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What are trying to solve?

Solve a linear system of equation (Ax = b)
A is a general square matrix in single-complex precision
Use half-precision to accelerate the solution (mixed-precision
solver)

Accuracy is recovered using Iterative Refinement (IR)
Similar algorithm to

Carson and Higam: Accelerating the Solution of Linear Systems by Iterative
Refinement in Three Precisions, SIAM SISC, 2018
Haidar et al.: Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed
Up Mixed-precision Iterative Refinement Solvers, SC’18

No native support for half-complex computation

This work is part of the MAGMA library
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What are the steps?

1 Mixed-precision LU factorization with partial pivoting
2 Iterative refinement using preconditioned GMRES

Is A in
FP64?

Convert A: FP64 -> FP32

Mixed precision LU

1. Panel (FP32)
2. Rank-k updates (FP16->FP32)

A

B

CFP32 -= AFP16 ✕ BFP16

Tensor Core GEMM with 
FP32 accumulate

1. GEMM Layout (interleaved vs planar)
2. Panel factorization (CPU vs. GPU)
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What are the steps?

1 Mixed-precision LU factorization with partial pivoting
2 Iterative refinement using preconditioned GMRES

(1) Compute residual r = b – Ax
(2) Solve for c Ac = r 
(3) Update solution xi+1 = xi + c
(4) Repeat 1-3 until converged 

Using L/U factors of A
Classic IR

Using preconditioned GMRES
IR + GMRES
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Mixed-precision Matrix Multiplication

CFP32 = CFP32 − AFP16 × BFP16

A and B are originally in FP32, but are converted to
half-complex
No native support for half-complex kernels

cuBLAS provides only real arithmetic FP16 kernels
cuBLASLt and CUTLASS suggest using split-complex kernels
using planar layout

But interleaved layout is a better alternative
Used by almost all linear algebra algorithms
Better operational intensity (i.e. flops/bytes ratio)
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Mixed-precision Matrix Multiplication

Goal: CGEMM kernel with FP16 acceleration
Using cuBLAS (planar-layout)

Four calls to cublasGemmEx: arith. intensity = mnk
4mn+k(m+n)

Overhead of splitting and merging real/imaginary components
Using a new MAGMA kernel (interleaved-layout)

One kernel call: arith. intensity = 2mnk
4mn+k(m+n)

No overheads
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MAGMA’s New Kernel (CGEMM-FP16-Interleaved)

Input: A and B in half-complex precision (half2)
Input/Output: C in single-complex precision
An abstraction layer over the Tensor Cores (TCs)

Using WMMA device routines to manage TCs
Split and merge in shared memory

Double-sided recursive blocking + auto-tuning

Block of C
BLK_M

BLK_N

Read /
Write Compute

D
I
M
_
X

DIM_Y

T
C
_
N

TC_M
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Performance of CGEMM-FP16

Tested on Tesla V100-PCIe GPU, CUDA 10.1
2 advantages for MAGMA: arithmetic intensity and
splitting/merging overhead
70% better than cuBLAS (k = 256), 24% if k = 512
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Performance of CGEMM-FP16 “cont.”

Tested on Tesla V100-PCIe GPU, CUDA 10.1
MAGMA loses the advantage for k ≥ 800
Summary of results

Blocking size ≤ 800, use MAGMA
Otherwise, use cuBLAS
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Let’s test both!
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Performance of the mixed-precision LU factorization

Panel factorization: CPU (hybrid) vs. GPU (native)?
Larger nb means more time spent in single-complex precision (i.e.
the panel)
Use hybrid-LU only if the matrix is larger than 22k (with MAGMA
CGEMM-GP16)
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Performance of the mixed-precision LU factorization using native (left) and hybrid (right) executions. Results are shown on a

20-core Haswell CPU and a Tesla V100 GPU. MAGMA is built using CUDA 10.1 and MKL 2018.0.1
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Classic IR vs. IR + GMRES

GMRES is more stable for solving the correction equation
(Ac = r )
GMRES is preconditioned by the low precision factors of A
Much faster conversion than classic IR
Based on FGMRES implementation by Yousef Saad (ZITSOL)
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Convergence history of both IR and IRGMRES on a matrix of size 20k. k∞(A)= 105. Clustered distribution of singular

values (σi = 1, 1, · · · , 1
k∞(A) ).
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Final Performance: Mixed-precision CGESV-IRGMRES

Performance is up to 2.5×, but depends on the matrix
properties
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System: 20-core Intel Haswell CPU, Tesla V100 GPU - using MKL 2018.0.1 and CUDA 10.1

Left: Diagonally dominant matrices. k∞(A)≤ 102.

Right: Matrices with positive eigenvalues and arithmetic distribution of singular values (σi = 1 − ( i−1
n−1 )(1 − 1

k∞(A) )),

k∞(A)≈4.3e+5
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Final Performance: Mixed-precision CGESV-IRGMRES

Performance is up to 2.5×, but depends on the matrix
properties
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Sometimes it does not pay off

The refinement steps can consume all the performance
advantage of the factorization
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Summary

1 FP16 arithmetic is not only for machine learning
2 New family of mixed-precision linear solvers
3 Half-complex precision accelerates single-complex systems by

factors up to 2.5×
4 Next: Double-complex systems, matrix scaling, other

half-complex kernels

MAGMA uses a hybridization methodology where algorithms of interest are split into tasks of varying 
granularity and their execution scheduled over the available hardware components. Scheduling can be 
static or dynamic. In either case, small non-parallelizable tasks, often on the critical path, are scheduled 
on the CPU, and larger more parallelizable ones, often Level 3 BLAS, are scheduled on the GPU.

PERFORMANCE & ENERGY EFFICIENCY

INDUSTRY COLLABORATION

MAGMA LU factorization in double precision arithmetic
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2 x 10 cores @ 2.30 GHz

CPU

FEATURES AND SUPPORT

Linear system solvers

Eigenvalue problem solvers

Auxiliary BLAS
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Sparse LA

CPU/GPU Interface

Multiple precision support

Non-GPU-resident factorizations

Multicore and multi-GPU support

MAGMA Analytics/DNN

LAPACK testing

Linux

Windows

Mac OS

HYBRID ALGORITHMS
2.3 FOR CUDA

MAGMA MIC 1.4 FOR Intel Xeon Phi
clMAGMA 1.4 FOR OpenCL

V100

MAGMA (Matrix Algebra on GPU and Multicore Architectures) is a collection of next generation linear 
algebra libraries for heterogeneous architectures. MAGMA is designed and implemented by the team that 
developed LAPACK and ScaLAPACK, incorporating the latest developments in hybrid synchronization- and 
communication-avoiding algorithms, as well as dynamic runtime systems. Interfaces for the current LAPACK 
and BLAS standards are supported to allow computational scientists to seamlessly port any linear algebra reliant 
software components to heterogeneous architectures. MAGMA allows applications to fully exploit the power of 
current heterogeneous systems of multi/many-core CPUs and multi-GPUs to deliver the fastest possible time to 

accurate solution within given energy constraints. FIND OUT MORE AT http://icl.utk.edu/magma

NEW

IN COLLABORATION WITH WITH SUPPORT FROM

SPONSORED BY
U.S. Department
of Defense National Science Foundation

The objective of the Innovative Computing Laboratory’s 
IPCC is the development and optimization of numerical 

linear algebra libraries and technologies for 
applications, while tackling current challenges in 

heterogeneous Intel® Xeon Phi™ coprocessor-based 
High Performance Computing.

Long-term collaboration and support on the 
development of clMAGMA,

the OpenCL™ port of MAGMA.  

Long-term collaboration and support on the 
development of MAGMA.

Intel Parallel
Computing Center
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Thank You!
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