
Towards Half-Precision Computation for Complex
Matrices: A Case Study for Mixed-Precision Solvers

on GPUs

Ahmad Abdelfattah, Stan Tomov, and Jack Dongarra

Innovative Computing Laboratory
University of Tennessee, Knoxville

2019 ScalA Workshop, Denver, CO

Monday, November 18th , 2019

Outline

1 Introduction

2 Matrix Multiplication with Half-complex Precision

3 Mixed-precision Factorization and Solve

4 Final Performance

5 Conclusion

A. Abdelfattah 2/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

Outline

1 Introduction

2 Matrix Multiplication with Half-complex Precision

3 Mixed-precision Factorization and Solve

4 Final Performance

5 Conclusion

A. Abdelfattah 3/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

What are trying to solve?

Solve a linear system of equation (Ax = b)
A is a general square matrix in single-complex precision
Use half-precision to accelerate the solution (mixed-precision
solver)

Accuracy is recovered using Iterative Refinement (IR)
Similar algorithm to

Carson and Higam: Accelerating the Solution of Linear Systems by Iterative
Refinement in Three Precisions, SIAM SISC, 2018
Haidar et al.: Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed
Up Mixed-precision Iterative Refinement Solvers, SC’18

No native support for half-complex computation

This work is part of the MAGMA library

A. Abdelfattah 4/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

What are the steps?

1 Mixed-precision LU factorization with partial pivoting
2 Iterative refinement using preconditioned GMRES

Is A in
FP64?

Convert A: FP64 -> FP32

Mixed precision LU

1. Panel (FP32)
2. Rank-k updates (FP16->FP32)

A

B

CFP32 -= AFP16 ✕ BFP16

Tensor Core GEMM with
FP32 accumulate

1. GEMM Layout (interleaved vs planar)
2. Panel factorization (CPU vs. GPU)

A. Abdelfattah 5/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

What are the steps?

1 Mixed-precision LU factorization with partial pivoting
2 Iterative refinement using preconditioned GMRES

(1) Compute residual r = b – Ax
(2) Solve for c Ac = r
(3) Update solution xi+1 = xi + c
(4) Repeat 1-3 until converged

Using L/U factors of A
Classic IR

Using preconditioned GMRES
IR + GMRES

A. Abdelfattah 6/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

Outline

1 Introduction

2 Matrix Multiplication with Half-complex Precision

3 Mixed-precision Factorization and Solve

4 Final Performance

5 Conclusion

A. Abdelfattah 7/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

Mixed-precision Matrix Multiplication

CFP32 = CFP32 − AFP16 × BFP16

A and B are originally in FP32, but are converted to
half-complex
No native support for half-complex kernels

cuBLAS provides only real arithmetic FP16 kernels
cuBLASLt and CUTLASS suggest using split-complex kernels
using planar layout

But interleaved layout is a better alternative
Used by almost all linear algebra algorithms
Better operational intensity (i.e. flops/bytes ratio)

A. Abdelfattah 8/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

Mixed-precision Matrix Multiplication

Goal: CGEMM kernel with FP16 acceleration
Using cuBLAS (planar-layout)

Four calls to cublasGemmEx: arith. intensity = mnk
4mn+k(m+n)

Overhead of splitting and merging real/imaginary components
Using a new MAGMA kernel (interleaved-layout)

One kernel call: arith. intensity = 2mnk
4mn+k(m+n)

No overheads

 0

 20

 40

 60

 80

 100

 120

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
f
o
p
/s

Matrix Size (M = N, K is fxed at 256)

Roofine for CGEMM-FP16 (compute-only) for rank-256 updates (BW = 847 GB/s)

 cgemm-fp16-interleaved

 cgemm-fp16-planar
 0

 20

 40

 60

 80

 100

 120

 140

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
f
o
p
/s

Matrix Size (M = N, K is fxed at 512)

Roofine for CGEMM-FP16 (compute-only) for rank-512 updates (BW = 847 GB/s)

 cgemm-fp16-interleaved

 cgemm-fp16-planar

A. Abdelfattah 9/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

MAGMA’s New Kernel (CGEMM-FP16-Interleaved)

Input: A and B in half-complex precision (half2)
Input/Output: C in single-complex precision
An abstraction layer over the Tensor Cores (TCs)

Using WMMA device routines to manage TCs
Split and merge in shared memory

Double-sided recursive blocking + auto-tuning

Block of C
BLK_M

BLK_N

Read /
Write Compute

D
I
M
_
X

DIM_Y

T
C
_
N

TC_M

A. Abdelfattah 10/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

Performance of CGEMM-FP16

Tested on Tesla V100-PCIe GPU, CUDA 10.1
2 advantages for MAGMA: arithmetic intensity and
splitting/merging overhead
70% better than cuBLAS (k = 256), 24% if k = 512

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

T
f
o
p
/s

Matrix Size (M = N) x 1000 - (K = 256)

 cgemm-fp16 (magma)

 cgemm-fp16 (cublas)
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

T
f
o
p
/s

Matrix Size (M = N) x 1000 - (K = 512)

 cgemm-fp16 (magma)

 cgemm-fp16 (cublas)

A. Abdelfattah 11/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

Performance of CGEMM-FP16 “cont.”

Tested on Tesla V100-PCIe GPU, CUDA 10.1
MAGMA loses the advantage for k ≥ 800
Summary of results

Blocking size ≤ 800, use MAGMA
Otherwise, use cuBLAS

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

T
f
o
p
/s

Matrix Size (M = N) x 1000 - (K = 1024)

 cgemm-fp16 (magma)

 cgemm-fp16 (cublas)

Let’s test both!

A. Abdelfattah 12/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

Outline

1 Introduction

2 Matrix Multiplication with Half-complex Precision

3 Mixed-precision Factorization and Solve

4 Final Performance

5 Conclusion

A. Abdelfattah 13/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

Performance of the mixed-precision LU factorization

Panel factorization: CPU (hybrid) vs. GPU (native)?
Larger nb means more time spent in single-complex precision (i.e.
the panel)
Use hybrid-LU only if the matrix is larger than 22k (with MAGMA
CGEMM-GP16)

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Tf
op
/s

Matrix Size (x 1000)

cgetrf-native (magma-cgemm-fp16)
cgetrf-native (cublas-cgemm-fp16)
cgetrf-native

MAGMA: nb 256 ~ 512

cuBLAS: nb ⩾ 1024

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Tf
op
/s

Matrix Size (x 1000)

cgetrf-hybrid (magma-cgemm-fp16)
cgetrf-hybrid (cublas-cgemm-fp16)
cgetrf-hybrid

MAGMA: nb 256 ~ 512

cuBLAS: nb ⩾ 1024

Performance of the mixed-precision LU factorization using native (left) and hybrid (right) executions. Results are shown on a

20-core Haswell CPU and a Tesla V100 GPU. MAGMA is built using CUDA 10.1 and MKL 2018.0.1

A. Abdelfattah 14/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

Classic IR vs. IR + GMRES

GMRES is more stable for solving the correction equation
(Ac = r)
GMRES is preconditioned by the low precision factors of A
Much faster conversion than classic IR
Based on FGMRES implementation by Yousef Saad (ZITSOL)

0 10 20 30 40 50 60 70 80 90 100
#Iterations

10-8

10-7

10-6

10-5

10-4

re
la

tiv
e

er
ro

r

classic IR
IRGMRES

Convergence history of both IR and IRGMRES on a matrix of size 20k. k∞(A)= 105. Clustered distribution of singular

values (σi = 1, 1, · · · , 1
k∞(A)).

A. Abdelfattah 15/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

Outline

1 Introduction

2 Matrix Multiplication with Half-complex Precision

3 Mixed-precision Factorization and Solve

4 Final Performance

5 Conclusion

A. Abdelfattah 16/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

Final Performance: Mixed-precision CGESV-IRGMRES

Performance is up to 2.5×, but depends on the matrix
properties

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

T
f
o
p
/s

Matrix Size (x 1000)

 MP cgesv-irgmres

 classic cgesv

1.2x

1.3x

1.3x

1.3x

1.6x
1.6x

1.6x
1.7x

1.8x
1.8x

2.0x

2.1x
2.2x

2.3x
2.4x

2.5x

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

T
f
o
p
/s

Matrix Size (x 1000)

 MP cgesv-irgmres

 classic cgesv

1.2x

1.1x

1.3x

1.5x

1.5x
1.5x

1.6x

1.7x
1.8x

1.9x
2.0x

2.1x

2.3x 2.3x
2.4x

System: 20-core Intel Haswell CPU, Tesla V100 GPU - using MKL 2018.0.1 and CUDA 10.1

Left: Diagonally dominant matrices. k∞(A)≤ 102.

Right: Matrices with positive eigenvalues and arithmetic distribution of singular values (σi = 1 − (i−1
n−1)(1 − 1

k∞(A))),

k∞(A)≈4.3e+5

A. Abdelfattah 17/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

Final Performance: Mixed-precision CGESV-IRGMRES

Performance is up to 2.5×, but depends on the matrix
properties

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

T
f
o
p
/s

Matrix Size (x 1000)

 MP cgesv-irgmres

 classic cgesv

0.9x

0.9x

1.0x

1.2x

1.3x

1.4x
1.5x

1.6x
1.6x

1.8x
1.9x

2.0x
2.1x

2.2x
2.3x

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

T
f
o
p
/s

Matrix Size (x 1000)

 MP cgesv-irgmres

 classic cgesv

1.2x

1.1x

1.1x

1.3x

1.4x

1.4x
1.4x

1.5x
1.6x

1.8x
1.8x

2.0x
2.1x

2.2x
2.2x

System: 20-core Intel Haswell CPU, Tesla V100 GPU - using MKL 2018.0.1 and CUDA 10.1

Left: Positive eigenvalues and logarithmic uniform distribution of singular values (log(σi) uniform between log(1
k∞(A)) and

log(1)), k∞(A)≈1e+5

Right: Clustered singular values (σi = 1, 1, · · · , 1
k∞(A)), k∞(A)≈4.3e+4

A. Abdelfattah 18/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

Sometimes it does not pay off

The refinement steps can consume all the performance
advantage of the factorization

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

T
f
o
p
/s

Matrix Size (x 1000)

 MP cgesv-irgmres

 classic cgesv

1.0x

0.8x

0.8x

0.9x

0.9x
0.8x

0.9x

0.9x
1.0x

1.0x

1.0x 1.0x 1.0x
1.1x 1.1x

System: 20-core Intel Haswell CPU, Tesla V100 GPU - using MKL 2018.0.1 and CUDA 10.1

Arithmetic distribution of singular values (σi = 1 − (i−1
n−1)(1 − 1

k∞(A))), k∞(A)≈4.3e+4.

A. Abdelfattah 19/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

Outline

1 Introduction

2 Matrix Multiplication with Half-complex Precision

3 Mixed-precision Factorization and Solve

4 Final Performance

5 Conclusion

A. Abdelfattah 20/22

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

Summary

1 FP16 arithmetic is not only for machine learning
2 New family of mixed-precision linear solvers
3 Half-complex precision accelerates single-complex systems by

factors up to 2.5×
4 Next: Double-complex systems, matrix scaling, other

half-complex kernels

MAGMA uses a hybridization methodology where algorithms of interest are split into tasks of varying
granularity and their execution scheduled over the available hardware components. Scheduling can be
static or dynamic. In either case, small non-parallelizable tasks, often on the critical path, are scheduled
on the CPU, and larger more parallelizable ones, often Level 3 BLAS, are scheduled on the GPU.

PERFORMANCE & ENERGY EFFICIENCY

INDUSTRY COLLABORATION

MAGMA LU factorization in double precision arithmetic

K40

P100

CPU
MKL

Gflops/Watt
MATRIX SIZE

Gfl
op

/s

NVIDIA K40 GPU
15 MP x 192 @ 0.88 GHz

K40 NVIDIA Pascal GPU
56 MP x 64 @ 1.19 GHz

P100 NVIDIA Volta GPU
80 MP x 64 @ 1.37 GHz

V100Intel Xeon E5-2650 v3 (Haswell)
2 x 10 cores @ 2.30 GHz

CPU

FEATURES AND SUPPORT

Linear system solvers

Eigenvalue problem solvers

Auxiliary BLAS

Batched LA

Sparse LA

CPU/GPU Interface

Multiple precision support

Non-GPU-resident factorizations

Multicore and multi-GPU support

MAGMA Analytics/DNN

LAPACK testing

Linux

Windows

Mac OS

HYBRID ALGORITHMS
2.3 FOR CUDA

MAGMA MIC 1.4 FOR Intel Xeon Phi
clMAGMA 1.4 FOR OpenCL

V100

MAGMA (Matrix Algebra on GPU and Multicore Architectures) is a collection of next generation linear
algebra libraries for heterogeneous architectures. MAGMA is designed and implemented by the team that
developed LAPACK and ScaLAPACK, incorporating the latest developments in hybrid synchronization- and
communication-avoiding algorithms, as well as dynamic runtime systems. Interfaces for the current LAPACK
and BLAS standards are supported to allow computational scientists to seamlessly port any linear algebra reliant
software components to heterogeneous architectures. MAGMA allows applications to fully exploit the power of
current heterogeneous systems of multi/many-core CPUs and multi-GPUs to deliver the fastest possible time to

accurate solution within given energy constraints. FIND OUT MORE AT http://icl.utk.edu/magma

NEW

IN COLLABORATION WITH WITH SUPPORT FROM

SPONSORED BY
U.S. Department
of Defense National Science Foundation

The objective of the Innovative Computing Laboratory’s
IPCC is the development and optimization of numerical

linear algebra libraries and technologies for
applications, while tackling current challenges in

heterogeneous Intel® Xeon Phi™ coprocessor-based
High Performance Computing.

Long-term collaboration and support on the
development of clMAGMA,

the OpenCL™ port of MAGMA.

Long-term collaboration and support on the
development of MAGMA.

Intel Parallel
Computing Center

0

1000

2000

3000

4000

5000

6000

2K 4K 6K 8K 10K 12K 14K 16K 18K 20K 22K 24K 26K 28K 30K 32K 34K 36K

1414

2121

4.44.4
2.62.6

https://icl.utk.edu/magma/

Release expected by Spring 2020

A. Abdelfattah 21/22

https://icl.utk.edu/magma/

Introduction Half-complex GEMM Factorization & Solve Performance Conclusion

Thank You!

A. Abdelfattah 22/22

	Introduction
	Matrix Multiplication with Half-complex Precision
	Mixed-precision Factorization and Solve
	Final Performance
	Conclusion

