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Abstract: Recent in-hardware GPU acceleration of half precision arithmetic (FP16) ~ motivated
by various machine learning (ML) and artificial intelligence (Al) applications - has reinvigorated a great
interest in the mixed-precision iterative refinement technique. The technique is based on use of low
precision arithmetic to accelerate the general HPC problem of solving Ax = b, where A is a large dense
matrix, and the solution is needed in FP64 accuracy. While being a well known technique, its successful
modification, software development, and adjustment to match architecture specifics, is challenging.
For current manycore GPUs the challenges range from efficient parallelization to scaling, and using the
FP16 arithmetic. Here, we address these challenges by showing how to algorithmically modify, develop
high-performance implementations, and in general, how to use the FP16 arithmetic to significantly
accelerate, as well as make more energy efficient, FP64-precision Ax = b solvers. One can reproduce
our results as the developments will be made available through the MAGMA library. We quantify in
practice the performance, and limitations of the approach stressing on the use of the Volta V100
Tensor Cores that provide additional FP16 performance boost.
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Analysis performed on 19 types of matrices [1] (vertical
view) for each of the algorithms. Types are ordered by
increased difficulty.
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Graphs also illustrate the effect of the matrix sizes on
the convergence of each algorithm (horizontal view).
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The use of the FP16-64 Tensor Cores accelerates most
of the problems since it requires small number of
iterations.
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Study of the Matrix Matrix multiplication kernel on Nvidia V100
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Approach: 1) Develop Ax=b solver in FP16

Study of the LU factorization algorithm on Nvidia V100

LU factorization is used to solve a
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Approach: 2) Iterative refinement

Idea: use lower precision to compute the expensive floj s U O(n®)) and then iterativel
refine the solmlg:em order to acpr:{'eve the FP64 arithme » (L ) Y

Tterative refinement for dense systems, Ax = b, can work this way.
LU = lu(A)

x = U\L\b)
reb-Ax

ower precision
ower precision
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WHILE || r || not small enough
1. find a correction “z" to adjust x that satisfy Az=r
solving Az=r could be done by either:
> z= U\L\r) Classical Iterative Refinement

ower precision
GMRes preconditioned by the LU o solve Az=r Iterative Refinement using GMRes

ower precision
2. x=x FP64 precision
3 r=b-Ax FPOA precision

END

> Convergence history of the iterative refinement
solver to achieve FP64 solution accuracy.

> Left graph shows the classical iterative refinement
method.

> Right gragh ot tarathe refinemant kg
GMRes.
> Problem generated with an arithmetic distribution
(11— )

of the singular values 6; = 1 — (.
and where condition number of the matrix is 107,

Numerical behavior of FP16 on V100

The FP32->64 algorithm converge as expected by theory and is able to

achieve the FP64 solution accuracy in about 3-5 iterations for this types of
matrices.

The FP16->64 algorithm requires more iterations because of the lower
precision factorization.

The FP16->64 (Tensor Cores) outperforms the FP16->64 because the
accumulation during the FP16-TC GEMM (Schur update) use 32-bit.

Iterative Refinement using GMRes (IRGM) is always preferred in order to
achieve FP64 accuracy.

‘The FP32->64 work as expected by theory for all the
problem considered.

Results illustrate that different type of i i
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Performance of solving

Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy
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solving Ax = b using FP32 LU and iterative
refinement to achieve FP64 accuracy

solving Ax = b using FP16 LU and iterative
refinement to achieve FP64 accuracy

Performance results on V100

> solving Ax = b using FP16 Tensor Cores LU and
to achieve FP64 accuracy
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Using FP16-TC solver achieves about 4 speedup over the FP64 solver and
provides solution in FP64 accuracy.

‘The FP16-TC solver requires less iterations than FP16 classic and thus
provide better performance.

For more dwmuu problem (right), lhe number of iterations of FP16 classic
increases th drop down for that of the
FP16 classc érop for difficult Py (right igure).
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iterative refinement solver to achieve FP64 solution
accuracy for the three algorithms:
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Analysis performed on 19 types of matrices [1] (vertical
view) for each of the algorithms. Types are ordered by
increased difficulty.
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Graphs also illustrate the effect of the matrix sizes on
the performance of each algorithm (horizontal view).
The use of the FP16-64 Tensor Cores accelerates most
of the problems and provides up to 4X speedup over
the FP64 solver (24 Tflop/s versus 4.7 Tflop/s).

The FP16-64 is able to accelerate many problem T T T T
reaching about 3X speedup (16 Tflop/s versus 4.7
Tflop/s) but may fail to accelerate other problems.
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‘The FP32->64 work as expected and provide around 2X
speedup (10 Tflop/s versus 4.7 Tflop/s).

Results illustrate that different type of problems
can be accelerated up to 4X by the usage of the

FP16 or 2X otherwise, using the FP32 arithmetic. ks, X S GO 3
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Power awareness

Solving Ax=b on Nvidia V100

Mixed precision techniques can provide
alarge gain in energy efficiency
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Energy efficiency on V100
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Power consumption of the mixed precision
FP32564 alqcmmm to solve Ax=b fora
‘matrix of size 4K, it achieve 10.7 Tflopls and
requires about 1041 Joules providing about
30 Gfiops/Watts.

Power consumption of the mixed precision
FP16->64 algorithm to solve Ax=b for a

34K, itachieve 16.8 Tflopis and
requires about 609 joules providing about
48 Gflops/Watts.
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Matrices gcnemcd with positive A and arithmetic distribution of its amg\llar values
— (2=4)(1- -L,) and where its condition number is equal to 1
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FP16->64 TC algorithm ensor Cores
0 solve Ax=b for a matrix of size 34K, it

achieve 24 Tflop/s and requires abou! 470
Joules providing about 74 Gflops Watts.

Conclusion:

We accelerated the solution of linear system Ax = b solver using hardware-accelerated
FP16 arithmetic on GPUs;

We introduced a framework for exploiting mixed-precision FP16-FP32/FP64 iterative
refinement solvers and describe the path to draw high-performance and energy-aware GPU
implementations;

Our technique shows that a number of problems can be accelerated up to 4X by the usage
of the FP16 or 2X otherwise, using the FP32 arithmetic.

We studied the energy-efficiency of our approach that showed incredible energy savings,
5X energy savings comp: to the FP64 i

We illustrated a technique to use V100 Tensor Cores that achieves FP64 accuracy at a highly
efficient/accelerated performance equating to 74 FP64 Gflops/Watt and 24 FP64 Tflops/s.
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> Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
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