used for only a single multiplication, the elements in the vector segment are reused in the multiplication with the distinct
rows of the block. Hence, it is beneficial to read the elements of the vector segment into the registers of the distinct threads
of the (sub-)warp (one element per thread) at the beginning of the routine. The performance of GEmV is constrained by
the memory bandwidth. It is therefore essential to ensure coalesced memory accesses by forcing each (sub-)warp to read
the diagonal blocks row-wise (the block-diagonal matrix is stored in the row-major based CSR matrix format). For each row
of the block, the threads of the (sub-)warp then use warp shuffles to compute the dot product of the matrix row and the
vector entries they keep in registers. Finally, the result is written to the appropriate position in the output vector.

4. Experimental evaluation

In this section, we (1) benchmark gigaFLOPS enhanced version of the variable-size batched matrix inversion routine
based on GJE; (2) analyze the performance of the complete block-Jacobi preconditioner (generation and application); and
(3) assess the efficiency of block-Jacobi preconditioning in an iterative solver setting.

We begin by comparing the new BGJE kernel against the version presented in [2] and against two batched inversion
routines available in NVIDIA’s cuBLAS library: getriBatched and matinvBatched. We note that both cuBLAS routines
can only operate on batches of problems where all matrices are of the same size.

Next, to evaluate the performance benefits for the block-Jacobi preconditioner generation stage, in isolation, we com-
bine our variable-size BGJE routines with the improved extraction and insertion procedures, and we test the block-inverse
generation for different sparsity structures and block sizes. For this purpose, we consider a set of test matrices from the
SuiteSparse Matrix Collection' (formerly known as the University of Florida Sparse Matrix Collection). In addition to the
preconditioner generation, we also compare the specialized block-Jacobi application kernel based on variable-size batched
GEMV with the generic spmv routine from MAGMA-sparse [10].

Finally, to analyze the practical effects of the block-Jacobi preconditioning on an iterative solver, we integrate the block-
Jacobi preconditioner into an Induced Dimension Reduction Krylov solver with shadow space dimension 4 (IDR(4)) and
demonstrate the time-to-solution improvements obtained by replacing a scalar-Jacobi preconditioner with a block-Jacobi
variant.

4.1. Hardware and software framework

For the experiments, we use the two most recent NVIDIA GPU architectures, which have full support for double-precision
computations: the Kepler K40 (Compute Capability 3.5) and the Pascal P100 (Compute Capability 6.0). We do not consider
the older Fermi and Maxwell architectures, as the former lacks support for warp shuffle instructions, and the latter does
not implement full double-precision support. Because the batched matrix inversion routines, the block-Jacobi generation
kernel, and the iterative solvers proceed exclusively on the GPU, details about the node’s broader hardware specifications
are irrelevant in the following experiments.

Our kernels are implemented using CUDA 8.0 and are designed to be integrated into the MAGMA-sparse library [10].
MAGMA-sparse also provides the testing environment, the block-pattern generation, and the sparse solvers used in our
experiments. All computations use double-precision arithmetic—the standard in linear algebra.

4.2. Batched matrix inversion

This section analyzes the performance of four batched routines for matrix inversion on GPUs; BGJE, BGJE-MPW,
getriBatched, and matinvBatched.

1. BGJE is the variable-size BGJE inversion kernel from [2].

2. BGJE-MPW is the enhanced kernel that incorporates the BGJE improvements described in this paper.

3. getriBatched renders the batched matrix inversion using two functions from NVIDIA’'s cuBLAS library: (1)
getrfBatched computes the LU factorization of the matrix batch, then (2) getriBatched obtains the inverses using
the results of the previous routine. All matrices in the batch are required to be of the same size.

1 Visit http://www.cise.ufl.edu/research/sparse/matrices/.

Please cite this article as: H. Anzt et al., Variable-size batched Gauss-Jordan elimination for block-Jacobi preconditioning
on graphics processors, Parallel Computing (2018), https://doi.org/10.1016/j.parco.2017.12.006

http://www.cise.ufl.edu/research/sparse/matrices/
https://doi.org/10.1016/j.parco.2017.12.006

JID: PARCO [m3Gsc;January 10, 2018;20:12]

8 H. Anzt et al./Parallel Computing 000 (2018) 1-16
K40 P100
Problem size 32
700 T T T T
—Oo-BGJE —0—BGJE
—%—BGJE-MPW 1 600 | |——BGJE-MPW
—o—getriBatched —o—getriBatched
—O— matinvBatched 500 || —— matinvBatched 1
2 & 400 - P
(o] [e]
e e 300
O] O}
200 |7

200 T T T T 600 T T T T
—0—BGJE
500 |- |~ BGJE-MPW
—o—getriBatched
| |=0—matinvBatched

——BGJE-MPW
| | —o—getriBatched
—0—matinvBatched

o
o

GFLOPS
g
GFLOPS
w
8

Batch size %10° Batch size x10°

Fig. 5. Performance comparison of batched matrix inversion routines for various batch sizes. Top row shows matrices of size 32 x 32 and the bottom row
shows matrices of size 16 x 16.

4. matinvBatched is NVIDIA’s routine that merges the two calls of the getriBatched routine into a single kernel. Its
functionality is limited to operating on batches of equal-size matrices with an upper bound of 32 x 32.

We note that the scope of the distinct batched inversion routines is slightly different: BGJE, BGJE-MPW, and
matinvBatched only support matrices of size up to 32 x 32; and neither matinvBatched nor getriBatched sup-
port batches containing matrices of different sizes. Therefore, we limit the performance comparison to batches composed of
equal-size matrices of up to 32 x 32. While this upper bound is usually not a problem in the context of block-Jacobi precon-
ditioning, handling batches that contain variable-size matrices is essential to accommodating the inherent block structure
of FEM discretizations. Consequently, the cuBLAS routines will not be considered in the complete preconditioner generation
and application experiments.

Fig. 5 compares the performance, in terms of gigaFLOPS (billions of arithmetic floating-point operations per second), for
two fixed matrix sizes (32 x 32 and 16 x 16) while increasing the matrix count (batch size). In a case where the matrix
order is 32, both BGJE and BGJE-MPW deliver the same performance because, in this scenario, BGJE-MPW also schedules
a single problem per warp. For this matrix size, the performance of both variable-size BGJE routines exceeds 600 gigaFLOPS
(13% of the theoretical peak) on P100 and around 125 gigaFLOPS (9% of peak) on K40. These rates correspond to a 6 x
speedup over the batched inversion using getriBatched, and at least a 12 x speedup over matinvBatched.

The older K40 architecture has a significantly lower register-per-core ratio compared to the P100. Because our BGJE and
BGJE-MPW routines make heavy use of registers, a reduced register count limits the number of threads/warps that can be
active on a multiprocessor, which explains the large performance gap between the K40 and P100 GPUs.

The two graphs on the left side of Fig. 5 clearly show that the registers are indeed a performance bottleneck on the
K40. For batched problems consisting of 16 x 16 matrices, each thread only utilizes 16 registers (instead of 32 registers
for 32 x 32 matrices), allowing more active threads—and therefore more active warps—per multiprocessor. As a result, the
BGJE-MPW kernel delivers about 160 gigaFLOPS for the smaller matrix sizes but only around 125 gigaFLOPS for the larger
matrices. In comparison, the BGJE kernel, which can only handle a single problem per warp, achieves a scant 40 gigaFLOPS
for the small case. Moreover, both cuBLAS batched inversion routines, getriBatched and matinvBatched, deliver a
meager 8 gigaFLOPS for this problem.

Again, note that the BGJE kernel pads the matrices with dummy elements to size 32 x 32 and inverts one system per
warp. On the P100, this delivers less than 150 gigaFLOPS for a batch composed of matrices of size 16 x 16. In contrast,
the performance of the BGJE-MPW routine exceeds 550 gigaFLOPS in similar conditions. Thus, although the performance of
BGJE-MPW is lower for a 16 x 16 matrix than for a 32 x 32 matrix (which was expected because the data-movement-

Please cite this article as: H. Anzt et al., Variable-size batched Gauss-Jordan elimination for block-Jacobi preconditioning
on graphics processors, Parallel Computing (2018), https://doi.org/10.1016/j.parco.2017.12.006

https://doi.org/10.1016/j.parco.2017.12.006

JID: PARCO [m3Gsc;January 10, 2018;20:12]
H. Anzt et al./Parallel Computing 000 (2018) 1-16 9
K40 P100
200 T T . . : . 700 | | | | | |
—0—BGJE —0—BGJE
——BGJE-MPW 600 | ——BGJE-MPW T
150 || —o—getriBatched 1 —o— getriBatched
—0— matinvBatched 500 | ~— matinvBatched 1
g & 400 §
g 100 - g
0] 0] 300 1
sol 200 1
100 1
0 0
0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32
Block size Block size

Fig. 6. Performance comparison of batched matrix inversion routines for various matrix sizes.

4 . . ¢ :
* block size 12
block size 24 *
3| © blocksize32| * ¢, x|
x x
x 0 000 ¢
2 |0, N 0 o 0%
8 2+ o x - 6 6)(¢ i
[Qo o X A0
a o 0260200
D 3 Q) S?x o OOX ¢ gx
1t ER L
0 5 10 15 20 25 30 35 40

Test matrices

Fig. 7. Performance improvement from reducing the shared memory size in the block-Jacobi generation using shared extraction/insertion.

Arrow structure Tridiagonal structure = Random block struct. Laplace structure

Fig. 8. Sparsity plots of test matrices used to evaluate the diagonal block extraction.

to-floating-point-operation ratio grows with the matrix size), BGJE-MPW is about one order of magnitude faster than the
matrix inversion functions provided in NVIDIA’s cuBLAS.

A detailed analysis for different matrix sizes is given in Fig. 6. In this experiment we fixed the batch size to 500,000
matrix problems and varied the dimension of the matrices in the batch from 1 x 1 to 32 x 32. For both architectures,
BGJE exhibits a superlinear performance drop as the matrix size is reduced. This is because, for a batch with matrices of
size k, each warp performs 2k3 useful operations, while the total volume of operations (including those on dummy data used
for padding) is 2k x 322. In contrast, BGJE-MPW avoids most dummy operations and experiences only a linear performance
loss—owing to inactive threads—between consecutive powers of two. Peaks for 16 x 16 matrices and 8 x 8 matrices clearly
mark the thresholds where multiple small problems can be handled by a single warp without introducing any computational
overhead. The performance lines for BGJE-MPW are more erratic than those observed for the other routines. The reason
is that BGJE-MPW is implemented using C++ templates to generate a specialized version of the kernel for each matrix
size. While this approach succeeds in minimizing the register count and the number of operations performed by the size-
specific kernels, the kernel-specific resource requirements impact the number of warps that are active per multiprocessor

and, ultimately, the kernel-specific performance.

Please cite this article as: H. Anzt et al., Variable-size batched Gauss-Jordan elimination for block-Jacobi preconditioning
on graphics processors, Parallel Computing (2018), https://doi.org/10.1016/j.parco.2017.12.006

https://doi.org/10.1016/j.parco.2017.12.006

ARTICLE IN PRESS

10 H. Anzt et al./Parallel Computing 000 (2018) 1-16

JID: PARCO

K40

m3Gsc;January 10, 2018;20:12

0.03 T T T T T T T T

—o—-CACHED
0.025 - |—0—SHARED 1
—»—SHARED-MPW

Runtime [s]
o
o ©
= o
(6] N

o

o

=2
T
L

0.005 |- 1

0 4 8 12 16 20 24 28 32
Block size

structure
0.2 ‘ :

Runtime [s]

0.15

0.1

0.05

—o—CACHED
—0—-SHARED
—%—SHARED-MPW

00000 O-OQO0 £ B-2-2-2-2-2%

0 4 8 12 16 20 24 28 32

Block size

5 x10°

—o0—-CACHED
—0—SHARED
| | = SHARED-MPW

Runtime [s]

Block size

Runtime [s]

0.02 T T

—o—CACHED
—0—SHARED

0.015 | |~ SHARED-MPW

0.01

0.005

Block size

-3
6 X107 . ‘ : : : . .

—o— CACHED
5 |—0—SHARED 1
—%—SHARED-MPW

Runtime [s]
w £

n

Block size

Runtime [s]

0.025 T T

0.02 -

o
2
o

o
o
=

0.005

—o—CACHED
—0—-SHARED

—%—SHARED-MPW

Block size

510° : : : : : : :

—=—GACHED
| |—o-SHARED
—%— SHARED-MPW

Runtime [s]

0 4 8 12 16 20 24 28 32
Block size

0.015 |\~ SHARED-MPW

Runtime [s]

0.005

0.02 T T

0.01

—o—CACHED
—0—-SHARED

16 20 24 28 32
Block size

Fig. 9. Block-Jacobi generation time for increasing block sizes and nonzero distributions from top to bottom: arrow, tridiagonal, random block and Laplace.

https://doi.org/10.1016/j.parco.2017.12.006

900°Z1'L107 021ed"[/9101°01 /310710p//:5d11y (810¢) Sunndwo) [d[eIed ‘siossadoid sorydeid uo

Suruonipuodaid 1qoJe(-[d0[q 10] UCHBUIWI[S UBPIO[-SSNED paydIeq 9ZIS-d[qeLIBA “[B 19 JZUuy 'H :SB 9[d1Ie SIy) 911D Ises[d

Table 1

Iterations and execution time of IDR(4) enhanced with scalar Jacobi preconditioning or block-Jacobi preconditioning. The runtime combines the preconditioner setup time and the

iterative solver execution time.

Matrix size #nnz ID Jacobi Block-Jacobi (8) Block-Jacobi (12) Block-Jacobi (16) Block-Jacobi (24) Block-Jacobi (32)
#iters time [s] #iters time [s] #iters time [s] #iters time [s] #iters time [s] #iters time [s]

ABACUS_shell_ud 23,412 218,484 26 3703 5.09 2305 3.32 2829 4,09 3028 443 2858 427 2418 3.70
besstk17 10,974 428,650 6 1967 2.87 1174 1.78 901 138 792 1.23 735 1.20 879 1.40
besstk18 11,948 149,090 39 1491 1.90 933 1.37 653 0.98 591 0.92 440 0.65 532 0.85
bcsstk38 8032 355,460 0 - - - - 2459 4.21 4290 733 1878 3.26 2050 3.62
cbuckle 13,681 676,515 9 434 0.81 118 0.22 48 01 102 023 49 0.12 75 0.15
Chebyshev2 2053 18,447 5 - - 197 0.53 62 0.18 53 0.15 38 0.11 35 0.10
Chebyshev3 4101 36,879 17 - - - - 194 0.67 177 0.66 113 0.40 77 0.31
dc3 116,835 766,396 28 168 17.29 169 17.36 203 20.93 203 20.92 320 33.00 183 18.87
dw1024 2,048 10,114 30 - - 169 0.23 148 0.27 163 0.30 92 0.18 65 013
dw2048 2,048 10,114 7 - - 169 0.23 148 0.27 163 0.30 92 0.17 65 0.12
dw4096 8,192 41,746 18 - - - - - - 6949 8.96 1732 2.33 1012 146
dw8192 8,192 41,746 36 - - - - - - 6949 8.94 1732 2.35 1012 141
F1 343,791 26,837,113 27 3832 23.93 - - 2460 16.34 2511 17.00 1895 13.23 2062 14.78
G3_circuit 1,585,478 7,660,826 31 2346 19.94 2069 19.52 2220 2214 1935 20.09 2085 24.10 2198 26.83
gridgena 48,962 512,084 32 2265 3.51 1306 2.08 1766 2.84 1431 2.33 1028 1.70 1311 2.26
ibm_matrix_2 51,448 537,038 21 - - - - 227 0.46 8992 17.45 254 0.55 2965 6.04
Kuu 7,102 340,200 3 162 0.29 103 0.19 95 0.18 84 0.16 94 0.18 84 0.17
LeGresley_2508 2,508 16,727 20 237 0.40 247 0.36 203 0.35 - - 185 0.33 166 0.31
linverse 11,999 95,977 35 6185 7.80 - - - - 6685 9.51 2175 3.07 933 144
matrix_9 103,430 1,205,518 2 1512 2.72 727 1.37 95 0.21 598 118 87 0.20 558 116
nasa2910 2,910 174,296 12 738 1.03 529 0.73 509 0.74 648 0.94 435 0.67 392 0.64
nd12k 36,000 14,220,946 19 - - 6869 20.67 3183 9.67 2764 8.45 1543 4.81 1693 5.35
nd24k 72,000 28,715634 11 - - 4918 23.29 2906 13.85 2858 13.69 1916 9.35 1457 716
nd3k 9,000 3,279,690 33 - - - - 4551 8.05 8270 14.55 2640 4.78 3196 5.87
nd6k 18,000 6,897,316 29 - - - - 5142 1114 9178 19.94 2589 5.76 2573 5.81
nemeth15 9,506 539,802 34 94 0.17 - - - - 144 0.27 50 0.10 49 0.10
0lm5000 5,000 19,996 15 - - 1164 1.58 1049 144 256 0.41 545 0.80 178 0.33
Pres_Poisson 14,822 715,804 4 199 0.38 130 0.24 129 0.26 113 023 93 0.19 82 017
rail_79841 79,841 553,921 1 995 1.62 909 1.56 1013 178 880 1.52 862 1.58 810 1.52
slrmt3m1 5,489 217,651 22 296 0.43 191 032 17 0.24 159 0.28 148 0.28 148 0.27
s2rmg4m1 5,489 263,351 37 708 0.97 231 0.39 223 036 262 043 214 0.36 198 0.36
s2rmt3m1 5,489 217,681 25 1016 135 327 0.50 209 0.35 218 0.36 178 0.32 220 0.40
s3rmg4m1 5,489 262,943 24 - - 1387 1.95 599 0.89 1969 2.83 515 0.80 972 1.47
s3rmt3m1 5,489 217,669 6 - - - - 693 0.99 2637 3.62 529 0.75 1142 171
s3rmt3m3 5,357 207,123 23 - - - - 1995 2.74 2087 2.86 2229 314 784 118
saylr4 3,564 22,316 38 1907 2.46 387 0.59 246 0.40 281 0.38 163 0.30 170 0.32
ship_003 121,728 3,777,036 13 - - 2058 4.89 1927 4.62 2849 6.97 1683 4.26 2160 5.75
sme3Dc 42,930 3,148,656 8 2680 5.66 4953 10.59 3101 6.74 3014 6.53 3566 7.92 4990 1119
sts4098 4,098 72,356 14 135 0.26 113 0.23 78 0.12 94 0.19 76 0.16 64 01

91-1 (8102) 000 Sunndwio) [a)jpipd /I 32 JZuy ‘H

48

02dvd -dir

[21:02:8102 ‘0T Atenueriosoew]

https://doi.org/10.1016/j.parco.2017.12.006

ARTICLE IN PRESS

JID: PARCO m3Gsc;January 10, 2018;20:12
12 H. Anzt et al./Parallel Computing 000 (2018) 1-16
Block size 4 Block size 8
102 ; : : ; : ; : 102 ; : ; ; : ;
& A CACHED N & A CACHED N
° ¢ SHARED o A ° 0 SHARED o A
£ o SHARED-MPW o aa £ o SHARED-MPW o aa
S 1031k S 03k
1 1
2" R 8 20,0 2" RS 8 20,0
® N & A
% ‘>A6 aog?™" % ‘>A6 aog?™"
> oo ”DUO > oo ”DUO
- g 840 8
o 10 & gnuu Q10 pe gnuu
1 eyttt Sy 17 ot el
ks s ks s
kel kel
o o
10-5 L L L L L L L 10-5 L L L L L L L
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Test matrices Test matrices
Block size 12 Block size 16
102 - : : : : : : 102 - : : :
& A CACHED I & A CACHED I
© ¢ SHARED Iy © ¢ SHARED 5
£ o SHARED-MPW £ o SHARED-MPW
z ogn z ogn
107 ¢ i 10°F |
_% 0 o a 98 .% 0 o g 0 98
& oo‘} ao” & oo ao”
5 20® ﬁ“gnn 5 20® ﬂﬁ”gnn
o 800" 5 8.0
Q. 4| 4 Q a4l 4
%10 gggggnunuunngggee”eunnn %10 gggnsnunuﬂﬂngggeenﬁunnu
2 2
x x
[5} o
kel kel
o o
10'5 1 1 1 1 1 1 1 105 I L L Il L 1 L
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Test matrices Test matrices
Block size 24 Block size 32
10" - - - - - - - 10" - - - - - - -
& A CACHED & A CACHED
° ¢ SHARED o ¢ SHARED
£ o SHARED-MPW £ o SHARED-MPW
102} 102}
© ©
5 N 5 a5
c c
5 6 o A oo,
810} 0562 4o 810} 88 apef
8 A§ oo 8 A Qﬁ 000
- A 0§68 g - (=}
3 Ba® 3 Bazogadoncanatt®
S g% S 246L5002002050
B |00000000000000000000008 g 8%
107 | | 107 I | | L | | |
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Test matrices

Test matrices

Fig. 10. Block-Jacobi generation time on NVIDIA P100 for a set of matrices taken from the SuiteSparse sparse matrix collection and varied block sizes: 4,

8, 12, 16, 24 and 32.

GFLOPS

L L L

0 L I . 1 I
12 16 20

Block size

24

28 32

GFLOPS

P100

80 1

60 [1

40 1

12 16 20 24 28 32
Block size

Fig. 11. Performance comparison of the block-Jacobi preconditioner application. spmv is the generic sparse matrix-vector product routine from [2]. SA-SPMV

is the specialized batched Gemv-based kernel developed as part of this work.

https://doi.org/10.1016/j.parco.2017.12.006

JID: PARCO [m3Gsc;January 10, 2018;20:12]
H. Anzt et al./Parallel Computing 000 (2018) 1-16 13
40 T T

I Fastest choice
Il Convergence

W
o

Number of test matrices
> S

1 8 12 16 24 32
Jacobi block size

Fig. 12. IDR(4) convergence and performance comparison for different block sizes used in the block-Jacobi preconditioner. The problem matrices are listed
along with key characteristics in Table 1.

4.3. Block-Jacobi generation

We now turn our attention to the complete block-inversion procedure that produces the block-Jacobi preconditioner. This
includes the extraction of the diagonal blocks from a sparse data structure, followed by the explicit inversion, and then the
insertion of the inverse blocks into the preconditioner matrix. As previously mentioned, the routines are “merged” into a
single CUDA kernel that performs all three steps: (1) extraction from the sparse matrix structure, (2) inversion, and (3)
insertion into the sparse preconditioner matrix. In this subsection, we compare three strategies for the generation of the
block-Jacobi preconditioner, with the first strategy corresponding to an implementation that was already proposed in [2],
and the last two strategies realizing the improvements described in Section 3:

1. cAcHED: cached extraction/insertion with BGJE;
2. SHARED: shared extraction/insertion with BGJE; and
3. SHARED-MPW: shared extraction/insertion with BGJE-MPW.

Both SHARED and SHARED-MPW use the reduced memory shared extraction described in Section 3.2. Fig. 7 reveals that
reducing the shared memory in the SHARED strategy can make the block-Jacobi generation up to four times faster. The
problem-specific benefits depend on the upper bound for the block size, the pattern of the system matrix determining
the actual size of the distinct diagonal blocks, and the hardware characteristics determining how many thread blocks a
multiprocessor can schedule in parallel.

Because the performance of the extraction strategies depends on the structure of the problem matrix, we consider four
nonzero distributions that are characteristic in sparse linear algebra. In Fig. 8, the arrow structure presents all nonzero
entries on the (main) diagonal plus the last row/column of the matrix. In contrast, in the tridiagonal structure all nonzeros
lie on the diagonal plus the diagonal immediately above/below it. These two structures are interesting, because they share
the same nonzero count but exhibit different nonzero distributions. The other two examples correspond to a random block-
diagonal matrix structure with nonzeros only in the diagonal blocks. The Laplace structure arises from the five-point stencil
discretization of the Laplace equation.

In Fig. 9, we report the total execution time of the three block-Jacobi generation strategies applied to the four matrix
structures. In this experiment, we fix the size of the matrix to 1,000,000 and increase the size of the diagonal blocks from
1 to 32.

For the arrow sparsity structure, the SHARED strategy is much faster than its CACHED counterpart; see results in the first
row of Fig. 9. This result was expected because the arrow nonzero pattern contains a single dense row, which results in
dramatic load imbalance if each row is traversed by a single thread, as is the case for cACHED. The SHARED alternative uses
all threads of the warp to traverse this row, which alleviates the load imbalance and ensures coalescent access. For the other
cases, the impact of non-coalescent memory access featured by cAcHED is small as long as we consider small block sizes.
This is because, for small blocks, only a few threads in each warp read data, which results in a reduced number of memory
requests. Conversely, for large block sizes, the increase in memory requests impairs performance. Both strategies based on
shared extraction eliminate load imbalance and non-coalescent memory access. Nonetheless, the reduced number of idle
threads makes the sHARED-MPwW version the overall winner.

We now asses the performance of the extraction routines for a set of test matrices from the SuiteSparse matrix collection.
For brevity, we display the results for the P100 GPU only. The selected test matrices are listed along with some key prop-
erties in Table 1. In Fig. 10, we report the runtime of the block-Jacobi preconditioner generation for different block sizes. In
these tests, the block sizes only correspond to an upper bound, and the blocks are identified via supervariable blocking. Also,
some blocks can be smaller to better reflect the block structure of the problem matrix [11]. We again identify SHARED-MPW
as the overall winner.

Please cite this article as: H. Anzt et al., Variable-size batched Gauss-Jordan elimination for block-Jacobi preconditioning
on graphics processors, Parallel Computing (2018), https://doi.org/10.1016/j.parco.2017.12.006

https://doi.org/10.1016/j.parco.2017.12.006

Fig. 13. Detailed comparison of IDR(4) enhanced with block Jacobi using different block sizes. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Jacobi(1) Jacobi(8) Jacobi(12) Jacobi(16) Jacobi(24) Jacobi(32)

"_T Jacobi(1 Jacobi(1 Jacobi(1) Jacobi(8) Jacobi(1 Jacobi(12) Jacobi(1) Jacobi(1 Jacobi(1 Jacobi(24) Jacobi(1 Jacobi(32)
-
Q
Q
Q
®
-

50 50 50 50 50 50 50 50 50 50 50 50
a? Jacobi(8 Jacobi(1) Jacobi(8; Jacobi(8) Jacobi(8) Jacobi(12) Jacobi(8) Jacobi(16) Jacobi(8) Jacobi(24) Jacobi(8) Jacobi(32)
=
Q
Q
Q
®
Lar}

50 50 50 50 50 50 50 50 50 50 50 50
—_
ﬁ Jacobi(12) Jacobi(1) Jacobi Jacobi(8) Jacobi(12) Jacobi(12) Jacobi(12) Jacobi(16) Jacobi(12) Jacobi(24) Jacobi(12) Jacobi(32)
=
Q
Q
Q
5]
Lar}

50 50 50 50 50 50 50 50 50 50 50 50
~~
g Jacobi(16) Jacobi(1) Jacobi(1 Jacobi(8) Jacobi(16 Jacobi(12) Jacobi(16) Jacobi(16) Jacobi(16) Jacobi(24) Jacobi(16) Jacobi(32)
N
2
Q
o
®
-

50 50 50 50 50 50 50 50 50 50 50 50
~
;l‘] Jacobi(24) Jacobi(1) Jacobi(2: Jacobi(8) Jacobi(24) Jacobi(12) Jacobi(2: Jacobi(16) Jacobi(24) Jacobi(24) Jacobi(24) Jacobi(32)
N—"
o
Q
Q
Q
'cg

50 50 50 50 50 50 50 50 50 0 50 50 50
’O? Jacobi(32) Jacobi(1) Jacobi(3 Jacobi(8) Jacobi(32) Jacobi(12) Jacobi(32) Jacobi(16) Jacobi(32) Jacobi(24) Jacobi(32) Jacobi(32)
@
o=
Q
Q
Q
o]
= 50 0 50 50 50 50 50 50 50 50 0 50 50 0 50

4!

=
>
8
o
it
=N
~
g
=N
)
g
S
5
=
5
@
S
S
3
N
S
2
x
&
=
l
L
5

>
A
=
@)
P
m
=
ﬁ
A
m
%)
wn

21:02'810C ‘0T AJenueriosnew

https://doi.org/10.1016/j.parco.2017.12.006

JID: PARCO [m3Gsc;January 10, 2018;20:12]

H. Anzt et al./Parallel Computing 000 (2018) 1-16 15
4.4. Block-Jacobi application

In an iterative solver setting, the efficiency of a preconditioner depends on the overhead of generating the preconditioner
and, to even a larger extent, on the cost of applying it during the iterative solution process.

In Fig. 11, we assess the performance of the preconditioner application using a generic spMv kernel proposed in [2] ver-
sus our structure-aware SPMV (SA-sPMV) introduced in Section 3.3. On both architectures, sa-spmv outperforms the initial
spmv kernel for the preconditioner application. For a block size of 32, this routine achieves about 32 gigaFLOPS on the K40
architecture, and around 80 gigaFLOPS on the P100 architecture. Local performance peaks can be identified for block sizes 8
and 16.

4.5. Convergence in the context of an iterative solver

Table 1 in the appendix details the convergence rate and execution time of an IDR(4) iterative solver [12] enhanced with
either a scalar-Jacobi preconditioner or a block-Jacobi preconditioner for the selected cases from the SuiteSparse collection.
The execution time includes both the preconditioner generation and the iterative solver execution. Detailed analysis reveals
that in 88% of the tests, the preconditioner setup accounts for less than 1% of the total execution time. In all other cases,
the block-inverse generation accounts for less than 5%. We combine the best kernels for the distinct preconditioner build-
ing blocks, i.e., SHARED-MPW, BGJE-MPW, and SA-SPMV. Other kernels are taken from the MAGMA-sparse open-source
software package [10]. The IDR method [13] is among the most robust Krylov solvers [14]. The GPU-implementation of
IDR available in MAGMA-sparse has been proven to achieve performance close to the hardware-imposed bounds [15]. For
brevity, we run these tests on the newer P100 architecture only. We start the iterative solution process with an initial guess,
Xo = 0, solve for a right-hand side composed of random values in the interval [0, 1], and stop the iteration process once
the relative residual norm has decreased by nine orders of magnitude. We allow for up to 50,000 iterations of the IDR(4)
solver. In Fig. 12, we summarize the results showing for how many problems a certain configuration was the best choice
(i.e., provided the fastest time to solution), and for how many problems a certain configuration was “successful” (concretely,
reduced the relative residual norm by nine orders of magnitude within the limit of 50,000 iterations).

The results reveal that the scalar version of Jacobi fails to sufficiently improve the convergence of IDR(4) for a significant
fraction of the test matrices. For the test matrices where IDR(4) preconditioned with the scalar Jacobi converges, the faster
convergence obtained from using a block-Jacobi preconditioner typically compensates for the higher costs of preconditioner
setup and application. In Fig. 13, we offer a head-to-head comparison of different block-size bounds for the block-Jacobi
preconditioner used in IDR(4). The orange area in the plot at position “row Jacobi(x) vs. column Jacobi(y)” visualizes the
number of matrices for which IDR(4) preconditioned with block-Jacobi of block size x converged, while it failed to converge
with block size y. The opposite scenario, where block size y converged but block size x did not, is shown in green. Finally,
the yellow area represents the number of matrices for which both methods converged—the area to the right of the center
represents cases where block size y converges faster, while the area left of the center represents cases where block size x
converges faster. The results suggest that adopting a larger block size usually leads to a more robust solver (i.e., convergence
is achieved for a larger number of problems), and that a larger block size also improves the overall time-to-solution perfor-
mance. However, in order to obtain the optimal performance for a specific problem, the block size should be tuned to the
underlying block structure of the problem.

Overall, the results presented in this subsection offer strong evidence that the routines we developed provide an efficient
approach to generating and applying a block-Jacobi preconditioner.

5. Concluding remarks

In this paper, we presented an enhanced, variable-size batched matrix inversion routine for GPUs based on the GJE pro-
cess. Our approach replaces explicit pivoting with a strategy that reassigns the workload instead of shuffling the data and
relies heavily on CUDA’s latest warp-local communication features. As a result, our matrix inversion kernel is more flexi-
ble and significantly outperforms its counterparts in the cuBLAS library. In the framework of block-Jacobi preconditioning,
we combined the batched matrix inversion procedure with efficient routines for extracting the diagonal blocks from the
sparse data structures (where the problem matrix is stored) and inserting the inverse blocks back into the preconditioner.
We also addressed the efficient preconditioner application by developing a structure-aware batched kernel for the sparse
matrix-vector product that accommodates variable-size matrix operands. Finally, we demonstrated that block Jacobi can be
significantly more efficient than a scalar Jacobi when preconditioning iterative solvers.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Advanced Sci-
entific Computing Research, Applied Mathematics program under Award Number DE-SC-0010042. H. Anzt was supported by
the “Impuls und Vernetzungsfond of the Helmholtz Association” under grant VH-NG-1241. G. Flegar and E. S. Quintana-Orti
were supported by project TIN2014-53495-R of the MINECO-FEDER; and project OPRECOMP (http://oprecomp.eu) with the

Please cite this article as: H. Anzt et al., Variable-size batched Gauss-Jordan elimination for block-Jacobi preconditioning
on graphics processors, Parallel Computing (2018), https://doi.org/10.1016/j.parco.2017.12.006

http://oprecomp.eu
https://doi.org/10.1016/j.parco.2017.12.006

JID: PARCO [m3Gsc;January 10, 2018;20:12]

16 H. Anzt et al./Parallel Computing 000 (2018) 1-16

financial support of the Future and Emerging Technologies (FET) programme within the European Union’s Horizon 2020 re-
search and innovation programme, under grant agreement No 732631. The authors would also like to acknowledge the Swiss
National Computing Centre (CSCS) for granting computing resources in the Small Development Project entitled “Energy-
Efficient preconditioning for iterative linear solvers” (#d65).

References

[1] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2003.

[2] H. Anzt,]. Dongarra, G. Flegar, E.S. Quintana-Orti, Batched Gauss-Jordan Elimination for Block-Jacobi Preconditioner Generation on GPUs, in: Proceed-
ings of the Eighth International Workshop on Programming Models and Applications for Multicores and Manycores, PMAM'17, ACM, New York, NY,
USA, 2017, pp. 1-10, doi:10.1145/3026937.3026940.

[3] A.S. Householder, The Theory of Matrices in Numerical Analysis, Dover, New York, 1964.

[4] E.S. Quintana-Orti, G. Quintana-Orti, X. Sun, R. van de Geijn, A note on parallel matrix inversion, SIAM]. Sci. Comput. 22 (5) (2001) 1762-1771.

[5] P. Benner, P. Ezzatti, E. Quintana-Orti, A. Remdn, Matrix inversion on CPU-GPU platforms with applications in control theory, Concurr. Comput. Pract.
Exp. 25 (8) (2013) 1170-1182.

[6] J. Kurzak, H. Anzt, M. Gates,]. Dongarra, Implementation and tuning of batched Cholesky factorization and solve for NVIDIA GPUs, IEEE Trans. Parallel
Distrib. Syst. 27 (7) (2016) 2036-2048, doi:10.1109/TPDS.2015.2481890.

[7] A. Haidar, T. Dong, P. Luszczek, S. Tomov,]J. Dongarra, Batched matrix computations on hardware accelerators based on GPUs, Int.]J. High Perform.
Comput. Appl. 29 (2) (2015) 193-208.

[8] J. Dongarra, LS. Duff, M. Gates, A. Haidar, S. Hammerling,]. Higham, J. Hogg, P. Valero-Lara, D. Relton, S. Tomov, M. Zounon, A Proposed API for Batched
Basic Linear Algebra Subprograms, The University of Manchester, 2016, pp. 1749-9097. ISSN

[9] H. Anzt, E. Chow, T. Huckle, J. Dongarra, Batched generation of incomplete sparse approximate inverses on GPUs, in: Proceedings of the Seventh
Workshop on Scalable Algorithms for Large-scale Systems, ScalA’16, 2016.

[10] Innovative Computing Lab, Software Distribution of MAGMA Version 2.0, 2016. http://icl.cs.utk.edu/magma/.

[11] E. Chow, H. Anzt,]. Scott,]. Dongarra, Experimental Study of Iterative Methods and Blocking for Solving Sparse Triangular Systems in Incomplete
Factorization Preconditioning, Journal of Parallel and Distributed Computing, submitted.

[12] P. Sonneveld, M.B. van Gijzen, IDR(S): a family of simple and fast algorithms for solving large nonsymmetric systems of linear equations, SIAM]. Sci.
Comput. 31 (2) (2009) 1035-1062.

[13] H. Anzt, E. Ponce, G.D. Peterson,]. Dongarra, GPU-accelerated co-design of induced dimension reduction: algorithmic fusion and kernel overlap, in:
Proceedings of the Second International Workshop on Hardware-Software Co-Design for High Performance Computing, Co-HPC '15, ACM, New York,
NY, USA, 2015, pp. 5:1-5:8.

[14] H. Anzt, J. Dongarra, M. Kreutzer, G. Wellein, M. Koehler, Efficiency of general Krylov methods on GPUs - an experimental study, in: Proceedings of
the IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2016, pp. 683-691.

[15] H. Anzt, M. Kreutzer, E. Ponce, G.D. Peterson, G. Wellein,]J. Dongarra, Optimization and performance evaluation of the IDR iterative Krylov solver on
GPUs, Int.]. High Perform. Comput. Appl. (2016), doi:10.1177/1094342016646844.

Please cite this article as: H. Anzt et al., Variable-size batched Gauss-Jordan elimination for block-Jacobi preconditioning
on graphics processors, Parallel Computing (2018), https://doi.org/10.1016/j.parco.2017.12.006

http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0001
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0001
https://doi.org/10.1145/3026937.3026940
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0003
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0003
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0004
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0004
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0004
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0004
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0004
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0005
https://doi.org/10.1109/TPDS.2015.2481890
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0007
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0007
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0007
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0007
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0007
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0007
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0009
http://icl.cs.utk.edu/magma/
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0010
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0010
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0010
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30210-7/sbref0012
https://doi.org/10.1177/1094342016646844
https://doi.org/10.1016/j.parco.2017.12.006

	Variable-size batched Gauss-Jordan elimination for block-Jacobi preconditioning on graphics processors
	1 Introduction
	2 Background and related work
	2.1 Block-Jacobi preconditioning
	2.2 GJE for matrix inversion
	2.3 GJE with implicit pivoting
	2.4 Batched GPU routines

	3 Design of CUDA kernels
	3.1 Variable-size batched Gauss-Jordan elimination
	3.2 Data extraction from the sparse coefficient matrix
	3.3 Preconditioner application

	4 Experimental evaluation
	4.1 Hardware and software framework
	4.2 Batched matrix inversion
	4.3 Block-Jacobi generation
	4.4 Block-Jacobi application
	4.5 Convergence in the context of an iterative solver

	5 Concluding remarks
	 Acknowledgments
	 References

