Assessing the earthquake performance of a slope and estimating the seismically-induced slope disp... more Assessing the earthquake performance of a slope and estimating the seismically-induced slope displacements is one of the most complicated tasks in geotechnical earthquake engineering. The source of the complication includes: i) defining the soil properties and their variability within the limits of the available geological/geotechnical information, and ii) executing a proper ground motion selection and scaling procedure for the dynamic numerical analysis, which are generally limited in number for most of the engineering applications. The objective of this study is to model the uncertainty due to ground motion selection in the seismically-induced soil slope displacements estimated by the dynamic numerical analysis. For this purpose, fifty horizontal pairs of ground motions recorded at rock stations from the Pacific Earthquake Engineering Research Center database are selected and scaled up to 1.0g of maximum horizontal acceleration to create the candidate ground motion dataset of 300 ...
Assessing the earthquake performance of a slope and estimating the seismically-induced slope disp... more Assessing the earthquake performance of a slope and estimating the seismically-induced slope displacements is one of the most complicated tasks in geotechnical earthquake engineering. The source of the complication includes: i) defining the soil properties and their variability within the limits of the available geological/geotechnical information, and ii) executing a proper ground motion selection and scaling procedure for the dynamic numerical analysis, which are generally limited in number for most of the engineering applications. The objective of this study is to model the uncertainty due to ground motion selection in the seismically-induced soil slope displacements estimated by the dynamic numerical analysis. For this purpose, fifty horizontal pairs of ground motions recorded at rock stations from the Pacific Earthquake Engineering Research Center database are selected and scaled up to 1.0g of maximum horizontal acceleration to create the candidate ground motion dataset of 300 ...
Uploads
Papers by Burak özmen