ICML 2005

Program (updated July, 28)

*Note: all papers will be presented both orally and in the evening poster sessions. Talks are allocated 20 minutes for presentation and 5 minutes for questions.

	Monday August, 8					
	08:40	Opening				
09:00 Invited Talk : Dirichlet Processes, Chinese Restaurant Processes, and all that Michael Jordan, UC Berkeley				at		
	10:00	1:00 ICML 2005 Best Paper: [1] A Support Vector Method for Multivariate Performance Measures Thorsten Joachims, Cornell University				
	10:30		Coffee E	Break[Aula]		
	11:00-12:40	Session 1	Session 2	Session 3	Session 4	
		Probabilistic Approaches 1	Reinforcement Learning 1	Decision Tree Learning	Dimensionality Reduction	
		ICML 2005 distinguished student paper: [2] Efficient discriminative learning of Bayesian network classifier via	[6] A Causal Approach to Hierarchical Decomposition of Factored MDPs Anders Jonsson, Andrew Barto	[10] Tempering for Bayesian C&T Nicos Angelopoulos, James Cussens	[14] Supervised dimensionality reduction using mixture models Sajama, Alon Orlitsky	
		Soosted Augmented Naive Bayes Yushi Jing, Vladimir Pavlovic, James M. Rehg				
		[3] Discriminative versus Generative Parameter and Structure Learning of Bayesian Network Classifiers Franz Pernkopf, Jeff Bilmes	[7] Identifying Useful Subgoals in Reinforcement Learning by Local Graph Partitioning Ozgur Simsek, Alicia Wolfe, Andrew Barto	[11] Generalized Skewing for Functions with Continuous and Nominal Attributes <i>Soumya Ray, David Page</i>	[15] Statistical and Computational Analysis of Locality Preserving Projection Xiaofei He, Deng Cai, Wanli Min	
		[4] Learning Class-Discriminative Dynamic Bayesian Networks John Burge, Terran Lane	[8] Learning Predictive State Representations in Dynamical Systems Without Reset Britton Wolfe, Michael R. James, Satinder Sing	[12] Why Skewing Works: Learning Difficult Boolean Functions with Greedy Tree Learners Bernard Rosell, Lisa Hellerstein, Soumya Ray, David Page	[16] Large Margin Non-Linear Embedding Alexander Zien, Joaquin Quinonero-Candela	
		[5] Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning Xiaojin Zhu, John Lafferty	[9] Learning Predictive Representations from a History Eric Wiewiora	[13] Closed-form dual perturb and combine for tree-based models <i>Pierre Geurts, Louis Wehenkel</i>	[17] Independent Subspace Analysis Using Geodesic Spanning Trees Barnabas Poczos, Andras Lorincz	

12:40-14:15

	14:15-15:55	Session 5	Session 6	Session 7	Session 8
		Probabilistic Approaches 2	Reinforcement Learning 2	Learning and Bioinformatics	Gaussian Processes
		[18] Computational Aspects of Bayesian Partition Models Mikko Koivisto, Kismat Sood	[22] Exploration and Apprenticeship Learning in Reinforcement Learning Pieter Abbeel, Andrew Y. Ng	[26] New Kernels for Protein Structural Motif Discovery and Function Classification Chang Wang, Stephen Scott	[30] Learning Gaussian Processes from Multiple Tasks Kai Yu, Volker Tresp, Anton Schwaighofer
		[19] Hierarchic Bayesian Models for Kernel Learning Mark Girolami, Simon Rogers	[23] Bayesian Sparse Sampling for On-line Reward Optimization Tao Wang, Daniel Lizotte, Michael Bowling, Dale Schuurmans	[27] Large Scale Genomic Sequence SVM Classifiers Sören Sonnenburg, Gunnar Rätsch, Bernhard Schölkopf	[31] Preference Learning with Gaussian Processes Wei Chu, Zoubin Ghahramani
		[20] Expectation Maximization Algorithms for Conditional Likelihoods Jarkko Salojärvi, Kai Puolamäki, Samuel Kaski	[24] Bounded Real-Time Dynamic Programming: RTDP with monotone upper bounds and performance guarantees H. Brendan McMahan, Maxim Likhachev, Geoffrey J. Gordon	[28] Predicting Protein Folds with Structural Repeats Using a Chain Graph Model Yan Liu, Eric Xing, Jaime Carbonell	[32] Heteroscedastic Gaussian Process Regression Quoc V. Le, Alex J. Smola, Stephane Canu
		[21] Compact approximations to Bayesian predictive distributions Edward Snelson, Zoubin Ghahramani	[25] Fite Time Bounds for Sampling Based Fitted Value Iteration Csaba Szepesvari, Remi Munos	[29] Multi-Class protein fold detection using adaptive codes Eugene Ie, Jason Weston, William Stafford Noble, Christina Leslie	
	15:55-16:25		Coffee B	r e a k [Aula]	
	16:25-18:10	Session 9	Session 10	Session 11	Session 12
		Graphed Based Data	Ensemble Methods 1	Applications 1	Learning and Vision 1
		ICML 2005 distinguished student paper: [33] Semi-supervised Graph Clustering: A Kernel Approach Brian Kulis, Sugato Basu, Inderjit Dhillon, Raymond Mooney	[37] Ensembles of Biased Classifiers Rinat Khoussainov, Andreas Hess, Nicholas Kushmerick	[41] A Graphical Model for Chord Progressions Embedded in a Psychoacoustic Space Jean-Francois Paiement, Douglas Eck, Samy Bengio, David Barber	[45] Non-Negative Tensor Factorization with Applications to Statistics and Computer Vision Amnon Shashua, Tamir Hazan
		[34] Learning from Labeled and Unlabeled Data on a Directed Graph Dengyong Zhou, Jiayuan Huang, Bernhard Schölkopf	[38] Experimental Comparison between Bagging and Monte Carlo Ensemble Classification Roberto Esposito, Lorenza Saitta	 [42] Predicting Probability Distributions for Surf Height Using an Ensemble of Mixture Density Networks Michael Carney, Padraig Cunningham, Jim Dowling, Ciaran Lee 	[46] Q-Learning of Sequential Attention for Visual Object Recognition from Informative Local Descriptors Lucas Paletta, Gerald Fritz, Christin Seifert
		[35] Online Learning over Graphs Mark Herbster, Massimiliano Pontil, Lisa Wainer	[39] A Practical Generalization of Fourier-Based Learning Adam Drake, Dan Ventura	[43] A Brain Computer Interface with Online Feedback based on Magnetoencephalography Thomas Navin Lal, Michael Schroeder, N. Jeremy Hill, Hubert Preissl, Thilo Hinterberger, Juergen Mellinger, Martin Bogdan, Wolfgang Rosenstiel, Niels Birbaumer, Bernhard Schoelkopf	[47] Object Correspondence as a Machine Learning Problem Bernhard Schölkopf, Florian Steinke, Volker Blanz
		[36] Optimal Assignment Kernels For Attributed Molecular Graphs Holger Fröhlich, Jörg Wegner, Florian Sieker, Andreas Zell	[40] Using Additive Expert Ensembles to Cope with Concept Drift Jeremy Kolter, Marcus Maloof	[44] Learning Strategies for Story Comprehension: A Reinforcement Learning Approach Eugene Grois, David C. Wilkins	[48] Interactive Learning of Mappings from Visual Percepts to Actions Sébastien Jodogne, Justus H. Piater
				D (1)	

City Hall Reception POSTER SESSION 1 [Aula]

	Tuesday August, 9				
9:00		Invited Talk: Privacy and Johannes Gehrke,	d background Knowledge Cornell University		
0:00	ICML 200	5 Best Paper Runner-Up: [49] Near-O Carlos Guestrin, Andrea:	Tuesday August, 9 nvited Talk: Privacy and background Knowledge Johannes Gehrke, Cornell University Runner-Up: [49] Near-Optimal Sensor Placements in Gaussian Processes Carlos Guestrin, Andreas Krause, Ajit Paul Singh Coffee Break [Aula] Session 14 Session 15 Models for Text, uage and Web Reinforcement Learning 3 Feature Selection and Dimensionality Reduction nal Random Fields for Web nation Extraction iging Nie, Ji-Rong Wen, ang, Wei-Ying Ma [58] Reinforcement learning with Gaussian processes Yakov Engel, Shie Mannor, Ron Meir Ail Ghodsi, Dana Wilkinson g Syntactic, Semantic and ise in Language Modeling via Warkov Random Fields Yang, Shaomin Wang, iner, Dale Schuurmans, Li Cheng [59] Proto-Value Functions: Developmental Reinforcement Learning Sridhar Mahadevan [63] Multimodal Oriented Discriminant Analysis Fernando De la Torre, Takeo Kanade ear Programming Inference tional Random Fields oth, Wen-tau Yih [60] TD(lambda) Networks: Temporal- Difference Networks with Eligibility Traces Brian Tanner, Richard Sutton [64] Generalized LARS as an Effective Feature Selection Tool for Text Classification With SVMs S. Sathiya Keerthi sarning for Hidden Markov ve Functions and Algorithms derson, Andrew Moore [61] Learning to Compete, Compromise, and Cooperate in Repeated General-Sum Games Jacob W. Crandall, Michael A. Goodrich [65] Online Feature Selection for Pixel Classification		
0:30		Coffee B	r e a k [Aula]		
1:00-12:40	Session 13	Session 14	Session 15	Session 16	
	Kernel Methods and SVMs (1)	Graphical Models for Text, Language and Web	Reinforcement Learning 3	Feature Selection and Dimensionality Reduction	
	[50] Explanation-Augmented SVM: an Approach to Incorporating Domain Knowledge into SVM Learning Qjang Sun, Gerald DeJong	[54] 2D Conditional Random Fields for Web Information Extraction Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, Wei-Ying Ma	[58] Reinforcement learning with Gaussian processes Yaakov Engel, Shie Mannor, Ron Meir	[62] Action Respecting Embedding Michael Bowling Ali Ghodsi, Dana Wilkinson	
	[51] New Approaches to Support Vector Ordinal Regression Wei Chu, S. Sathiya Keerthi	[55] Exploiting Syntactic, Semantic and Lexical Regularities in Language Modeling via Directed Markov Random Fields Shaojun Wang, Shaomin Wang, Russell Greiner, Dale Schuurmans, Li Cheng	[59] Proto-Value Functions: Developmental Reinforcement Learning Sridhar Mahadevan	[63] Multimodal Oriented Discriminant Analysis Fernando De la Torre, Takeo Kanade	
	[52] Predictive low-rank decomposition for kernel methods Francis R. Bach, Michael I. Jordan	[56] Integer Linear Programming Inference for Conditional Random Fields Dan Roth, Wen-tau Yih	[60] TD(lambda) Networks: Temporal- Difference Networks with Eligibility Traces Brian Tanner, Richard Sutton	[64] Generalized LARS as an Effective Feature Selection Tool for Text Classification With SVMs S. Sathiya Keerthi	
	[53] The cross entropy method for classification Shie Mannor, Dori Peleg, Reuven Rubinstein	[57] Active Learning for Hidden Markov Models: Objective Functions and Algorithms Brigham Anderson, Andrew Moore	[61] Learning to Compete, Compromise, and Cooperate in Repeated General-Sum Games Jacob W. Crandall, Michael A. Goodrich	[65] Online Feature Selection for Pixel Classification Karen Glocer, Damian Eads, James Theiler	

. .

12:40-14:14

Tuesday August 9, 2005

Lunch

14:15-15:55	Session 17	Session 18	Session 19	Session 20
	Learning from Structured Data	Theory	Probability Estimation and Ranking	Scientific Discovery, Meta-Learning and Instance-Based Learning
	[66] Weighted Decomposition Kernels Sauro Menchetti, Fabrizio Costa, Paolo Frasconi	[70] PAC-Bayes Risk Bounds for Sample- Compressed Gibbs Classifiers François Laviolette, Mario Marchand	ICML 2005 distinguished student paper: [74] Predicting Good Probabilities With Supervised Learning Alexandru Niculescu-Mizil, Rich Caruana	[78] New D-Separation Identification Results for Learning Continuous Latent Variable Models Ricardo Silva, Richard Scheines
	[67] Learning Structured Prediction Models: A Large Margin Approach Ben Taskar, Vassil Chatalbashev, Daphne Koller, Carlos Guestrin	[71] Error Bounds for Correlation Clustering Thorsten Joachims, John Hopcroft	[75] Naive Bayes Models for Probability Estimation Daniel Lowd, Pedro Domingos	[79] Reducing Overfitting in Process Model Induction Will Bridewell, Narges Asani, Pat Langley, Ljupco Todorovski
	[68] Learning as Search Optimization: Approximate Large Margin Methods for Structured Prediction Hal Daume III, Daniel Marcu	[72] A Comparison of Tight Generalization Error Bounds Matti Kääriäinen, John Langford	[76] Augmenting Naive Bayes for Ranking Harry Zhang, Liangxiao Jiang, Jiang Su	[80] Predicting Relative Performance of Classifiers from Samples <i>Rui Leite, Pavel Brazdil</i>
	[69] Propagating Distributions on a Hypergraph by Dual Information Regularization Koji Tsuda	[73] Error Limiting Reductions Between Classification Tasks Alina Beygelzimer, Varsha Dani, Tom Hayes, John Langford, Bianca Zadrozny	[77] Learning to Rank using Gradient Descent Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, Greg Hullender	[81] Fast Condensed Nearest Neighbor Rule Fabrizio Angiulli

15:55-16.25 16:25-17.15 Coffee Break[Aula]

.15	Session 21	Session 22	Session 23	Session 24		
	Multi-Instance Learning	ROC Analysis	Logistic Regressions	Learning and Vision 2		
	[82] Multi-Instance Tree Learning Hendrik Blockeel, David Page, Ashwin Srinivasan	[848] Optimizing Abstaining Classifiers using ROC Analysis Tadeusz Pietraszekry	[86] Incomplete-Data Classification using Logistic Regression David Williams, Xuejun Liao, Ya Xue, Lawrence Carin	[88] Linear Asymmetric Classifier for Cascade Detectors Jianxin Wu, Matthew D. Mullin, James M. Rehg		
	[83] Supervised versus Multiple Instance Learning: An Empirical Comparison Soumya Ray, Mark Craven	[85] ROC Confidence Bands : An Empirical Evaluation Sofus A. Macskassy, Foster Provost, Saharon Rosset	[87] Logistic Regression with an Auxiliary Data Source Xuejun Liao, Ya Xue, Lawrence Carin	[89] Variational Bayesian Image Modelling Li Cheng, Feng Jiao, Dale Schuurmans, Shaojun Wang		
	Boat Trip Departure					
		Dinner at P	etersberg			

18:00 20:00

Session 25	Session 26	Session 27	Session 28
Kernel Methods and SVMs 2	Reinforcement and Agent Learning	Clustering	Text Classification and Information Extraction
[90] Implicit Surface Modelling as an Eigenvalue Problem Christian Walder, Olivier Chapelle, Bernhard Schölkopf	[94] Hedged learning: Regret minimization with learning experts Yu-Han Chang, Leslie Kaelbling	[98] Robust One-Class Clustering Using Hybrid Global and Local Search <i>Gunjan Gupta, Joydeep Ghosh</i>	[102] Learning Hierarchical Multi-Category Text Classification Models Juho Rousu, Craig Saunders, Sandor Szedmak, John Shawe-Taylor
[91] Building Sparse Large Margin Classifiers Mingrui Wu, Bernhard Schoelkopf, Goekhan Bakir	[95] Dynamic Preferences in Multi-Criteria Reinforcement Learning Sriraam Natarajan, Prasad Tadepalli	[99] Multi-Way Distributional Clustering via Pairwise Interactions Ron Bekkerman, Ran El-Yaniv, Andrew McCallum	[103] A Model for Handling Approximate, Noisy or Incomplete Labeling in Text Classification Ganesh Ramakrishnan, Krishna Prasad Chitrapura, Raghu Krishnapuram, Pushpak Bhattacharyya
[92] Adapting Two-Class Classification Methods to Many Class Problems Simon I. Hill, Arnaud Doucet	[96] Learning Approximate Preconditions for Methods in Hierarchical Plans Okhtay IIghami, Hector Munoz-Avila, Dana S. Nau, David W. Aha	[100] Comparing Clusterings - An Axiomatic View Marina Meila	[104] Evaluating Machine Learning for Information Extraction Neil Ireson, Fabio Ciravegna, Mary Elaine Califf, Dayne Freitag, Nicholas Kushmerick, Alberto Lavelli
[93] An Efficient Method for Simplifying Support Vector Machines Duc Dung Nguyen, Tu Bao Ho	[97] Recycling Data for Multi-Agent Learning Santi Ontanon, Enric Plaza	[101] Bayesian Hierarchical Clustering Katherine Heller, Zubin Ghahramani	[105] Learn to Weight Terms in Information Retrieval Using Category Information Rong Jin, Joyce Y. Chai, Luo Si

Wednesday August, 10

10:40-11:10

Wednesday August 10, 2005

Coffee Break[Aula]

11:10-12:25	Session 29	Session 30	Session 31	Session 32
	Kernel Methods and SVMs 3	Dirichlet Models	Learning in Bioinformatics and Robotics	Distances and Measures
	ICML 2005 distinguished student paper: [106] Supervised Clustering with Support Vector Machines Thomas Finley, Thorsten Joachims	[108] Dirichlet Enhanced Relational Learning Zhao Xu, Volker Tresp, Kai Yu, Shipeng Yu, Hans-Peter Kriegel	[111] Learning Discontinuities with Products-of-Sigmoids for Switching between Local Models Marc Toussaint, Sethu Vijayakumar	[114] A New Mallows Distance-Based Metric for Comparing Clusterings Ding Zhou, Jia Li, Hongyuan Zha
	[107] Healing the Relevance Vector Machine through Augmentation Carl Edward Rasmussen, Joaquin Quinonero-Candela	[109] Modeling Word Burstiness Using the Dirichlet Distribution Rasmus Madsen, David Kauchak, Charles Elkan	[112] Active Learning for Sampling in Time- Series Experiments With Application to Gene Expression Analysis Rohit Singh, Nathan Palmer, David Gifford, Bonnie Berger, Ziv Bar-Joseph	[115] Estimating and computing density based distance metrics Sajama, Alon Orlitsky
		[110] Hierarchical Dirichlet Model for Document Classification Sriharsha Veeramachaneni, Diego Sona, Paolo Avesani	[113] Unsupervised Evidence Integration Philip M. Long, Vinay Varadan, Sarah Gilman, Mark Treshock, Rocco A. Servedioy	[116] A Martingale Framework for Concept Change Detection in Time-Varying Data Streams Shen-Shyang Ho
12:40-14:14		Lui	n c h	
14:15-15:15	Ir	wited Talk (joint with ILP 2005): Wh	y Computers Need to Learn About Mus	sic
		Gerhard Widmer, Un	iversity Linz, Austria	
15:15-15:45	Constant 22	Coffee B	r e a k [Aula]	Service 2/
15.45-17.00	Session 33	Session 34	Session 35	(joint with ILP 2005)
	Kernel Methods and SVMs	Learning and Robotics	Manifolds and Dimensionality Reduction	Inductive Logic Programming Track
	[117] A General Regression Technique for Learning Transductions Corinna Cortes, Mehryar Mohri, Jason Weston	[120] Coarticulation: An Approach for Generating Concurrent Plans in Markov Decision Processes Khashayar Rohanimanesh, Sridhar Mahadevan	[123] Analysis and Extension of Spectral Methods for Nonlinear Dimensionality Reduction Fei Sha, Lawrence K. Saul	(ICML paper) [126] Learning First-Order Probabilistic Models with Combining Rules Sriraam Natarajan, Prasad Tadepalli, Eric Altendorf, Thomas G. Dietterich, Alan Fern, Angelo Restificary
	[118] Beyond the Point Cloud: from Transductive to Semi-supervised Learning Vikas Sindhwani, Partha Niyogi, Mikhail Belkin	[121] Recognition and Reproduction of Gestures using a Probabilistic Framework combining PCA, ICA and HMM Sylvain Calinon, Aude Billard	[124] Clustering Through Ranking On Manifolds Markus Breitenbach, Gregory Z. Grudic	(ILP Paper) [127] Logical Bayesian Networks and Their Relation to Other Probabilistic Logical Models Daan Fierens, Hendrik Blockeel, Maurice Bruynooghe, Jan Ramon
	[119] Fast Maximum Margin Matrix Factorization for Collaborative Prediction Jason D. M. Rennie, Nati Srebro	[122] High Speed Obstacle Avoidance using Monocular Vision and Reinforcement learning Jeff Michels, Ashutosh Saxena, Andrew Y. Ng [Poster No. 62]	[125] Intrinsic Dimensionality Estimation of Submanifolds in \$R^d\$ Matthias Hein, Jean-Yves Audibert	(ICML paper) [128] Learning the Structure of Markov Logic Networks Stanley Kok, Pedro Domingos

Wednesday August 10, 2005

17:15-18:05	Session 37	Session 38	Session 39	Session 40 (joint with ILP 2005)
	Ensemble Methods and Output Codes	Reinforcement Learning - Theory	Scalabiltiy	Statistical Relational Learning and ILP
	[129] A Smoothed Boosting Algorithm Using Probabilistic Output Codes <i>Rong Jin, Jian Zhang</i>	[131] A Theoretical Analysis of Model-Based Interval Estimation Alexander L. Strehl, Michael L. Littman	[133] Fast Inference and Learning in Large-State-Space HMMs Sajid M. Siddiqi, Andrew W. Moore	(ILP Paper) [135] Probabilistic First-Order Theory Revision from Examples Aline Paes, Kate Revoredo, Gerson Zaverucha, Vitor Santos Costa
	[130] Unifying the Error-Correcting and Output-Code AdaBoost within the Margin Framework Yijun Sun, Sinisa Todorovic, Jian Li, Dapeng Wu	[132] Relating Reinforcement Learning Performance to Classification Performance John Langford, Bianca Zadrozny	[134] Core Vector Regression for Very Large Regression Problems Ivor W. Tsang, James T. Kwok, Kimo T. Lai	(ICML Paper) [136] Combining Model-Based and Instance- Based Learning for First Order Regression Kurt Driessens, Saso Dzeroski
18:05-19:00		ICML Business Meet	t i n g [Lecture Room: HS I]	
		POSTER SESSION 2 (join	at with ILP 2005) [Aula]	

Wednesday August 10, 2005