Harnessing GPU's Tensor Cores Fast FP16 Arithmetic to Speedup Mixed-Precision
Iterative Refinement Solvers and Achieve 74 Gflops/Watt on Nvidia V100
Azzam Haidar, Ahmad Abdelfattah, Stanirnirg Tomov, and Jack Dongarra y

LACL pteesss

Abstract: Recent in-hardware GPU acceleration of half precision arithmetic (FP16) ~ motivated
by various machine learning (ML) and artificial intelligence (Al) applications - has reinvigorated a great
interest in the mixed-precision iterative refinement technique. The technique is based on use of low
precision arithmetic to accelerate the general HPC problem of solving Ax = b, where A is a large dense
matrix, and the solution is needed in FP64 accuracy. While being a well known technique, its successful
modification, software development, and adjustment to match architecture specifics, is challenging.
For current manycore GPUs the challenges range from efficient parallelization to scaling, and using the
FP16 arithmetic. Here, we address these challenges by showing how to algorithmically modify, develop
high-performance implementations, and in general, how to use the FP16 arithmetic to significantly
accelerate, as well as make more energy efficient, FP64-precision Ax = b solvers. One can reproduce
our results as the developments will be made available through the MAGMA library. We quantify in
practice the performance, and limitations of the approach stressing on the use of the Volta V100
Tensor Cores that provide additional FP16 performance boost.

Convergence history of the iterative refinement solver to
oc Recative Asfinement using Glifies achieve FP64 solution accuracy for the three algorithms:
:::W l:GH (Tensor Cores) « FP32->FP64

FP32->64 IRGM * FP16->FP64

+ FP16->64 (Tensor Cores)

y for Classic

i
= e
=24

FP32:>64 dsgesv marx cond i

(Tensor Cores)

Analysis performed on 19 types of matrices [1] (vertical
view) for each of the algorithms. Types are ordered by
increased difficulty.

0k 14k tek 18k 22k

64 dhsgesv matrix cond is 10E:

Graphs also illustrate the effect of the matrix sizes on
the convergence of each algorithm (horizontal view).

s tpes

. Matricos

1078, | . A

The use of the FP16-64 Tensor Cores accelerates most
of the problems since it requires small number of
iterations.

102, ‘ 107,
0 3 6 9 12 15 18 21 24 27 30 33 36 D 2 4 6 8 10 12 14 16 18 20 22 24 26 64 i -
* oabions LA The FP16-64 is able to cope with many problem but may o 8k

fail for other, more difficult problems.

10k 1k
FP16-64 dshtges (TC

Motivation: Leverage FP16 in HPC on Vioo

Study of the Matrix Matrix multiplication kernel on Nvidia V100

FP18 TC square)-FP16 squafe
QO |+* FPIBTCK=256 == FPI6 k=256
851

« dgemm achieve about 6.4 Tflop/s
sgemm achieve about 14 Tflop/s
hgemm achieve about 27 Tflop/s

AeFPaz'square
= FP32K=256

4 FPed square|
“« FP64 k=256

gg [Tensor cores gemm reach about 85 Tflop/s

70+
65

A IO
=1

Tflop/s
CNSHSREREHS

Matrix matrix multiplication GEMM

= SN,

2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k

m=n

Approach: 1) Develop Ax=b solver in FP16

Study of the LU factorization algorithm on Nvidia V100

LU factorization is used to solve a

SR
AN -
b f

26 °FR16-TC (Tensor Cores) hgetrf LU
24" tma hge

FP32 sgetrf LU
22 |9-FP64 dgetrf L

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
matrix size

i
i
i
i

Approach: 2) Iterative refinement

Idea: use lower precision to compute the expensive floj s U O(n®)) and then iterativel
refine the solmlg:em order to acpr:{'eve the FP64 arithme » (L) Y

Tterative refinement for dense systems, Ax = b, can work this way.
LU = lu(A)

x = U\L\b)
reb-Ax

ower precision
ower precision
FP64 precision

WHILE || r || not small enough
1. find a correction “z" to adjust x that satisfy Az=r
solving Az=r could be done by either:
> z= U\L\r) Classical Iterative Refinement

ower precision
GMRes preconditioned by the LU o solve Az=r Iterative Refinement using GMRes

ower precision
2. x=x FP64 precision
3 r=b-Ax FPOA precision

END

> Convergence history of the iterative refinement
solver to achieve FP64 solution accuracy.

> Left graph shows the classical iterative refinement
method.

> Right gragh ot tarathe refinemant kg
GMRes.
> Problem generated with an arithmetic distribution
(11—)

of the singular values 6; = 1 — (.
and where condition number of the matrix is 107,

Numerical behavior of FP16 on V100

The FP32->64 algorithm converge as expected by theory and is able to

achieve the FP64 solution accuracy in about 3-5 iterations for this types of
matrices.

The FP16->64 algorithm requires more iterations because of the lower
precision factorization.

The FP16->64 (Tensor Cores) outperforms the FP16->64 because the
accumulation during the FP16-TC GEMM (Schur update) use 32-bit.

Iterative Refinement using GMRes (IRGM) is always preferred in order to
achieve FP64 accuracy.

‘The FP32->64 work as expected by theory for all the
problem considered.

Results illustrate that different type of i i
problems can be accelerated by the usage of 2 4k Gk 8k 10k 14k 16k 18k 22k 26k 30k 34k
the FP16 arithmetic. Hawsize

Performance of solving

Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

e T

e s

S¢FP64 dgesv.
18

ak 6k 8k10k

solving Ax = b using FP32 LU and iterative
refinement to achieve FP64 accuracy

solving Ax = b using FP16 LU and iterative
refinement to achieve FP64 accuracy

Performance results on V100

> solving Ax = b using FP16 Tensor Cores LU and
to achieve FP64 accuracy

14k 18k 22k 26k 30k 34k
Matrix size

rformance of solving Ax
20using FP64 or 7 with GhiFas 1o achove P64 accuracy
FP16-564 dhgesv
18/ gepiened ﬂ"“"‘)
v
16/ 5% Fred dgesv "

ak6k8k10k 14k 18k 22k 26k 30k 34k
Matrix size

Using FP16-TC solver achieves about 4 speedup over the FP64 solver and
provides solution in FP64 accuracy.

‘The FP16-TC solver requires less iterations than FP16 classic and thus
provide better performance.

For more dwmuu problem (right), lhe number of iterations of FP16 classic
increases th drop down for that of the
FP16 classc érop for difficult Py (right igure).

FP32>64 trix cond Is 10E2
+ Performance (reflecting time to solution) of the dsgosv_ matrix cond s

iterative refinement solver to achieve FP64 solution
accuracy for the three algorithms:

© FP32->FP64

© FP16-5FP64

* FP16->64 (Tensor Cores)

Analysis performed on 19 types of matrices [1] (vertical
view) for each of the algorithms. Types are ordered by
increased difficulty.

——
Bk 10k 18k 16k 18k 22k 26k 30k 3k
FP16:564 dhsgesv matrix cond is 10E2

Graphs also illustrate the effect of the matrix sizes on
the performance of each algorithm (horizontal view).
The use of the FP16-64 Tensor Cores accelerates most
of the problems and provides up to 4X speedup over
the FP64 solver (24 Tflop/s versus 4.7 Tflop/s).

The FP16-64 is able to accelerate many problem T T T T
reaching about 3X speedup (16 Tflop/s versus 4.7
Tflop/s) but may fail to accelerate other problems.

8k 22k 26k 30k 34k
FP16-564 dshtgesv (TC) matrix cond is 10E2

‘The FP32->64 work as expected and provide around 2X
speedup (10 Tflop/s versus 4.7 Tflop/s).

Results illustrate that different type of problems
can be accelerated up to 4X by the usage of the

FP16 or 2X otherwise, using the FP32 arithmetic. ks, X S GO 3

|
Power awareness

Solving Ax=b on Nvidia V100

Mixed precision techniques can provide
alarge gain in energy efficiency

b it Aty VR
85383823 EENENEEEREERES

Energy efficiency on V100

'CPU: 10 cores E5.2650 3
PU: Nvidia V100
——FPed solver dgesy

P32-->64 sol
FPie-2e4 solver dhgesy
FP16->64 solver dhgesv (TC)

Power consumption of th
solve Ax=b for a matrix um w(Wachion

< and re
providing about 4 Gl

Power consumption of the mixed precision
FP32564 alqcmmm to solve Ax=b fora
‘matrix of size 4K, it achieve 10.7 Tflopls and
requires about 1041 Joules providing about
30 Gfiops/Watts.

Power consumption of the mixed precision
FP16->64 algorithm to solve Ax=b for a

34K, itachieve 16.8 Tflopis and
requires about 609 joules providing about
48 Gflops/Watts.

Power consumption of the mixed precision

°

2 3 4
Time (sec)

Matrices gcnemcd with positive A and arithmetic distribution of its amg\llar values
— (2=4)(1- -L,) and where its condition number is equal to 1

ond

FP16->64 TC algorithm ensor Cores
0 solve Ax=b for a matrix of size 34K, it

achieve 24 Tflop/s and requires abou! 470
Joules providing about 74 Gflops Watts.

Conclusion:

We accelerated the solution of linear system Ax = b solver using hardware-accelerated
FP16 arithmetic on GPUs;

We introduced a framework for exploiting mixed-precision FP16-FP32/FP64 iterative
refinement solvers and describe the path to draw high-performance and energy-aware GPU
implementations;

Our technique shows that a number of problems can be accelerated up to 4X by the usage
of the FP16 or 2X otherwise, using the FP32 arithmetic.

We studied the energy-efficiency of our approach that showed incredible energy savings,
5X energy savings comp: to the FP64 i

We illustrated a technique to use V100 Tensor Cores that achieves FP64 accuracy at a highly
efficient/accelerated performance equating to 74 FP64 Gflops/Watt and 24 FP64 Tflops/s.

Acknowledgement: This work was supported by the Exascale Computing Project, a
collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration. This work was also partially supported by the National
Science Foundation under Grant 0AC-1740250 and NVIDIA.

> Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.

REFERENCES. [1] A. Haidar, P. Wu, S. Tomov, J. Dongarra, Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers,
> Tt can be shown that using this approach we can compute the solution to 64-bit floating point precision.

SC-17, ScalA17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, ACM, Denver, Colorado, November 12-17, 2017.
[2] A. Haidar, P. Wu, S. Tomov, J. Dongarra, Harnessing GPU's Tensor Cores Fast FP16 Arithmetic to Speedup Mixed-Precision Iterative Refinement Solvers,
https://arxiv.org/

