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We study magnetoelastic properties of a spin-1/2 Ising-Heisenberg diamond chain, whose elementary unit cell
consists of two decorating Heisenberg spins and one nodal Ising spin. It is assumed that each couple of the dec-
orating atoms including the Heisenberg spins harmonically vibrates perpendicularly to the chain axis, while the
nodal atoms involving the Ising spins are placed at rigid positions when ignoring their lattice vibrations. An effect
of the magnetoelastic coupling on a ground state and finite-temperature properties is particularly investigated
close to a triple coexistence point depending on a spring-stiffness constant ascribed to the Heisenberg interac-
tion. The magnetoelastic nature of the Heisenberg dimers is reflected through a non-null plateau of the entropy
emergent in a low-temperature region, whereas the specific heat displays an anomalous peak slightly below
the temperature region corresponding to the entropy plateau. The magnetization also exhibits a plateau in the
same temperature region at almost saturated value before it gradually tends to zero upon increasing of tem-
perature. The magnetic susceptibility displays within the plateau region an inverse temperature dependence,
which slightly drops above this plateau, whereas an inverse temperature dependence is repeatedly recovered
at high enough temperatures.
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1. Introduction

Atomic vibrations of the crystalline materials may influence the magnetic ordering and vice versa.
This effect usually has peculiar manifestations especially in a close vicinity of phase transitions related to
a breakdown of spontaneous long-range order of two- and three-dimensional magnetic crystals [1–3]. The
magnetoelastic interaction produces deformation of a lattice structure (magnetostriction) when applying
the external magnetic field and, consequently, magneto-thermodynamic properties of ferromagnetic
materials are also altered. A rigorous thermodynamic study of the magnetic crystals involving their
magnetic, vibrational, and elastic properties still remains a challenging problem of current research
interest owing to computational difficulties arising from a mutual coupling of the magnetic and lattice
degrees of freedom through the magnetoelastic interaction. The magnetoelastic changes are typically
quite small, the measured strain is for instance of the order of 10−5 − 10−4 for Fe-, Ni- and Co-based
alloys although some specific materials like Tb0.3Dy0.7Fe1.9 may exhibit giant magnetoelastic changes
with the measured strain of the order ∼ 10−3 [4]. A new type of magnetostriction was found in the
materials later referred to as ferromagnetic shape-memory alloys such as Ni2MnGa [5, 6].

An effect of the magnetoelastic coupling was previously investigated in a class of the mixed spin-
(1/2,S) Ising models on decorated planar lattices [7, 8]. Magnetic and lattice degrees of freedom were
in this particular case decoupled from each other through the local canonical transformation [9], which

This work is licensed under a Creative Commons Attribution 4.0 International License . Further distribution
of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

43713-1

https://doi.org/10.5488/CMP.23.43713
http://www.icmp.lviv.ua/journal
http://creativecommons.org/licenses/by/4.0/


N. Ferreira et al.

either gives rise to an effective next-nearest-neighbor interaction for the spin case S = 1/2 [7] or an
effective three-site four-spin interaction and uniaxial single-ion anisotropy for the spin case S > 1/2 [8].
It was evidenced that the magnetoelastic coupling enforces a remarkable spin frustration of the decorating
atoms, which was comprehensively studied in the mixed-spin Ising model with the three-site four-spin
interaction on decorated planar lattices [10, 11] with the help of exact mapping transformations [12–16].

On the other hand, the magnetic behavior of one-dimensional Ising systems drew attention due to
the influence of the lattice compressibility. In early 1960-ies Mattis and Schultz [17] reported an exact
solution for the compressible Ising chain with free boundary condition and concluded that there is no
effect due to the spin-lattice coupling. Later Enting [9] considered the periodic boundary condition and
verified that the effective spin Hamiltonian is equivalent to a rigid Ising chain with first- and second-
neighbor interactions. Salinas [18] obtained the free energy of the compressible Ising chain subjected to
fixed forces by a standard Legendre transformation, which relates it to the free energy of the compressible
Ising chain confined to a fixed length. Early in 1980s Kneževič and Miloševič [19] considered the
compressible Ising chain with higher spin values S = 1 and S = 3/2, which can be mapped to an effective
rigid spin Hamiltonian with an additional biquadratic interaction.

More recently, several aspects of compressible spin chains were investigated such as the effect of
two independent fields on the compressible Ising chain [20], thermodynamic properties of the Ising-
chain model accounting both for elastic and vibrational degrees of freedom [21] and the magnetocaloric
properties of the Ising chain [22]. The seminal contribution in this field of study was by Derzhko and co-
workers when rigorously solving a set of four deformable spin-chain models [23]. Among other matters,
Derzhko et al. proved that the (inverse) compressibility of the Ising chain in a longitudinal field and the
quantum X X chain in a transverse field shows a sudden jump at field-driven quantum phase transition,
while it gradually diminishes near quantum critical points of the Ising chain in a transverse field and the
Heisenberg-Ising chain [23].

Lately, different versions of the Ising-Heisenberg diamond chains have provided a useful playground
full of intriguing features and unexpected findings such as the existence of intermediate magnetiza-
tion plateaus [24–26], Lyapunov exponent and superstability [27], the non-conserved magnetization
and “fire-and-ice” ground states [28], the enhanced magnetocaloric effect [29], the pseudo-critical be-
havior mimicking a temperature-driven phase transition [30–33] or the pseudo-universality [34]. Most
importantly, Derzhko and co-workers [35] convincingly evidenced that the exact solution for the Ising-
Heisenberg diamond chain may be used as a useful starting point for the perturbative treatment of the
full Heisenberg counterpart model. It was shown that this type of many-body perturbation theory may
even bring insight into exotic quantum states such as a quantum spin liquid not captured by the original
Ising-Heisenberg model [35].

This article is organized as follows. Section 2 is devoted to a definition and solution of the spin-1/2
Ising-Heisenberg diamond chain with the vibrating character of the Heisenberg dimers. The ground-state
phase diagram as a function of the spring stiffness, magnetoelastic constant and geometric structure is
explored in section 3. In section 4 we present the thermodynamics of the model, where the magnetization,
entropy and specific heat are analyzed in detail. Finally our conclusions are reported in section 5.

2. Ising-Heisenberg diamond chain with magnetoelastic coupling

Let us consider the spin-1/2 Ising-Heisenberg diamond chain schematically depicted in figure 1,
which in an elementary unit cell involves two Heisenberg spins Sa, j and Sb, j and one nodal Ising spin σj .
It will be further assumed that the decorating atoms involving the Heisenberg spins harmonically vibrate
perpendicularly to the chain axis, while the nodal atoms involving the Ising spins are rather rigid when
neglecting their lattice vibrations.

Under this condition, the spin-1/2 Ising-Heisenberg diamond chain can be defined through the
Hamiltonian

H =

N∑
j=1
Hj =

N∑
j=1

(
H
(p)
j +H

(me)
j

)
, (2.1)
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Figure 1. (Colour online) A schematic representation of the spin-1/2 Ising-Heisenberg diamond chain
with the magnetoelastic coupling. The Ising spins σj are placed at rigid lattice positions, while the
Heisenberg spins Sa, j and Sb, j harmonically vibrate in a direction perpendicular with respect to the
chain axis.

where H (p)j corresponds to the pure phonon part and H (me)
j stands for the magnetoelastic part of the

HamiltonianHj explicitly given in what follows.
A specification of the displacements within the diamond unit cell is depicted in figure 2 (a), where x0 is

the equilibrium distance between the Ising spins, y0 corresponds to the equilibrium distance between the
Heisenberg spins, and d0 is the equilibriumdistance between the Ising andHeisenberg spins. It is supposed
that the decorating atoms a and b including the Heisenberg spins perform harmonic oscillations around
their equilibrium lattice positions, which can be characterized through small displacements ya and yb,
while nodal Ising spins are considered at a rigid position (heavy atoms), this assumption is also reasonable
because there is no direct interaction between Ising spins. Consequently, the instantaneous distances
between the Heisenberg and Ising spins are changed to da = d0 + ya sin(θ/2) and db = d0 + yb sin(θ/2)
though the distance x0 between the Ising spins remains unaltered. Note that ya and yb are considered
positive when dimer particles expand, but when they compress, we consider them negative.

(a) (b)

Figure 2. (Colour online) A specification of the diamond unit cell under the geometric deformation
through the displacements (a) and the exchange interactions (b).

Under the linear approximation, the magnetoelastic part of the bond Hamiltonian (2.1) can be written
in this form

H
(me)
j = − Jx, j

(
Sx
a, jS

x
b, j + Sya, jS

y
b, j

)
− Jz, jSz

a, jS
z
b, j
−

(
Ja, jSz

a, j + Jb, jS
z
b, j

) (
σj + σj+1

)
− hH

(
Sz
a, j + Sz

b, j

)
−

hI
2

(
σj + σj+1

)
, (2.2)
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where the exchange interactions [see figure 2 (b)] are given by

Jx, j = Jx
[
1 − κ(ya, j + yb, j)] , Jz, j = Jz

[
1 − κ(ya, j + yb, j)] ,

Ja, j = J0

[
1 − ηya, j sin

(
θ

2

)]
, Jb, j = J0

[
1 − ηyb, j sin

(
θ

2

)]
. (2.3)

Here, Jx and Jz correspond to xy- and z-component of the Heisenberg exchange interaction when
assuming the decorating atoms at equilibrium positions. Similarly, J0 corresponds to the Ising exchange
interaction between the Heisenberg and Ising spins at equilibrium positions. Finally, κ is the linear
expansion coefficient for the magnetoelastic coupling within the Heisenberg dimers and η is the linear
expansion coefficient for the magnetoelastic coupling between the Ising and Heisenberg spins. We do
not include a term of second-order contribution, because we assume simply a linear dependence as
considered in reference [8] and in references therein.

For simplicity, from now on, we will consider the standard atomic units (au) which means the
Planck’s constant is ~ = 1, Boltzmann constant becomes kB = 1, Bohr magneton constant is µB = 1/2
and the gyromagnetic ratio is estimated as γ ≈ 2, so we have µBγ = 1. Therefore, exchange interaction
parameters, external magnetic field, displacements, Hooke’s constant are all in atomic units.

The purely elastic part of the bond Hamiltonian (2.1) can be defined as follows:

H
(p)
j =

p2
a, j

2m
+
p2
b, j

2m
+

K̄
2

(y2a, j+y2b, j )+ kH

2
(ya, j+yb, j )2

, (2.4)

where pa, j and pb, j are momenta of the decorating atoms with the mass m, ya, j and yb, j denote their
displacements from equilibrium positions, kH is the “spring-stiffness” constant ascribed to the Heisenberg
coupling, and K̄ = 2kI sin2(θ/2) is the effective “spring-stiffness” constant of the Ising coupling when kI
is a true “spring-stiffness” constant ascribed to the Ising coupling.

2.1. Local canonical transformation

TheHamiltonian (2.1) involvesmagnetoelastic and pure elastic (phonon) contributions,which are cou-
pled together through the linear expansion coefficients κ and η pertinent to the magnetoelastic couplings.
However, both contributions can be decoupled through the local canonical coordinate transformation

q j =
1
√

2
(ya, j + yb, j ) and q̄ j =

1
√

2
(ya, j − yb, j ) , (2.5)

which defines the positions of two fictitious particles. Analogously, the momenta in the canonical
coordinates take the form

p j =
1
√

2
(pa, j + pb, j ) and p̄ j =

1
√

2
(pa, j − pb, j ) . (2.6)

Thus, the Hamiltonian (2.4) in the canonical coordinates can be rewritten as follows:

H
(p)
j =

p2
j

2m
+

p̄2
j

2m
+

K̄
2

(
q2
j + q̄2

j

)
+ kH q

2
j . (2.7)

2.2. Diagonalization of the magnetoelastic part

Since the commutation relation [H (me)
i ,H

(me)
j ] = 0 is satisfied, the magnetoelastic part of the bond

Hamiltonian (2.2) can be diagonalized separately for each unit cell and the respective eigenvalues can be
expressed as a function of the canonical coordinate for a position q j in the following form

εk, j =e
(0)
k, j
+ e
(1)
k, j

q j , (2.8)
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with the first index being k = {1, 2, 3, 4} and the second index specifying the unit cell. The eigenval-
ues (2.8) were decomposed into two terms, whereas the first terms e(0)

k, j
correspond to a fully rigid diamond

chain

e
(0)
1, j = −

Jz
4
− hH −

(
hI
2
+ J0

)
µj , e

(0)
2, j = −

Jz
4
+ hH −

(
hI
2
− J0

)
µj ,

e
(0)
3, j =

Jz
4
+

Jx
2
−

hI
2
µj , e

(0)
4, j =

Jz
4
−

Jx
2
−

hI
2
µj , (2.9)

which can be alternatively interpreted as the energy eigenvalues when the decorating atoms are at
equilibrium positions ya, j = yb, j = 0 and for simplicity, we denoted µj = (σj +σj+1). The second terms
e
(1)
k, j

determine a vibrational contribution to the overall energy, which is given by

e
(1)
1, j =

√
2

4

[
Jzκ + 2J0ηµj sin

(
θ

2

)]
, e

(1)
2, j =

√
2

4

[
Jzκ − 2J0ηµj sin

(
θ

2

)]
,

e
(1)
3, j = −

√
2

4
κ(2Jx + Jz), e

(1)
4, j =

√
2

4
κ(2Jx − Jz). (2.10)

The eigenvectors, which correspond to the energy eigenvalues (2.8), can be expressed using the notation
|
Sz
a

Sz
b

〉j as follows

|ϕ1〉j = |
+
+〉j , |ϕ2〉j = |−−〉j , |ϕ3〉j = sin(ϑj)|

+
−〉j − cos(ϑj)|

−
+〉j ,

|ϕ4〉j = cos(ϑj)|
+
−〉j + sin(ϑj)|

−
+〉j ,

whereas the relevant mixing angle ϑj entering the last two eigenvectors is defined as follows:

tan(2ϑj) =
Jx(1 − κ

√
2qj)

√
2J0η sin( θ2 )q̄j µj

.

It is worth to mention that the last two eigenvectors depend on the positions qj and q̄j of the decorating
atoms.

2.3. Diagonalization of the phonon part

After performing the canonical coordinate transformation and diagonalizing, the magnetoelastic part
for each eigenvalue of bond Hamiltonian takes the form

Hk, j = e
(0)
k, j
+ e
(1)
k, j

q j +
p2
j

2m
+

p̄2
j

2m
+

K̄
2

(
q2
j + q̄2

j

)
+ kH q

2
j . (2.11)

The above result can be subsequently fully decoupled and diagonalized by completing square through an
additional local transformation for relative position of the Heisenberg dimers

q j = q′j −
e
(1)
k, j

K
, (2.12)

which is defined through the effective spring-stiffness constants K = K̄ + 2kH and K̄ = 2kI sin2(θ/2).
Substituting a shift of the canonical coordinate for position (2.12) into equation (2.11), one actually
achieves a decoupling of the magnetoelastic and pure phonon parts of the bond Hamiltonian, whereas
the effective phonon part becomes

H
(p)
j =

p2
j

2m
+

p̄2
j

2m
+

K
2
(q′j)

2 +
K̄
2
q̄2
j , (2.13)
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while the effective magnetoelastic part reads

H
(me)
k, j
=e
(0)
k, j
−

(
e
(1)
k, j

)2

2K
. (2.14)

To proceed further, let us introduce the annihilation b j and creation b†j bosonic operators describ-
ing phonon positions, which satisfy the standard bosonic commutation relations [b j, b†j′] = δj, j′ and
[b j, b j′] = 0. The shifted position q′j and momentum operator p j of the Heisenberg dimer can be con-
sequently rewritten in terms of the newly defined creation b†j and annihilation b j bosonic operators (in
units of ~ = 1)

q′j =
1

√
2mω

(b†j + b j) and p j = i
√

mω
2
(b†j − b j), (2.15)

where ω =
√

K/m is the respective phonon frequency. Similarly, one may also introduce the annihilation
b̄ j and creation b̄†j bosonic operators describing the corresponding phonon term, which also satisfy the
standard bosonic commutation relations [b̄ j, b̄†j′] = δj, j′ and [b̄ j, b̄ j′] = 0. Therefore, the position q̄ j and
momentum p̄ j can be also defined as

q̄ j =
1

√
2mω̄

(b̄†j + b̄ j) and p̄ j = i

√
mω̄
2
(b̄†j − b̄ j), (2.16)

where ω̄ =
√

K̄/m is the respective phonon frequency. The phonon part of the Hamiltonian (2.13) can be
subsequently expressed in terms of the number operators n j and n̄ j for two aforedescribed phonons

H
(p)
j =

(
1
2
+b†j b j

)
ω+

(
1
2
+ b̄†j b̄ j

)
ω̄ =

(
1
2
+n j

)
ω+

(
1
2
+ n̄ j

)
ω̄. (2.17)

In this way, we have achieved diagonalization of the phonon part of the Hamiltonian (2.17) as the number
operators n j and n̄ j acquire the following set of eigenvalues nj and n̄j ∈ {0, 1, 2, ...} with regard to
the bosonic character of the underlying operators. It is worthwhile to remark that the bond Hamiltonian
Hk, j = H

(me)
k, j
+ H

(p)
j is now expressed in a fully diagonal form with regard to the diagonal character

of the magnetoelastic (2.14) and the phonon (2.17) parts, which additionally mutually commute with
each other, which will be of principal importance for calculation of the partition function presented in
section 4.

3. Ground-state phase diagram

Before exploring the magnetoelastic properties, let us first analyze a ground-state phase diagram of
the spin-1/2 Ising-Heisenberg diamond chain supplemented with the magnetoelastic coupling, which
exhibits three different ground states on the assumption that kH = kI and κ = η. The first ground state
can be classified as the saturated paramagnetic state (SA) given by the eigenvector

|SA〉 =
N∏
j=1
|++〉j | ↑〉j , (3.1)

whereas the former (latter) state vector defines a spin state of the Heisenberg dimer (the Ising spin) from
the jth unit cell. The saturated paramagnetic state has the following eigenenergy

ESA = −
Jz
4
− hH −

hI
2
− J0 −

(
Jzκ + 2J0η sin θ

2
)2

16K
. (3.2)
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The second ground state can be viewed as the classical ferrimagnetic phase (FI1) given by the eigenvector

|FI1〉 =

N∏
j=1
|++〉j | ↓〉j , (3.3)

whereas the corresponding energy becomes

EFI1 = −
Jz
4
− hH +

hI
2
+ J0 −

(
Jzκ − 2J0η sin θ

2
)2

16K
. (3.4)

The sublattice magnetization of the Ising spins is MI = −1/2 per unit cell, the sublattice magnetization of
the Heisenberg spins is MH = 1 per unit cell so that the total magnetization per unit cell is Mt = 1/2. The
third ground state can be classified as the quantum ferrimagnetic phase (FI2) given by the eigenvector

|FI2〉 =

N∏
j=1

(
cos(ϑj)|

+
−〉j + sin(ϑj)|

−
+〉j

)
| ↑〉j , (3.5)

whose corresponding eigenenergy reads as follows:

EFI2 =
Jz
4
−

Jx
2
−

hI
2
−
κ2(2Jx − Jz)2

16K
. (3.6)

The sublattice magnetization of the Heisenberg spins is MH = 0 due to a singlet-like character of the
Heisenberg dimers and hence, the sublattice magnetization of the Ising spins MI = 1/2 provides the only
nonzero contribution to the total magnetization per unit cell Mt = 1/2.

(c)

Jz

h

θ =
π

8

π

3

π

4

π

2
2π

3

Jz

h

κ = 0.5

0.4

0.3

0.2

0.1

(d)

h

Jz

(a)

FI1F
I 2

SA

Jz

h

50

100

200

1000

(b)
kH = 25

Figure 3. (Colour online) Ground-state phase diagram in Jz − h plane for J0 = −1, Jx = 1 and: (a)–(b)
κ = 0.5, θ = π/2 and kH = {25, 50, 200, 1000}; (c) κ = 0.5, kH = 50 and θ = {2π/3, π/2, π/3, π/4, π/8};
(d) θ = π/3, kH = 50 and κ = {0.1, 0.2, 0.3, 0.4, 0.5}.

Here, we consider the local magnetic fields h = hI = hH acting on the Ising and Heisenberg spins,
which physically corresponds to the equality of their Landé g-factors. A few typical ground-state phase
diagrams are plotted in figure 3 in Jz − h plane for the fixed values of the coupling constants J0 = −1
and Jx = 1. It is evident that the ground-state phase boundaries are only gradually shifted with respect
to a perfectly rigid limit when assuming realistic (rather high) values of the spring-stiffness constants
(see [36] for a comparison). As a matter of fact, the changes in the ground-state phase diagram shown
in figure 3 (a) for the fixed values of κ = 0.5 and θ = π/2 due to variation of the spring-stiffness
constant kH = {25, 50, 200, 1000} are almost indistinguishable within the displayed scale, while they
become evident just in a magnified scale as illustrated in figure 3 (b). Note that similar effects also result
from the changes of other interaction parameters [see figure 3 (c)–(d)]. The role of lattice geometry can
be traced back in figure 3 (c), where the ground-state phase diagrams are plotted for fixed values of
κ = 0.5, kH = 50 and several values of the angle θ = {2π/3, π/2, π/3, π/4, π/8}. Finally, the effect of
magnetoelastic constant on the ground-state phase diagrams is illustrated in figure 3 (d) when assuming
a fixed value of θ = π/3, kH = 50 upon variation of κ = {0.1, 0.2, 0.3, 0.4, 0.5}.

The phase boundary between two ferrimagnetic phases FI1 and FI2 is given by

Jz =

[
4(2J0+Jx)kH−J2

0 κ
2] (sin2 θ

2 + 1
)
+

(
J2

0 +J2
x

)
κ2

κ2 (
Jx − J0 sin θ

2
)
+ 4kH

(
sin2 θ

2 + 1
) , (3.7)
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which is independent of the magnetic field h as evidenced by a vertical character of the relevant phase
boundaries in figure 3. The phase boundary between the phases FI1 and SA follows from the formula

h = −2J0 −
J0Jzκ2 sin θ

2

4kH
(
sin2 θ

2 + 1
) . (3.8)

While this phase boundary is for a perfectly rigid model (κ = 0) completely independent of Jz , the
model with nonzero magnetoelastic coupling constant κ , 0 shows a relatively weak dependence on the
coupling constant Jz because κ is in general a very small quantity (κ � 1), while the spring-stiffness
constant kH � e

(1)
k, j

[i.e. kH � J0Jz , see figure 3 (b)–(d) for illustration]. A similar finding concerns with
the phase boundary between FI2 and SA phases, which is given by

h =
1
2
(Jx − 2J0 − Jz) + κ2

(
Jx + J0 sin θ

2
) (

Jx − Jz − J0 sin θ
2
)

8kH
(
sin2 θ

2 + 1
) . (3.9)

This phase boundary depends on the coupling constant Jz even in the perfectly rigid limit (κ = 0),
but there appears a small correction to this dependence once nonzero magnetoelastic coupling constant
(κ , 0) is taken into consideration.

4. Thermodynamics

As previously commented, the phononH (p)j and magnetoelasticH (me)
k, j

parts of the bond Hamiltonian
[2.14 and (2.17)] commute with each other. For this reason, the bond Hamiltonians corresponding to two
different unit cells also satisfy the commutation relation [Hj,Hj′] = 0. The partition function of the spin-
1/2 Ising-Heisenberg diamond chain accounting for the magnetoelastic interaction can be accordingly
obtained by using the transfer-matrix approach. A decoupled character of the phonon and magnetoelastic
parts of the Hamiltonian allows one to factorize the partition function into a product of two terms

ZN = Z
(p)
N Z

(me)
N , (4.1)

whereas the former one Z(p)N denotes the phonon contribution and the latter one Z(me)
N corresponds to

the magnetoelastic contribution. It is noteworthy that the phonons corresponding to (p, q) and ( p̄, q̄) of
the Heisenberg dimers are independent of each other and hence, the phonon part of the partition function
can be expressed more explicitly as follows

Z
(p)
N = (uū)N , (4.2)

where individual contributions stemming from two kinds of phonons involved in the Hamiltonian (2.14)
follow from a summation over all accessible values of the quantum numbers nj and n̄j

u =
∞∑

n j=0
e−β(

1
2+n j )ω =

1

2sinh
(
βω
2

) , ū =
∞∑̄

n j=0
e−β(

1
2+n̄ j )ω̄ =

1

2sinh
(
βω̄
2

) . (4.3)

The magnetoelastic part of the partition function can be calculated using the transfer matrix

W =

(
w1 w0
w0 w−1

)
, (4.4)

which involves the Boltzmann factors of the jth Heisenberg dimer defined as follows:

wµ j =

4∑
k=1

e−β
[
e
(0)
k, j
− 1

2K

(
e
(1)
k, j

)2]
. (4.5)
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In the above, the energy contributions e(0)
k, j

and e(1)
k, j

are given by equations (2.9) and (2.10), respectively.
After a straightforward diagonalization of the transfer matrix (4.4), one gets two eigenvalues

λ± =
1
2

(
w1 + w−1 ±

√
(w1 − w−1)2 + 4w2

0

)
. (4.6)

The magnetoelastic part of the partition function can be expressed via the transfer-matrix eigenvalues

Z
(me)
N = λN+ + λ

N
− . (4.7)

At this stage, one may substitute the phonon and magnetoelastic parts of the partition functions (4.2 and
(4.7)) into equation (4.1) in order to get the final result for the partition function and the associated free
energy, which in the thermodynamic limit reduces to the form

f = −
1
β

lim
N→∞

1
N

lnZN = −
1
β

ln (uū) −
1
β

ln (λ+) . (4.8)

With the free energy in hand, we are able to discuss magnetoelastic properties of the spin-1/2 Ising-
Heisenberg diamond chain at nonzero temperatures.

In what follows our particular attention will be devoted to the magnetoelastic behavior at and near a
triple point, where all three phases SA, FI1 and FI2 coexist together at zero temperature. In the case of
a completely rigid model (κ = η = 0), the three phases coexist together for fixed parameters J0 = −1,
Jx = 1, Jz = −1 when the magnetic field h→ 2 [see in figure 3 (a)]. After some algebraic manipulations,
one obtains the following asymptotic expression for the free energy of the rigid model f0 = −T ln (λ+) in
the zero-temperature limit T → 0

f0 =E0 − T ln

(
3 +
√

5
2

)
−

√
5

10
(hI − 2) −

1
2

(
1 +
√

5
5

)
(hH − 2) , (4.9)

where E0 = EFI2 = EFI1 = ESA defines the corresponding ground-state energy at a triple point. Now, one
may differentiate the free energy (4.9) in order to calculate the entropy

S0 = −

(
∂ f0
∂T

)
h

= ln

(
3 +
√

5
2

)
≈ 0.962423, (4.10)

the sublatticemagnetization of the Ising spins MI,0 = − (∂ f0/∂hI)T =
√

5/10, the sublatticemagnetization
of the Heisenberg spins MH,0 = − (∂ f0/∂hH)T = 1/2 ·

(
1 +
√

5/5
)
, while the total magnetization per

unit cell equals

Mt,0 = MI,0 + MH,0 =
1
2
+

√
5

5
≈ 0.9472136. (4.11)

This exact result will be confirmed later by numerical computation at finite temperatures.
Now, let us compare the magnetic behavior of the model accounting for the magnetoelastic coupling

in the vicinity of the triple point with that of the fully rigid model in order to find out differences arising
from the magnetoelastic coupling. To this end, the entropy is plotted in figure 4 (a) as a function of
temperature in semi-logarithmic scale, whereas a blue line corresponds to the fully rigid model, a green
line describes the phonon contribution and a red line reports the overall entropy for the fixed values
kH = 100, κ = 0.5, J0 = −1, Jx = 1, Jz = −1, θ = π/2 and h = 2. It can be seen that the entropy
closely follows the entropy of the rigid model at low enough temperatures, whereas it tends to the phonon
contribution at a sufficiently high temperature. Figure 4 (c) depicts the temperature dependencies of
the specific heat corresponding to figure 4 (a). Figure 4 (b) illustrates the overall entropy of the model
accounting for the magnetoelastic coupling for the fixed values of κ = 0.5, J0 = −1, Jx = 1, Jz = −1,
θ = π/2, h = 2 and four different values of the spring-stiffness constant kH = {25, 50, 100, 200}. It
is evident from this figure that the entropy displays a plateau at S0 = ln[(3 +

√
5)/2] regardless of the
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Figure 4. (Colour online) (a) The entropy as a function of temperature in a semi-logarithmic scale for
fixed values of kH = 100, κ = 0.5, J0 = −1, Jx = 1, Jz = −1, θ = π/2 and h = 2. A blue line
corresponds to the rigid model, a green line describes the phonon contribution and a red line reports the
overall entropy of the model with the magnetoelastic coupling; (b) The overall entropy as a function of
temperature in a semi-logarithmic scale for fixed values of κ = 0.5, J0 = −1, Jx = 1, Jz = −1, θ = π/2,
h = 2 and four different values of kH = {25, 50, 100, 200}; (c) Temperature variations of the specific heat
corresponding to the panel (a); (d) Temperature variations of the specific heat corresponding to the panel
(b).

T T

T
χ
(T

)50

100

200

(a) (b)

kH = 25

M
t
(T

)

Figure 5. (Colour online) (a) The total magnetization per unit cell as a function of temperature in a
semi-logarithmic scale for fixed values of κ = 0.5, J0 = −1, Jx = 1, Jz = −1, θ = π/2, h = 2 and four
different values of kH = {25, 50, 100, 200}; (b) A semi-logarithmic plot of the magnetic susceptibility
times temperature (χT) product for the same parameter set as used in figure 5 (a) for the magnetization.

spring-stiffness constant in the range of moderate temperatures 10−3 . T . 10−1 before it tends to zero
in the asymptotic limit T → 0. Note that the fully rigid model (kH → ∞) exhibits, for the considered
set of parameters, the residual entropy S0 = ln[(3 +

√
5)/2], which is however lifted for finite values of

the spring-stiffness constant due to the shift of the ground-state phase boundaries. Finally, figure 4 (d)
depicts temperature variations of the specific heat corresponding to figure 4 (b), where the formation of
the additional small peak can be observed in a low-temperature region due to the respective changes of
the entropy from a nonzero plateau to null.

The total magnetization is depicted in figure 5 (a) against the temperature in a semi-logarithmic scale
by assuming fixed values of κ = 0.5, J0 = −1, Jx = 1, Jz = −1, θ = π/2, h = 2 and four different
values of the spring-stiffness constant kH = {25, 50, 100, 200}. It turns out that the total magnetization
per unit cell tends in the zero-temperature limit to the initial value Mt = 0.5 irrespective of the spring-
stiffness constant. Then it increases in agreement with the formula (4.11) to the value Mt ∼ 0.947 in the
range of moderate temperatures 10−3 . T . 10−1 before it finally tends to zero in the high-temperature
region. Figure 5 (b) illustrates the respective temperature variations of the magnetic susceptibility times
temperature (χT) product for the same set of parameters as used in figure 5 (a) for the magnetization. It is
obvious that the product vanishes χT → 0 as temperature tends to zero, an intermediate plateau around
the value χT ∼ 0.18 is found at moderate temperatures 10−3 . T . 10−1 and the product reaches the
asymptotic value χT ∼ 0.8 in the high-temperature limit.
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5. Conclusions

In the present paper we have examined in detail the magnetoelastic properties of the spin-1/2 Ising-
Heisenberg diamond chain, which involves two Heisenberg spins and one nodal Ising spin in each
unit cell. It is supposed that the decorating atoms involving the Heisenberg spins harmonically vibrate
perpendicular to the chain axis, while the nodal atoms involving the Ising spins are placed at rigid lattice
positions when completely neglecting their lattice vibrations. In particular, we have first investigated the
ground-state phase diagram depending on the magnetoelastic constant and the spring-stiffness constant
ascribed to the Heisenberg coupling with the main emphasis laid on an investigation of the parameter
region close to a triple coexistence point of two ferrimagnetic phases and one saturated paramagnetic
phase. Next, we have also examined in detail the thermodynamic properties at nonzero temperatures.

It has been found that the magnetoelastic nature of the Heisenberg dimers is reflected through
a nonzero plateau of the entropy in a low-temperature region, whereas the specific heat displays an
anomalous peak slightly below the temperature region corresponding to the entropy plateau. It also turns
out that the magnetization exhibits a plateau at almost saturated value in the same temperature region
as the entropy before it gradually tends to zero upon further increase of temperature. The magnetic
susceptibility displays within the plateau region an inverse temperature dependence, which slightly drops
above this plateau, whereas an inverse temperature dependence is repeatedly recovered at high enough
temperatures.
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Магнетоеластичнi властивостi спiн-1/2 ромбiчного

ланцюжка Iзiнґа-Гайзенберґа поблизу потрiйної точки

спiвiснування

Н. Феррейра1, Дж. Торрiко2, С.М. де Соуза1, О. Рохас1, Й. Стречка3
1 Кафедра фiзики, Федеральний унiверситет Лавраса, C. P. 3037, 37200-900, Лiврас,Мiна Жере,
Бразилiя

2 Кафедра фiзики, Федеральний унiверситет Мiна Жере, C. P. 702, 30123-970, Белу-Оризонтi,
Мiна Жере, Бразилiя

3 Iнститут фiзики, Факультет природничих наук, Унiверситет iменi П. Й.Шафарика, парк Ангелiнум 9,
Кошицi 04001, Словаччина
Ми вивчаємо магнетоеластичнi властивостi спiн-1/2 ромбiчного ланцюжка Iзiнґа-Гайзенберґа, елемен-
тарнi комiрки яких складаються з двох декорованих Гайзенборгових спiнiв i одного центрального Iзi-
нґового спiна. Припускаємо, що кожна пара декорованих атомiв, якi несуть Гайзенборґовi спiни, вiбрує
перпендикулярно до осi ланцюжка, в той час як Iзiнґовi спiни перебувають у фiксованих позицiях внаслi-
док вiдсутностi iнших вiбрацiй гратки. Вплив магнетоелестичної взаємодiї на основний стан i скiнченно-
температурнi властивостi дослiджуються бiля потрiйної точки спiвiснування в залежностi вiд константи
жорсткостi, яка вiдноситься до Гайзенберґової взаємодiї.Магнетоеластична природа Гайзенберґових ди-
мерiв вiдображається через ненульове плато ентропiї в низькотемпературнiй областi, в той час як те-
плоємнiсть демонструє аномальний пiк дещо нижче температурної областi, що вiдповiдає плато ентро-
пiї. Намагнiченiсть також виявляє плато у цiй же ж температурнiй областi близько до значень насичення
перед тим як вона поступово прямує до нуля зi зростанням температури. В межах областi плато магнiтна
сприйнятливiсть показує обернену температурну залежнiсть, яка руйнується нижче цього плато, в той
час як обернена температурна залежнiсть вiдновлюється при достатньо високих температурах.
Ключовi слова: магнетоеластичнй ланцюжок, спiнова намагнiченiсть, термодинамiка
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