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ABSTRACT
In this paper we propose an effective approach for verification of real-
world SystemC TLM peripherals using modern C++ symbolic execu-
tion tools. We designed a lightweight SystemC peripheral kernel that
enables an efficient integration with the modern symbolic execution
engine KLEE and acts as a drop-in replacement for the normal SystemC
kernel on pre-processed TLM peripherals. The pre-processing step
essentially replaces context switches in SystemC threads with normal
function calls which can be handled by KLEE. Our experiments, using
a publicly available RISC-V specific interrupt controller, demonstrate
the scalability and bug hunting effectiveness of our approach.
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1 INTRODUCTION
SystemC in combination with the Transaction-Level Modeling (TLM)
style has become an industrial standard for creating advanced Virtual
Prototypes (VPs). A VP is essentially an abstract executable model of
the entire hardware platform which is leveraged for early software de-
velopment and acts as a reference model for the subsequent hardware
design flow steps. Early and thorough verification of SystemC-based
VPs is very important to avoid propagation of errors and the associated
costly iterations for fixing them. Beside the instruction set simulator,
which is an abstract model of the processor, TLM peripherals, such as
an interrupt controller, are a central part of the VP. TLM peripherals
rely on common modeling standards to describe the register interface,
according to a device memory map, and provide a TLM interface to
implement (software-driven) read and write accesses. The actual func-
tionality is implemented through SystemC threads that leverage the
event driven semantics of the SystemC kernel for synchronization.
Application of formal verification techniques on TLM peripherals is
very challenging as it needs to support the intricate TLM periperhal
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modeling semantics in combination with the simulation semantics
of the SystemC kernel. Existing methods commonly rely on formal
intermediate representations to capture the TLM periperhal semantics,
which require significant effort to derive, do not scale to advanced Sys-
temC TLM peripherals, or do not support core features of the SystemC
kernel1.
To mitigate these issues, in this paper we propose an effective ap-

proach for verification of real-world SystemC TLM peripherals by
using modern C++ symbolic execution tools. Our approach consists
of three main parts: First, we perform a common SystemC thread
transformation pre-processing step to enable replacement of context
switching in threads with normal function calls, which is the main
reason why an unmodified SystemC is incompatible with Klee. Sec-
ond, we designed a SystemC Peripheral Kernel (PK) that can essentially
act as a drop-in replacement for the normal SystemC kernel on the
pre-processed TLM peripherals. It implements all necessary interfaces
which are used by advanced SystemC TLM peripherals. At the same
time, the PK is much more lightweight by focusing only on relevant
interfaces and integrating optimization procedures tailored to support
symbolic execution engines. Third, we apply the existing state-of-the-
art symbolic execution tool Klee [2] to verify (symbolic) properties
specified for the TLM peripheral by means of assertions and assump-
tions embedded in a testbench. As a case-study we report verification
results for a RISC-V specific Platform Level Interrupt Controller (PLIC)
[25] that is used in an open source virtual prototyping environment
for the SiFive FE310 SoC [1]. The PLIC provides interrupt handling
capabilities supporting several operating systems such as Zephyr and
FreeRTOS. Our approach has been scalable and very effective in bug
hunting. We found new previously unknown bugs in the PLIC and also
demonstrate by means of fault-injection that other intricate bugs can
be detected very quickly. To stimulate further research, we have made
our PK together with our experimental setup available on GitHub2.

2 RELATEDWORK
Formal verification of SystemC [21] designs is very important and also
very challenging [24]. Therefore, it has received significant attention
from the research community.
Early efforts, for example [8, 13, 18, 23], have very limited scalability

or do not model the SystemC simulation semantics thoroughly [14].
Furthermore, they are mostly geared towards RTL signal-based com-
munication.
More recent approaches are specifically targeting high-level Sys-

temC designs that are in general suitable to capture the TLM seman-
tics [19]. As a result a set of SystemC verification tools have emerged.
1We will discuss these existing methods and their limitations in Section 2.
2https://github.com/agra-uni-bremen/SymSysC
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KRATOS [5] employs a model checking algorithm based on symbolic
lazy abstraction and accepts an intermediate C input language with
simple assertions. SCIVER [7] operates on sequential C models and
leverages high-level induction techniques to check temporal prop-
erties [22]. SDSS[4] formalizes the semantics of SystemC designs in
terms of Kripke structures and then applies a bounded model check-
ing algorithm. In a follow-up work [3], the approach has also been
optimized with state space reduction techniques based on Partial Or-
der Reduction (POR). SISSI [11] defines the Intermediate Verification
Language (IVL) format and employs stateful symbolic simulation tech-
niques in combination with POR to deal efficiently with cyclic state
spaces. For optimization purposes, native execution techniques have
been leveraged [12]. STATE [10] translates SystemC designs to timed
automata and verifies properties formulated on the timed automata
using the UPPAAL model checker. In the context of these approaches,
an extensive set of academic SystemC benchmarks is available. How-
ever, from a practical perspective, these approaches are still limited
since due to their employed intermediate formalizations, they are not
easily applicable to real-world VPs.
Other recent approaches have attempted to tackle this challenge.

A first attempt has been made in [20], where the successful applica-
tion of [9] on a simplified ARM AHB TLM-2.0 model is reported. In
a follow-up work [16], slicing-based techniques are investigated to
improve scalability and results on the verification of a packet switch
are reported. However, the specific modelling challenges of TLM pe-
ripherals have not been considered.
Another recent approach [15] addresses this real world application

issue specifically. The authors propose a XIVL formal intermediate
representation that bridges the modelling gap of TLM peripherals
with the formal language employed by the SISSI verification tool.
While the approach has shown promising results in verifying formal
properties on an interrupt controller, it still requires significant effort
to (manually) transform a SystemC model into the XIVL. In contrast
our approach operates directly on the C++ code and can thus also
benefit from recent advances in modern symbolic execution engines
tailored for C++.
We are also aware of the approach in [17], which leverages the Klee

symbolic execution engine to generate test cases for SystemC modules
that provide a high (branch) coverage. The approach also needs to
integrate a customized scheduler to cover the SystemC simulation
semantics and has reported very promising results in testing different
SystemC designs. However, only the high-level synthesizable sub-
set [6] of SystemC is supported by that approach. Moreover, it only
supports static sensitivity to a single clock edge and does not allow the
use of sc_events, which is a common modelling requirement for TLM
peripherals. Therefore, this approach does not support the verification
of TLM peripherals as considered in our case-study.

3 PRELIMINARIES
This section provides relevant background information on SystemC
TLM (Section 3.1) and the RISC-V specific PLIC (Section 3.2).

3.1 SystemC TLM
SystemC [21] is a hardware modelling framework that is widely
adopted in the industry. It offers a C/C++ style modelling framework
with varying degrees of timing accuracy at the benefit of simulation
speed. The structure of a SystemC design is described with ports and
modules, whereas the behaviour is modelled in processes which are
triggered by events. The execution of a process is non-preemptive,
i.e. it uses co-operative user-space scheduling for processes of each
module. This means that a process, once started, runs indefinitely until
it either yields (wait()) or terminates forever (return). The process
will be woken up when an event in its static sensitivity list triggers (e.g.

Figure 1: I/O Ports of the Platform Level Interrupt Controller.
Elements with sharp corners are registers, managed by logic in
the main run()method. hart_eip is a private variable used for
suppressing interrupt re-triggers.

a clock edge), or it can wait for a dynamic sc_event. This event may
be triggered immediately or with a delay by, e.g., an asynchronous
task, calling event.notify(delay).
Communication between SystemC modules can be abstracted us-

ing the TLM standard [19] at the cost of timing accuracy, but with
significant improvements in simulation speed, i.e. up to a factor of
1,000 in comparison to RTL simulation. Especially in bus-like memory
mapped communication networks, skipping interconnect procedures
and signal resolutions will greatly reduce the execution time. Instead
of taking the whole route through the VP, interactions can be initi-
ated directly to a target port. These transactions can either read or
write at a specified address carrying a generic payload along with a
cumulative delay, and may return either OK or ERROR. This delay is
increased by every model passing the transaction and added to a global
quantum afterward. The global quantum tracks the time difference a
transaction “jumped" in contrast to the actual simulated time. If this
difference is bigger than the maximum allowed time, SystemC will
initiate a global synchronization. This allows for a fine control over
the trade-off between simulation speed and accuracy.

3.2 PLIC
The Platform Level Interrupt Controller (PLIC) is specified by the RISC-V
instruction set architecture [25]. It manages incoming, ‘global’ inter-
rupts and notifies the hardware threads (HARTs), i.e. the individual
processor cores. It contains a set of registers for each HART where
the processor can assign a priority and a notification threshold for
each interrupt (see Fig. 1). When an external interrupt fires, it sets
an interrupt pending bit to the corresponding position in an internal
register. Then, the PLIC will decide, based on the interrupt’s assigned
priority and its threshold, if a notification is passed to the individual
HARTs (via trigger_external_irq()).
After an interrupt notification, a HART may check pending inter-

rupts in the claim/response register via the memory mapped interface.
The HART finishes the completion of the interrupt by writing back
the corresponding interrupt ID to the claim/response register. If other
interrupts of less priority are pending, the PLIC will re-trigger all
HARTs based on their individual threshold after that. Citing the of-
ficial specification: “A priority value of 0 is reserved to mean never
interrupt and effectively disables the interrupt. Priority 1 is the lowest
active priority while the maximum level of priority depends on PLIC
implementation. Ties between global interrupts of the same priority
are broken by the interrupt ID; the lowest ID has the highest effective
priority.”3

3https://github.com/riscv/riscv-plic-spec/blob/master/riscv-plic.adoc
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Figure 2: Overview of our approach. Highlighted in green are
the user-defined parts, in brown are the provided elements,
and blue are existing tools.

4 TLM PERIPHERAL VERIFICATION VIA
SYMBOLIC EXECUTION

In this section, we present our proposed approach for verification of
TLM peripherals via symbolic execution.

4.1 Overview
Fig. 2 shows an overview on our approach. Starting point is a SystemC
TLM peripheral 1 which is the Device Under Verification (DUV). It pro-
vides a TLM interface to communicate with other devices embedded
in a virtual prototyping environment, and interacts with the SystemC
kernel. The complexity of the SystemC kernel makes it very difficult to
apply symbolic execution techniques for verification purposes of the
DUV directly. In particular, the SystemC thread scheduling mechanism
that relies on context switches and heavyweight data structures, such
as floating point based sc_time implementations, lead to significant
performance bottlenecks in symbolic execution tools, up to the point
of being unsupported. Therefore, in a first pre-processing step, the
DUV is translated 2 by transforming its userspace-scheduling styled
threads into classic function calls. In addition, we provide a Peripheral
Kernel (PK, 3 ) as a drop-in replacement for the SystemC kernel on the
translated DUV, with a compatible library and an optimized sched-
uling mechanism. Our PK provides all necessary interfaces which
are used by advanced SystemC TLM peripherals. At the same time,
it is much more lightweight by focusing only on relevant interfaces
and integrating optimization procedures tailored to support symbolic
execution engines. We will provide more details on the translation
step and our PK in Section 4.2 and Section 4.3, respectively.
Testbenches 4 are user-provided for verification purposes. They in-

teract with the translated DUV using the standard TLM interface (e.g.
to read/write TLM registers) as well as custom interface functions
(e.g. an interrupt line in an interrupt controller). Assumptions and
assertions can now be embedded in the testbench to specify symbolic
input parameters and check the output behaviour, respectively. This
setup enables verification engineers to write very fine-grained yet

generalized tests to enable a broad coverage and search for previously
unknown corner-cases via symbolic execution. In this work we lever-
age Klee, a state-of-the-art symbolic execution engine for C/C++,
which provides a set of interface functions to declare and reason about
symbolic expressions.
Each testbench is compiled together with the translated DUV, PK

and Klee interface into a single LLVM Intermediate Representation
(IR, 5 ) using the Clang C++ compiler. The LLVM IR is analysed using
the Klee symbolic execution engine. Klee performs a symbolic state
space exploration searching for errors on the symbolic execution paths.
An error may be an assertion evaluated to false, an invalid memory
access (segmentation fault, array-out-of-bounds), a software trap such
as a division by zero, or an unhandled exception. For every error,
a counterexample, i.e. concrete assignment for symbolic inputs, is
generated by Klee. It allows to reproduce the error and replay the
testbench execution for debugging purposes. For convenience, the IR
bytecode can be compiled into a machine-native Executable 6 so that
a classical debugger can be attached to analyse the counterexamples.
In the following, we provide more details on the translation step 2

and our PK 3 in Sections 4.2 and 4.3, respectively.

4.2 Thread to Function Translation
The thread to function translation is the key idea in enabling the sym-
bolic execution through Klee, as the SystemC userspace-scheduling
implementations are incompatible with Klees interpreter. It essen-
tially works by moving local into static variables to preserve them
across function calls and embedding Finite State Machine (FSM) logic
with goto statements to interrupt and resume the function at the right
position on each context switch. This translation allows to preserve
the execution context across multiple function calls and thus models
the SystemC thread semantic. For illustration, Fig. 3 shows a SystemC
thread (from the PLIC TLM peripheral) called run and Fig. 4 the re-
sulting thread function after the translation process. The translated
function consists of a header (Lines 15-27) and body (Lines 29-46) part.
The header consists of goto statements to dispatch execution accord-
ing to the context switch semantic. The current position in the thread
function is stored in the newly introduced static position variable,
which is an enum of type Label (Line 20). A label is provided for the
first execution (init) and each wait function call (lbl1 in this exam-
ple). The body is a copy of the SystemC thread body where each wait
function is annotated with appropriate context switch logic. It saves
the current position (Line 33) before exiting the function (Line 34). A
corresponding label is added for this position (Line 18). To support
the translation process we developed a Python script that automates
these steps for the DUV threads.

1 void run() {
2 while (true) {
3 sc_core ::wait(e_run);
4 for (unsigned i=0; i<NumberCores; ++i) {
5 if (! hart_eip[i]) {
6 if (hart_has_pending_enabled_interrupts(i)) {
7 hart_eip[i] = true;
8 target_harts[i]->trigger_external_interrupt ();
9 }
10 }
11 }
12 }
13 }

Figure 3: Original SystemC run process of the PLIC from the
open source RISC-V VP. The e_run event is used for synchro-
nization with a new incoming interrupt. The function on Line
6 implements the priority calculation.
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14 void run() {
15 // --[ header begin ]-----
16 enum class Label {
17 init ,
18 lbl1 ,
19 };
20 static Label position = Label::init;
21 switch (position) {
22 case Label::lbl1:
23 goto LBL1;
24 default:
25 break;
26 }
27 // --[ header end ]-----
28
29 // --[ body begin ]-----
30 while (true) {
31 // context switch (i.e. wait) transformation
32 sc_core ::wait(e_run);
33 position = Label::lbl1;
34 return;
35 LBL1:
36 // unmodified logic of the original run thread
37 for (unsigned i=0; i<NumberCores; ++i) {
38 if (! hart_eip[i]) {
39 if (hart_has_pending_enabled_interrupts(i)) {
40 hart_eip[i] = true;
41 target_harts[i]->trigger_external_interrupt ();
42 }
43 }
44 }
45 }
46 // --[ body end ]-----
47 }

Figure 4: Translated SystemC run process of the PLIC.

4.3 Peripheral Kernel (PK)
The PK is designed to be used as a drop-in replacement for the actual
SystemC kernel. Fig. 5 shows an overview of the PK architecture and
integration. It consists of a SystemC compatible library (top left of
Fig. 5), matching wrapper macros (top of Fig. 5), and the PK scheduler
(bottom left of Fig. 5) itself. As SystemC modules are designed to be
modular and interact with the environment via defined functions and
interfaces, our PK library can connect to these with custom, light-
weight, SystemC classes that the DUV in the testbench will link to.
Symbolic execution engines typically save and re-start the execution
context of individual branches of the program, so our slimmed down
PK library enables faster spawning of states. Especially the sc_time
calculation routines need to be re-designed to use integer arithmetic
wherever possible, to both speed up the symbolic execution and ex-
pand the possibilities for symbolic propagation. This is necessary, as
Klee currently does not support floating-point operations and con-
cretizes these values.
As in SystemC, macros like SC_HAS_PROCESS() are used to register

threads or processes to the simulation context of our PK scheduler.
The scheduler keeps track of waiting processes, scheduled events
and the simulation time. E.g., when a translated process waits for
a specified time or an event, it will be placed into a wakelist. These
waiting processes are managed in a sorted list. Every simulation step
advances the global time by the maximum amount possible without
skipping a waiting event, calling all threads that are scheduled for
that time. As the SystemC scheduler is non-deterministic [21], our PK
scheduler does not need to incorporate a special order within multiple
threads waiting for the same simulation event.
In summary, the PK is a lightweight implementation focusing on

relevant interfaces and integrating well-designed and optimized data-
structures for SystemC process scheduling. It serves as foundation to
enable an efficient symbolic verification process.

5 EXPERIMENTS
We have implemented our approach for TLM peripheral verification.
For evaluation purposes we consider the PLIC from the open source

Figure 5: PK architecture overviewwith different interfaces for
connecting to the (translated) DUV.

RISC-V VP which is available on GitHub4. In particular, we use the
FE310 configuration of the PLIC5 which is based on the respective
FE310 SoC from SiFive [1]. Implementation-wise, this PLIC uses a
dynamic, synchronous run-method that is sensitive to an sc_event
which in turn is triggered when new interrupts arrive.
For evaluation, we created a set of symbolic unit tests to assess the

PLIC against behaviour, timing, and conformance to interface specifi-
cations. In addition to testing the original PLIC with SystemC 2.3.3
and our PK, we also performed a fault-injection evaluation to further
demonstrate the ability of our approach in finding intricate TLM pe-
ripheral bugs very efficiently. All experiments have been performed
on a Linux Fedora 31 with an Intel Xeon 5122 with 3.6 GHz. We use
Klee in version 2.2 with the SMT solver STP.
In the following, we first describe our symbolic tests (Section 5.1).

Then, we present the obtained results in testing the original PLIC
(Section 5.2) as well as the PLIC with faults injected (Section 5.3).

5.1 Tests
In total, we have created five symbolic tests. Each test feeds symbolic
input data through the standard TLM interface in order to access the
TLM registers of the PLIC, or triggers interrupts for processing using
a custom interface function. Assertions are placed in each respective
test to check correct output behaviour and (internal) state changes of
the PLIC. In addition, Klee also searches for generic errors such as
buffer overflows or null pointer dereferences.
In the following, we provide more details on five symbolic tests

chosen to verify the sanity of the in- and output interface and the
interrupt sequence assumption mentioned in Section 3.2.
T1 performs a basic interaction test. It triggers a symbolic interrupt

and checks if the correct interrupt is fired within the specified latency,
the corresponding pending interrupt-bit is set, claimable through
a TLM transaction, and cleaned up afterwards.
T2 performs an interrupt sequence test. For illustration purposes,

an excerpt of this test is shown in Fig. 6. It configures two symbolic
(but different) interrupt lines (Lines 55-61) with symbolic priorities
(Lines 63-64) and triggers them simultaneously in zero (simulation)
time (Lines 66-67). After that preparation, it advances the time to the
next event and checks if the interrupt with the higher priority was
fired first (Line 78). If they have the same priority, the one with lower
interrupt ID shall fire first. The test goes then on to check the second,

4https://github.com/agra-uni-bremen/riscv-vp
5FE310 PLIC: one HART, 51 interrupt sources with 32 priority levels.
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Table 1: Test results for the original PLIC. For a Failed result,
the number of detected failures is given in parentheses.

Test Result #Exec. Instr. Time [s] Paths Solver

T1 Fail (1) 4 330 418 1293 64 98.02 %
T2 Pass 8 975 783 78755 3162 98.82 %
T3 Pass 7 027 481 66576 967 98.62 %
T4 Fail (3) 38 062 265 67 1168 74.17 %
T5 Fail (4) 102 992 556 93383 62 017 97.58 %

lower prioritized interrupt for integrity, which is omitted in this listing
for readability reasons.
T3 performs an interrupt masking test. It configures a symbolic

interrupt line with a symbolic priority and sets the consider_threshold
to a symbolic value. It checks if the interrupt is only fired if its priority
is both not zero and above the configured threshold.
T4 performs a TLM read interface test. It triggers an interrupt and

starts a TLM read-transaction at a symbolic address using a symbolic
length parameter. This test allows to check that the TLM periperhal
can handle generic TLM read transactions and is not missing the
handling of specific address ranges.
T5 is similar to T4 but performs a TLM write interface test. It also

triggers an interrupt but then starts a TLM write-transaction at a
symbolic address using a symbolic length parameter and writes up to
1000 bytes of symbolic data.

48 void functional_test_itr_priority(
49 PLIC <1, numberInterrupts , maxPriority >& dut) {
50
51 Interrupt_target hart(dut); // mock -up hart
52 // interrupt line plic -> hart
53 dut.target_harts [0] = &hart;
54
55 uint32_t i = klee_int("i␣interrupt");
56 uint32_t j = klee_int("j␣interrupt");
57
58 // generate two valid different interrupt ids
59 klee_assume(i < numberInterrupts && i > 0);
60 klee_assume(j < numberInterrupts && j > 0);
61 klee_assume(i != j);
62
63 uint32_t lower_itr = i < j ? i : j;
64 uint32_t highr_itr = i > j ? i : j;
65
66 dut.trigger_interrupt(i);
67 dut.trigger_interrupt(j);
68
69 pkernel_step (); // advance time to next event
70
71 // PLIC should have triggered an external interrupt
72 assert(hart.was_triggered );
73
74 // Is correct Interrupt claimable?
75 uint32_t first_itr = hart.claim_interrupt ();
76
77 // Was the itr with the highest prio chosen first?
78 assert(first_itr == lower_itr );
79
80 assert(hart.was_cleared &&
81 "Interrupt␣was␣not␣cleared␣after␣claim");
82
83 pkernel_step (); // advance time to next event
84 [...]
85 }

Figure 6: Part of the interrupt priority test (T2). This test con-
tains multiple logic checks in the form of assertions.

5.2 Test Results: Original PLIC
Table 1 shows an overview on the test results for the original PLIC. The
first column reports the performed test. The second column provides
the test result. Each test can either Pass with no errors or Fail with at
least one detected error. In case of a Fail, the number of detected errors
by the respective test is given in parantheses. Please note, Klee does

not terminate after the first error is found but completes the symbolic
state space exploration6. The next column # Exec. Instr. provides the
overall number of executed LLVM bytecode instructions. The remain-
ing columns show the total execution time in seconds (column: Time),
the number of explored symbolic execution paths by Klee (column:
Paths) and how much of the overall execution time was spent in the
SMT solver engine of Klee to process SMT queries (column: Solver).
It can be observed that the solver time vastly dominates the overall
execution time in most tests. Only in T4 the solver queries are less
complex performance-wise, resulting in a (symbolic) execution speed
of up to 568 thousand instructions per second. The overall runtime
varies between 67 seconds for T4 and around 26 hours for T5. Please
note that this is the time required to perform the complete state space
exploration, errors are typically found much faster, which we will
discuss further in Section 5.3. When using the normal SystemC ker-
nel, the initialization phase could be completed, but right at the first
scheduling event, Klee crashed with a segmentation fault right after
a mprotect() syscall in the quickthreads implementation. Even after
manually patching the kernel without this syscall, a successful context
switch could not be performed, rendering this approach unsuccessful.
Based on our five tests, we found six errors in total. We describe

them in the following:
F1 is a forgotten assertion in the trigger_interrupt routine. This

assertion checks if the passed interrupt id is valid; i.e. between one and
the maximum number of interrupts. However, this assertion throws an
unhandled error that terminates the program which does not fit into
a production grade environment. Also, when built in release mode,
such assertions would not be checked and thus the program would
produce a segmentation fault.
F2 describes a failed assertion checking the 4-byte alignment of a

TLM register access. The correct way to handle failed assertions would
be to return a TLM error state instead of terminating the program.
This way, a transaction initiator like a processor can handle this with
a correct exception handler.
F3 defines a failed assertion, similarly to F2, that checks the existence

of a TLM register mapping that can handle the required address.
F4 characterizes a failed assertion, similarly to F2, checking the TLM

target register is registered as writeable in case of a write transaction.
F5 is an unhandled memory access in which a TLM read transaction

was accepted by a register mapping if the address matched a register
with a 4-byte aligned transaction size, that could exceed the actual
register boundaries. This leads to a memcopywith the source exceeding
valid memory addresses.
F6 labels a failed assertion inside the TLM transport register access

callback that was previously thought never to be false. In this case, the
address was set to the interrupt claim_response register. Normally, a
interrupt target writes to the register only after being notified. In this
case however, the test initiated the transaction just after triggering
the interrupt before the periodic PLIC thread was scheduled. This race
condition was previously not found in normal operation because of
the high PLIC thread frequency compared to the processor.
We found F1 with T1; F2 to F4 with T4; and F3 to F6 with T5. In

the following, we provide more details on how fast each error was
found and we present results on finding additional injected faults that
represent other common TLM peripheral errors.

5.3 Test Results: PLIC with Injected Faults
For further evaluation purposes, we injected six additional common
(TLM peripheral) bugs into the PLIC: IF1 to IF6. These include off-
by-one faults (IF1, IF6), selectively dropping functional parts (IF2,
IF4, IF5) and a race-condition (IF3). Of these, IF1, IF3 and IF6 have

6Only the single execution path that triggers the error is terminated.
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Table 2: Overview on how fast the errors in the original PLIC
(F1 to F6) and the PLIC with injected faults (IF1 to IF6) have
been found by the respective tests. The runtime is given inmin-
utes and rounded to the next highest integer.

F1 F2 F3 F4 F5 F6 IF1 IF2 IF3 IF4 IF5 IF6
T1 1m – – – – – 1m 3m – 19m 4m –
T2 – – – – – – – 60m 24h – 105m –
T3 – – – – – – – – – – – 7m
T4 – 1m 1m 1m – – – – – – – –
T5 – – 1m 1m 16m 147m – – – – – –

been present in earlier versions of the PLIC, as can be observed in the
GitHub logs. In the following, we first provide more details on these
six bugs and then show how fast they are detected with our approach:
IF1 changes a check for the highest allowed interrupt number from

irq_id < NumberInterrupts to irq_id <= NumberInterrupts,
resulting in a buffer overflow in the array storing pending interrupts.
IF2 explicitly drops the notification of interrupts with the id 13 after

writing to the correct pending interrupt register.
IF3 skips a necessary re-trigger for another simultaneously waiting

interrupt after claiming the first one. This behavior is particularly
hard to debug without well-suited unit tests.
IF4 artificially increases the event notification for the main thread

if interrupt number is over 32. This shall emulate an error or misspec-
ification in the timing model of the DUT.
IF5 returns the interrupt clear routine early if a specific interrupt is

being cleared.
IF6 originates in a misinterpretation of the specification that checks

if a pending interrupt priority is greater or equal to the configured
threshold, while it shall be strictly greater.
Table 2 shows how fast the errors in the original PLIC (F1 to F6) and

the PLIC with injected faults (IF1 to IF6) have been found by the re-
spective tests. It can be observed that all original bugs are found in less
than 3 hours with most bugs being found in just a few minutes or even
less than a minute. The efficiency can be explained by Klee’s symbolic
exploration heuristics, which attempt to solve the most promising
paths first and by tracking extensive symbolic constraints among these
paths. The results demonstrate the effectiveness of our approach in
finding relevant bugs in real-world TLM peripherals quickly.

6 CONCLUSION
This paper proposed an effective approach for verification of real-
world SystemC TLM peripherals by using modern C++ symbolic exe-
cution tools. The foundation of our approach is a lightweight PK that
acts as drop-in replacement for the SystemC kernel and is tailored for
enabling the symbolic execution of TLM peripherals. The PK combines
optimized data structures with a simplified function-based scheduling
mechanism that relies on a thread to function transformation process.
As a case-study, we reported verification results for a RISC-V specific
PLIC that is used in an open source virtual prototyping environment
for the SiFive FE310 SoC. We found new previously unknown bugs
in the PLIC and also demonstrate by means of fault-injection that
other intricate bugs can be detected very quickly using Klee, a state-
of-the-art symbolic execution engine for C/C++. To stimulate further
research we will make our PK together with the experimental setup
available as open source.

For future work, we plan to investigate additional optimizations
of our PK to further boost symbolic execution performance; and to
evaluate our approach, beyond TLM peripherals, both for verifica-
tion of other SystemC IP components such as a co-processor and the
feasibility to verify whole SystemC projects with a high number of
individual components.
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