
Optimizing Batch HGEMM on Small Sizes Using Tensor Cores
 Ahmad Abdelfattah, Stanimire Tomov, and Jack Dongarra

Abstract
We present an optimized batch GEMM for FP16 arithmetic using NVIDIA’s Tensor Core Technology. The
proposed design strategy takes advantage of the low-level warp matrix functions to provide a highly
flexible GPU kernel that provides a lot of controls to the developer. We also pay particular attention to
multiplications of very small matrices that cannot fully occupy the tensor core units. Our results show that
the proposed design can outperform cuBLAS for sizes up to 100 by factors between 1.2x and 10x using a
Tesla V100 GPU. For very small matrices, the observed speedups range between 1.8x and 26x. This
development is part of the MAGMA library [1].

Motivation
Half precision matrix multiply is at the core of the AI revolution and other areas such as:
● Deep learning
● Mixed precision algorithms and linear solvers [3]

Design Challenges
CUDA provides a set of Warp Matrix Functions that can be used to program the tensor core units. Tensor
cores inputs and outputs are stored in fragments.

Known Constraints

Design Strategy

Three different designs for very small sizes
● Mainly target sizes less ⩽ 16. These sizes do not fully occupy the tensor core units when using

mma_sync()
● A different design approach is required

MAGMA-SMALL-V1
● One warp performs one GEMM using tensor cores
● Assign multiple warps per thread block to improve latency hiding

MAGMA-SMALL-V2
● One warp performs simultaneous GEMMs using one tensor core operation
● Maximum number of simultaneous GEMMs is:

min(⎣TC_M ÷ M⎦, ⎣TC_N ÷ N⎦)
● Matrices stored in fragments as shown below, assuming (TC_M, TC_N, TC_K) = (16, 16, 16)

MAGMA-SMALL-V3
● Does not use tensor cores
● Automatic code generation for every size using C++ templates
● If the percentage utilization of the tensor core compute power in MAGMA-SMALL-V2 is less

than ~25%, then MAGMA-SMALL-V3 can outperform MAGMA-SMALL-v2 (e.g. for square

sizes ⩽ 10)
● Such a ratio is equivalent to the peak FP16 performance without tensor cores (31.7 Tflop/s) to

the peak performance with tensor cores (125.0 Tflop/s) on the V100 GPU

● CNN algorithms based on minimal filtering [2]

Conclusions
● The proposed batch HGEMM outperforms cuBLAS for relatively small sizes
● Speedups range between 1.2x and 26x
● A novel approach for addressing tensor core utilization for extremely small problems

Acknowledgement This work was supported by the Exascale Computing Project, a collaborative effort of the U.S. Department of Energy Office
 of Science and the National Nuclear Security Administration. This work was also partially supported by the National
 Science Foundation under Grant OAC-1740250 and NVIDIA.

REFERENCES: [1] Matrix Algebra on GPU and Multicore Architectures (MAGMA), https://icl.utk.edu/magma/
 [2] S. Winograd, S. for Industrial, A. Mathematics, C. B. of the Mathematical Sciences, and N. S. F. E. U. d’Am`erica) Arithmetic Complexity of Computations, ser. CBMS-NSF Regional Conference Series in Applied
 Mathematics. Society for Industrial and Applied Mathematics, 1980.
 [3] A. Haidar, S. Tomov, J. Dongarra, and N. Higham. 2018. Harnessing GPU tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers. SC’18

Kernel Autotuning
● CUDA C++ templates are used
● 8 tuning parameters in total:

(DIM_X, DIM_Y, BLK_M, BLK_N, BLK_K, TC_M, TC_N, TC_K).
● Using “soft constraints”, the number of eligible kernel instances is reduced from

about 15,000 to 4,948
● Automated scripts are used to generate the sample space, evaluate each kernel

instance, and analyze the collected results to choose the winning kernels
● The performance of MAGMA is compared against cuBLAS (CUDA 9.2), with

CUBLAS_TENSOR_OP_MATH turned on

Performance summary
● MAGMA outperforms cuBLAS for sizes less than 100
● Speedup ranges between 1.2x and 10.5x
● The smaller the size, the larger the speedup
● cuBLAS has the advantage asymptotically

Au
to

tu
ni

ng
 a

nd
 R

es
ul

ts
 o

n
M

ed
iu

m
 S

ize
s

Op
tim

iz
at

io
n

Te
ch

ni
qu

es
 fo

r E
xt

re
m

el
y S

m
al

l S
ize

s

● Fragments are opaque objects of
restricted sizes

● The sizes (M, N, K) are limited to
(16, 16, 16), (32, 8, 16), and (8, 32, 16)

● Loading and storing fragments must use leading
dimensions that are multiple of 16 bytes.

● No direct support for scaling. Recall that a standard
GEMM performs: C = 𝞪AB + 𝞫C, where 𝞪 and 𝞫 are
scalars.

● All operations (load/store/multiply) must be done
using a full warp

The developed kernel performs a standard GEMM operation C = 𝞪AB + 𝞫C, on
a batch of relatively small matrices, all having the same dimensions. The size
of the batch is called batchCount.

Grid Design
The output matrices are subdivided into small blocks of size
BLK_M x BLK_N. The grid configuration of the kernel is a 3D thread block
array of size (⎡M÷BLK_M⎤, ⎡N÷BLK_N⎤, batchCount). The grid is
organized as a 1D array of subgrids, each having a unique identifier called
batchid.

Within every subgrid, each TB is responsible for
computing a block of the corresponding output
matrix by reading a block row of A and a block
column of B.

Thread Block Design
Thread blocks utilize a double-sided recursive
blocking technique which recursively
subdivides data blocks from A, B, or C in two
different ways, depending on which phase of
the kernel is being executed. During memory
operations, threads are organized as a 2D
DIM_X x DIM_Y configuration that reads each
data block using a double loop-nest. During
computation, however, threads are organized
as individual warps in order to utilize the tensor
core units. During the latter stage,
the data blocks are subdivided using
permissible tensor core sizes
(TC_M, TC_N, TC_K)

Data blocks from A and B are cached in shared
memory and are loaded into
fragments by each warp as required.
Warps in the same thread block loop over
the data blocks of C in a round-robin style.

Performance Results
● MAGMA-SMALL-V1 is a clear winner for square sizes > 10, with about 2x speedup against

cuBLAS (top figure)
● MAGMA-SMALL-V3 outperforms MAGMA-SMALL-V2 for sizes less than 10 (top figure). It is

up to 25.8x faster than cuBLAS.
● While MAGMA-SMALL-V2 has no winning scenario for square sizes, it can be the best

performing kernel if M and N are less than 9, while having a relatively large K (bottom figure).
Small M and N ensure multiple GEMMs per a tensor core operation. A large value of K leads to
better utilization of the tensor cores compute power.

Future directions
● Comprehensive autotuning for various shapes and transpositions
● Support for variable size batches
● Engagement with application developers

B
at

ch
 H

G
E

M
M

 P
er

fo
rm

an
ce

, B
at

ch
 =

 1
M

, C
U

D
A

9.
2,

 T
es

la
 V

10
0

G
P

U

https://icl.utk.edu/magma/

