Towards Half-Precision Computation for Complex Matrices: A Case Study for Mixed-Precision Solvers on GPUs

Ahmad Abdelfattah, Stan Tomov, and Jack Dongarra

Innovative Computing Laboratory University of Tennessee, Knoxville

2019 ScalA Workshop, Denver, CO

Monday, November 18th, 2019

- Introduction
- 2 Matrix Multiplication with Half-complex Precision
- 3 Mixed-precision Factorization and Solve
- 4 Final Performance
- **5** Conclusion

Outline

Introduction

- Introduction
- Matrix Multiplication with Half-complex Precision
- 3 Mixed-precision Factorization and Solve
- 4 Final Performance
- 6 Conclusion

What are trying to solve?

Introduction

- Solve a linear system of equation (Ax = b)
- A is a general square matrix in single-complex precision
- Use half-precision to accelerate the solution (mixed-precision solver)
 - Accuracy is recovered using Iterative Refinement (IR)
- Similar algorithm to
 - Carson and Higam: Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions, SIAM SISC, 2018
 - Haidar et al.: Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed Up Mixed-precision Iterative Refinement Solvers, SC'18
- No native support for half-complex computation

This work is part of the MAGMA library

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

What are the steps?

- Mixed-precision LU factorization with partial pivoting
- Iterative refinement using preconditioned GMRES

Introduction

What are the steps?

- Mixed-precision LU factorization with partial pivoting
- Iterative refinement using preconditioned GMRES

Half-complex GEMM

- Introduction
- Matrix Multiplication with Half-complex Precision
- Mixed-precision Factorization and Solve
- 4 Final Performance
- 6 Conclusion

Mixed-precision Matrix Multiplication

- $C_{\text{FP32}} = C_{\text{FP32}} A_{\text{FP16}} \times B_{\text{FP16}}$
- A and B are originally in FP32, but are converted to half-complex
- No native support for half-complex kernels
 - cuBLAS provides only real arithmetic FP16 kernels
 - cuBLASLt and CUTLASS suggest using split-complex kernels using planar layout
- But interleaved layout is a better alternative
 - Used by almost all linear algebra algorithms
 - Better operational intensity (i.e. flops/bytes ratio)

A. Abdelfattah

- Goal: CGEMM kernel with FP16 acceleration
- Using cuBLAS (planar-layout)
 - Four calls to cublasGemmEx: arith. intensity = $\frac{mnk}{4mn+k(m+n)}$
 - Overhead of splitting and merging real/imaginary components
- Using a new MAGMA kernel (interleaved-layout)
 - One kernel call: arith. intensity = $\frac{2mnk}{4mn+k(m+n)}$
 - No overheads

Matrix Size (M = N, K is fixed at 512)

MAGMA's New Kernel (CGEMM-FP16-Interleaved)

- Input: A and B in half-complex precision (half2)
- Input/Output: C in single-complex precision
- An abstraction layer over the Tensor Cores (TCs)
 - Using WMMA device routines to manage TCs
 - Split and merge in shared memory
- Double-sided recursive blocking + auto-tuning

Performance of CGEMM-FP16

- Tested on Tesla V100-PCle GPU, CUDA 10.1
- 2 advantages for MAGMA: arithmetic intensity and splitting/merging overhead
- 70% better than cuBLAS (k = 256), 24% if k = 512

Performance of CGEMM-FP16 "cont."

- Tested on Tesla V100-PCle GPU, CUDA 10.1
- MAGMA loses the advantage for $k \ge 800$
- Summary of results
 - Blocking size ≤ 800, use MAGMA
 - Otherwise, use cuBLAS

Let's test both!

A. Abdelfattah 12/22 **CL**

Factorization & Solve

- Introduction
- Matrix Multiplication with Half-complex Precision
- 3 Mixed-precision Factorization and Solve
- 4 Final Performance
- 6 Conclusion

Performance of the mixed-precision LU factorization

- Panel factorization: CPU (hybrid) vs. GPU (native)?
- Larger *nb* means more time spent in single-complex precision (i.e. the panel)
- Use hybrid-LU only if the matrix is larger than 22k (with MAGMA CGEMM-GP16)

Performance of the mixed-precision LU factorization using native (left) and hybrid (right) executions. Results are shown on a

20-core Haswell CPU and a Tesla V100 GPU. MAGMA is built using CUDA 10.1 and MKL 2018.0.1

Classic IR vs. IR + GMRES

- GMRES is more stable for solving the correction equation (Ac = r)
- GMRES is preconditioned by the low precision factors of A
- Much faster conversion than classic IR
- Based on FGMRES implementation by Yousef Saad (ZITSOL)

Convergence history of both IR and IRGMRES on a matrix of size 20k. $k_{\infty}(A) = 10^5$. Clustered distribution of singular

values
$$(\sigma_i = 1, 1, \cdots, \frac{1}{k_{\infty}(A)})$$
.

♦iCL

A. Abdelfattah 15/22

- Introduction
- 2 Matrix Multiplication with Half-complex Precision
- 3 Mixed-precision Factorization and Solve
- 4 Final Performance
- 6 Conclusion

Final Performance: Mixed-precision CGESV-IRGMRES

Performance is up to 2.5×, but depends on the matrix properties

System: 20-core Intel Haswell CPU, Tesla V100 GPU - using MKL 2018.0.1 and CUDA 10.1

Left: Diagonally dominant matrices. $k_{\infty}(A) \le 10^2$.

Right: Matrices with positive eigenvalues and arithmetic distribution of singular values $(\sigma_i = 1 - (\frac{i-1}{n-1})(1 - \frac{1}{k_{\infty}(A)}))$, $k_{\infty}(A) \approx 4.3e + 5$

Final Performance: Mixed-precision CGESV-IRGMRES

Performance is up to 2.5×, but depends on the matrix properties

System: 20-core Intel Haswell CPU, Tesla V100 GPU - using MKL 2018.0.1 and CUDA 10.1

Left: Positive eigenvalues and logarithmic uniform distribution of singular values ($\log(\sigma_i)$ uniform between $\log(\frac{1}{k_{\infty}(A)})$ and $\log(1)$), $k_{\infty}(A) \approx 1e + 5$

Right: Clustered singular values $(\sigma_i = 1, 1, \dots, \frac{1}{k_{\infty}(A)}), k_{\infty}(A) \approx 4.3e + 4$

A. Abdelfattah 18/22 🔑 🛄

Sometimes it does not pay off

The refinement steps can consume all the performance advantage of the factorization

System: 20-core Intel Haswell CPU, Tesla V100 GPU - using MKL 2018.0.1 and CUDA 10.1

Arithmetic distribution of singular values $(\sigma_i = 1 - (\frac{i-1}{n-1})(1 - \frac{1}{k_{\infty}(A)})), k_{\infty}(A) \approx 4.3e+4.$

Half-complex GEMM Factorization & Solve Performance Conclusion

- Introduction
- 2 Matrix Multiplication with Half-complex Precision
- Mixed-precision Factorization and Solve
- 4 Final Performance
- **6** Conclusion

Conclusion

Summary

- FP16 arithmetic is not only for machine learning
- New family of mixed-precision linear solvers
- Half-complex precision accelerates single-complex systems by factors up to $2.5\times$
- Next: Double-complex systems, matrix scaling, other half-complex kernels

- https://icl.utk.edu/magma/
- Release expected by Spring 2020

Thank You!

