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CS FOCUS

The IEEE Computer 
Society’s lineup of 13 
peer-reviewed technical 

magazines covers cutting-edge 
topics ranging from software 
design and computer graphics 
to Internet computing and secu-
rity, from scientifi c applications 
and machine intelligence to 
cloud migration and microchip 
design. Here are highlights from 
recent issues.

Computer

Mobile Decision Support 
and Data Provisioning for 
Low Back Pain
The authors of this article, from 
the August 2018 issue of Com-
puter, present Back Pain Buddy, 
a mobile application off ering 
decision support and coaching 
for people with low back pain 
(LBP). The application takes 

advantage of smartphones’ 
powerful capabilities and pro-
vides a crowd-sourced decision 
support system for discovering 
treatments and a mobile sens-
ing solution for collecting data 
about user activities that are 
crucial in LBP research.

Computing in Science & 
Engineering

Toward an Open, 
Sustainable National 
Advanced Computing 
Ecosystem
For over three decades, a largely 
organic process has brought 
into existence a somewhat dis-
jointed and chaotic national 
research computing ecosystem 
that supports a collection of 
computational resources and 
services. Consequently, much of 
the national advanced research 
computing environment can be 
characterized by pockets of more 
coherent resources and services 
in a larger, less-coherent eco-
system. The rise in deployment 

Magazine 
Roundup
Editor: Lori Cameron
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of research computing resources 
on university campuses has added 
complexity to the situation. The 
National Science Foundation 
has made a foray into develop-
ing a more coherent environment 
via investments in XSEDE, the 
associated research computing 
resources, and critical common 
services and support for research-
ers. Read more in the September/
October 2018 issue of Computing 
in Science & Engineering.

IEEE Annals of the History 
of Computing

Critical Failure: Computer-
Aided Instruction and the 
Fantasy of Information
The history of the use of vari-
ous kinds of computers in educa-
tion involves frequent triumphalist 
claims about the inevitable auto-
mation of instruction and equally 
frequent declarations of the failure 
of this project. This article, which 
appears in the April–June 2018 
issue of IEEE Annals of the History 
of Computing, situates both types 
of claims within a broader cultural 
understanding, one that holds that 
the human world is fundamentally 
informational and therefore amena-
ble to improvement by computers.

IEEE Cloud Computing

Controlling User Access to 
Cloud-Connected Mobile 
Applications by Means of 
Biometrics
Cloud-connected mobile appli-
ca tions are becoming a popular 
solution for ubiquitous access to 
online services such as cloud data 

storage platforms. The adoption 
of such applications has brought 
security and privacy implications 
that are making individuals hesi-
tant to migrate sensitive data to the 
cloud; thus, new secure authen-
tication protocols are needed. In 
this article, which appears in the 
July/August 2018 issue of IEEE 
Cloud Computing, the authors 
propose a continuous authentica-
tion approach integrating physical 
(face) and behavioral (touch and 
hand movements) biometrics to 
control user access to cloud-based 
mobile services, going beyond 
one-off  login.

IEEE Computer Graphics 
and Applications

LightPainter: Creating Long-
Exposure Imagery from 
Videos
This article, which appears in the 
July/August 2018 issue of IEEE 
Computer Graphics and Applica-
tions, presents LightPainter, an 
interactive tool that promotes cre-
ative long-exposure photography 
through an intuitive drawing meta-
phor and fl exible spatiotemporal 
mapping from videos to composite 
images. The authors discuss the 
power of software-defi ned exposure 
and the tool’s capability of facilitat-
ing sophisticated long-exposure 
eff ects in challenging scenarios.

IEEE Intelligent Systems

Next-Generation Smart 
Environments: From 
System of Systems to Data 
Ecosystems
Digital transformation is driving a 

new wave of large-scale data-rich 
smart environments. The resulting 
data ecosystems present new chal-
lenges and opportunities in the 
design of intelligent systems and 
system of systems. Read more in 
the May/June 2018 issue of IEEE 
Intelligent Systems.

IEEE Internet Computing

OmniShare: Encrypted 
Cloud Storage for the Multi-
Device Era
Two attractive features of cloud 
storage services are the automatic 
synchronization of fi les between 
multiple devices and the possi-
bility of sharing fi les with other 
users. However, many users are 
concerned about the security and 
privacy of data stored in the cloud. 
Client-side encryption is an eff ec-
tive safeguard, but it requires all 
client devices to have the decryp-
tion key. Current solutions derive 
these keys from user-chosen pass-
words, which are easily guessed. 
In this article, which appears 
in the July/August 2018 issue 
of IEEE Internet Computing, the 
authors present OmniShare, the 
fi rst scheme to combine strong 
client-side encryption with intui-
tive key distribution mechanisms 
to enable access from multiple cli-
ent devices and sharing between 
users. OmniShare uses a novel 
combination of out-of-band chan-
nels (including QR codes and 
ultrasonic communication), as 
well as the cloud storage ser-
vice itself, to authenticate new 
devices. The authors describe 
the design and implementation 
of OmniShare and explain how 
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they evaluated its security, perfor-
mance, and usability.

IEEE Micro

Perceived-Color 
Approximation Transforms 
for Programs that Draw
Human color perception acuity 
is not uniform across colors. This 
makes it possible to transform 
drawing programs to generate out-
puts whose colors are perceptually 
equivalent but numerically distinct. 
One benefi t of such transforma-
tions is lower display power dis-
sipation on organic light-emitting 
diode (OLED) displays. In this 
article, which appears in the July/
August 2018 issue of IEEE Micro, 
the authors introduce Ishihara, 
a language for 2D drawing that 
lets programs specify perceptual-
color equivalence classes to use 
in drawing operations, enabling 
compile-time and runtime transfor-
mations that trade perceived color 
accuracy for lower OLED display 
power dissipation.

IEEE MultiMedia

Toward Real-Time Delivery of 
Immersive Sports Content
Free viewpoint technology makes 
it possible to view video of sports 
content from any angle or posi-
tion, but creating such content is 
currently a time-consuming pro-
cess that can prevent real-time 
delivery. To address this problem, 
the authors of this article from 
the April–June 2018 issue of IEEE 
MultiMedia present an application 
framework that implements semi-
automatic camera calibration, 
object extraction, object tracking, 
and object separation to seam-
lessly generate high-quality free 
viewpoint sports videos for hand-
held devices.

IEEE Pervasive Computing

Robotic Symbionts: 
Interweaving Human and 
Machine Actions
This article from the April–June 
2018 issue of IEEE Pervasive 
Computing defi nes a category of 
human–robot interaction in which 
human and robotic actors work 
as a single unifi ed system. The 
authors survey work from various 
fi elds including human augmenta-
tion systems such as extra fi ngers 
and arms, and other robots that 
operate in close proximity to the 
user. The discussed works high-
light a close interplay between 
human and robotic actions where 
control decisions are made by both 
actors. Such a dyadic confi guration 
can yield a synergistic outcome 
but requires that close attention be 

paid to the coordination between 
them. Using case studies from 
their own work, the authors dis-
cuss two main questions that must 
be addressed when designing 
such closely collaborative human–
robot integrations: type of support 
and degree of control. The diff er-
ent choices that can be adopted 
for each of these design questions 
defi ne a framework or classifi ca-
tion that is useful for surveying 
existing and future research.

IEEE Security & Privacy

Botnet in the Browser: 
Understanding Threats 
Caused by Malicious Browser 
Extensions
Browser extension systems risk 
exposing APIs, which are too per-
missive and cohesive with the 
browser’s internal structure, leav-
ing a hole for malicious devel-
opers to exploit security-critical 
functionality. In this article, which 
appears in the July/August 2018 
issue of IEEE Security & Privacy, 
the authors present a botnet frame-
work based on malicious browser 
extensions and describe a range 
of attacks that can be launched in 
this framework.

IEEE Software

Code Reviewing in the 
Trenches: Challenges and 
Best Practices
Code review has been widely 
adopted by and adapted to open 
source and industrial projects. 
Code review practices have under-
gone extensive research, with 
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most studies relying on trace data 
from tool reviews, sometimes aug-
mented by surveys and interviews. 
Several recent industrial research 
studies, along with blog posts and 
white papers, have revealed addi-
tional insights on code reviewing 
“from the trenches.” Unfortunately, 
the lessons learned about code 
reviewing are widely dispersed and 
poorly summarized by the existing 
literature. In particular, practitio-
ners wishing to adopt or reflect on 
an existing or new code review pro-
cess might have difficulty determin-
ing what challenges to expect and 
which best practices to adopt for 
their development context. Building 
on the existing literature, this article 

from the July/August 2018 issue 
of IEEE Software adds insights 
from a recent large-scale study of 
Microsoft developers to summarize 
the challenges that code-change 
authors and reviewers face, suggest 
best code-reviewing practices, and 
discuss tradeoffs that practitioners 
should consider.

IT Professional

Data Breaches: Public Sector 
Perspectives
A data breach exposes confiden-
tial, protected data to unauthorized 
access and manipulation. This 
study from the July/August 2018 
issue of IT Professional examines 

the extent and occurrences of data 
breaches in the US public sec-
tor through an analysis of data 
breaches over a five-year period. 
This research is motivated by two 
questions: What are the current 
trends of data breaches in the pub-
lic sector and how do contextual 
governmental factors impact these 
data breaches? 
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EDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTE

T he Internet of Things (IoT) refers to the 
billions of connected devices that collect 
and share data—these devices can be as 

small as a lightbulb or as large as an airplane. Gart-
ner estimates that around 8.4 billion IoT devices 
were in use in 2017, and that this number will likely 
reach 20.4 billion by 2020. The safety and security 
of these devices become more critical as they per-
meate our everyday lives. 

Five articles in this issue of ComputingEdge
focus on the IoT. In IEEE Internet Computing’s “A 
Principles-Based Approach to Govern the IoT Eco-
system,” the authors propose the formulation of 
principles as a means to unify the multiple bodies 
and organizations involved in the governance of IoT 
devices and systems. In Computer’s “Taming the 
IoT: Operationalized Testing to Secure Connected 
Devices,” the authors posit that end-to-end automa-
tion can normalize the IoT ecosystem and increase 
the velocity of system improvements and updates. 

Cyber-physical systems (CPS) are mechanisms 
that are controlled or monitored by computer-based 
algorithms and are tightly integrated with the Inter-
net, making them part of the IoT. Examples include 
smart grids and autonomous automobile systems. In 
Computer’s “The Rise of Intelligent Cyber-Physical 
Systems,” the author expects that the CPS revolu-
tion will be more transformative than the IT revo-
lution of the past four decades. The authors of IT 
Professional’s “How Do You Create an Internet of 
Things Workforce?” propose a new discipline that is 
focused on the IoT and CPS, with the goal of educat-
ing and training future workers in this growing fi eld. 

Wearables are also IoT devices, as they con-
tain sensors that collect and transmit data from the 
wearer to the Internet. In IEEE Pervasive Comput-
ing’s “Squeezing Deep Learning into Mobile and 
Embedded Devices,” the authors describe phone, 
watch, and embedded prototypes that can locally 
run large-scale deep networks that process audio, 
images, and inertial sensor data.  

Other topics in this issue include social media 
and education. Computing in Science and Engineer-
ing’s “Did Everybody Come?” evaluates author  
Clay Shirky’s popular claim that social network-
ing has the potential to change society by making 
it easier for people to come together. IEEE Intelli-
gent Systems’ “Aspect-Based Extraction and Anal-
ysis of Aff ective Knowledge from Social Media 
Streams” combines factual and aff ective knowl-
edge extracted from rich public knowledge bases 
to analyze emotions expressed toward specifi c tar-
gets in social media. 

The history of the use of various kinds of com-
puters in education involves frequent claims about 
the inevitable automation of instruction and equally 
frequent declarations of the failure of this project. 
IEEE Annals of the History of Computing’s “Critical 
Failure: Computer-Aided Instruction and the Fan-
tasy of Information” situates both claims within a 
broader cultural understanding that holds that the 
world is fundamentally amenable to improvement 
by computers. Finally, in IEEE Software’s “How Best 
to Teach Global Software Engineering?,” pioneer-
ing educators discuss how they inject realism into 
global software engineering education.

The Age of the Internet of Things
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A Principles-Based Approach 
to Govern the IoT Ecosystem
Virgilio A.F. Almeida and Benjamin Goh • Harvard University

Danilo Doneda • Rio de Janeiro State University

The difference between a good and bad Internet of Things depends on society’s 

ability to construct effective IoT governance models. This article proposes 

the formulation of principles as a means to unify the multiple bodies and 

organizations involved in the IoT governance ecosystem.

W ith the attack on Dyn in 2016, the Inter-
net of Things’ security and its potential 
impact on the Internet are once again 

in the spotlight.1 The Dyn attack, aimed at the 
Internet’s domain name server (DNS) infra-
structure, disrupted multiple major service 
providers, including Twitter, Netflix, Spotify, 
Airbnb, Reddit, and The New York Times.2 In a 
public announcement in September 2015, the 
FBI warned about the use of IoT devices and the 
potential virtual and physical threats they might 
pose.3 As Vint Cerf emphasized,4 the difference 
between good and bad IoT depends on society’s 
ability to construct effective IoT governance 
models. In this article, we discuss ideas for the 
development of the IoT governance ecosystem.

IoT’s logic arises primarily from tech com-
panies, who wish to use increased connectivity 
to market products that provide greater conve-
nience and more personalized services. Ama-
zon’s Alexa, Google’s driverless car, and the 
Fitbit Flex are all products that ride this new 
wave of digital convenience. However, beyond 
the consumer level, IoT applications are increas-
ingly used in industries, such as energy man-
agement systems, industrial automation, and in 
management of urban facilities, such as smart 
grids and smart traffic lights. Used in this way, 
IoT poses serious cybersecurity issues, creating 
“new risks in complex ecosystems.”5 Such IoT 
systems create new risks around privacy and 
security protections, especially when they’re 
used in mission-critical systems. In essence, IoT 

applications amplify vulnerabilities in existing 
software and hardware.

To ensure safety, security, and privacy in the 
IoT ecosystem, governments, civil society, the 
private sector, and academia must be at the table 
to discuss new governance mechanisms that 
minimize the risks introduced by IoT. The con-
sequences of delaying the construction of rules, 
norms, and regulations for IoT are potentially 
catastrophic.

Minimizing or Mitigating IoT  
Security Threats
There’s no doubt that IoT services provide ser-
vices and efficiency that can improve welfare. 
However, it opens up new levels of vulner-
abilities that raises further governance ques-
tions: for example, while ISPs used to be the 
only one able to retrieve web browsing history 
from someone’s personal WiFi, the explosion of 
devices connected through the home can now 
reasonably predict a person’s activities at home, 
raising new privacy and security concerns. 
Security researchers at Princeton University 
found that “the contents, patterns, and meta-
data of network traffic can all reveal sensitive 
information about a user’s online activity.”6 In 
particular, they found that even with encrypted 
traffic, a network observer can use network 
send/receive rates to tell if a user is sleeping, 
or if there’s a change in frequency of motion to 
determine if the house is occupied or if guests 
are coming.6
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The US Federal Trade Commis-
sion’s (FTC’s) 2015 staff report on IoT 
classifies security threats in the fol-
lowing three ways:

• enabling unauthorized access and 
misuse of personal information;

• facilitating attacks on other sys-
tems; and

• creating safety risks.7

First, the risk to unauthorized 
access and misuse of personal infor-
mation isn’t new, especially if you 
consider the vulnerability of social 
media accounts from being compro-
mised, or that a USB inherently has 
insecure design flaws.8 However, IoT 
creates a new urgency to the prob-
lem, because an individual’s security 
is only as strong as the weakest link, 
and an IoT system might create more 
opportunities for “lateral movement” 
to compromise someone’s security. 
Whereas it might be convenient for 
us to rely on our phones for all IoT 
services (such as thermostats), mal-
ware that infects smartphones might 
compromise our safety at a scale 
larger than before.9

Second, IoT devices are, by defi-
nition, devices that have the ability 
to connect to the Internet. Thus, vul-
nerabilities in any IoT device have 
the potential to become an attack 
vector through which a malicious 
actor causes harm to others. The 
most popular form of such vulner-
abilities come in the form of the 
Mirai botnet, which takes advantage 
of industry negligence toward IoT 
devices to compromise devices for 
nefarious use.1

Third, new dependencies are cre-
ated by IoT services, which can create 
new sources of risk to human safety. 
The US Food and Drug Administra-
tion (FDA) found that pacemakers 
and defibrillators by St. Jude Medical 
contain cybersecurity risks that make 
them highly vulnerable to attack, 
potentially affecting the lives of tens 
of thousands of patients with cardiac 

devices.10 Security researchers have 
also famously shown how they could 
remotely compromise the Chrysler 
Jeep Cherokee’s entertainment sys-
tem, rewrite its firmware, and con-
trol the car by sending commands to 
critical systems (such as the brakes).11

Security and privacy protection 
are key for a “good” IoT. However, IoT 
applications create different types of 
privacy risks. Smart TVs, for exam-
ple, through beaconing technology 
and cross-device tracking, allow 
all home devices to share informa-
tion without our knowledge. Along 
these lines, Amazon recently agreed 
to hand federal courts data gath-
ered from an Echo speaker to assist 
in investigations in a murder case.12 
It isn’t clear how much information 
the Amazon Echo collects, but it also 
raises important questions about pri-
vacy — is the home still “private,” or 
does one forgo privacy protections by 
purchasing an Echo? Finally, distinct 
from privacy risk is the IoT’s poten-
tial in creating surveillance risks. 
Whereas privacy is most famously 
defined by Louis Brandeis to be the 
“right to be left alone,” surveillance 
risks occur when the government 
has an abundance of tools to monitor 
individual behavior. In the Berkman 
Klein Center’s Don’t Panic report, 
for example, the authors found that 
metadata is unlikely to become 
encrypted, which provides govern-
ment officials a wealth of data such 
as “location data from cell phones 
and other devices, telephone calling 
records, and header information in 
e-mail” that can fuel surveillance.13

The IoT Governance 
Ecosystem
The IoT governance ecosystem has 
many players with very different legal 
statuses. They operate on many dif-
ferent layers on municipal, national, 
and international levels, driven by 
technical innovation, user needs, 
market opportunities, and political 
interests. The specific form of each 

component of the ecosystem must be 
designed according to the very spe-
cific needs and nature of the indi-
vidual issue. There’s no “one size fits 
all” solution for IoT governance.

Many agencies and organizations 
deal with guidelines and regulation 
of IoT devices. On the municipal 
level, the City of New York14 has pro-
posed a common framework to help 
agencies develop policies for IoT with 
the following goals:

• provide a common framework to 
help governments develop and 
expand policies and procedures 
related to the IoT;

• ensure openness and transpar-
ency regarding the use of pub-
lic space or assets for smart city 
technologies; and

• advance the public dialogue about 
how government, the private sec-
tor, and academia can collaborate 
to ensure these technologies are 
used in a way that maximizes 
public benefit.15

An example of a municipal rule for 
IoT is “All IoT devices and network 
equipment installed on city prop-
erty should have clear site license 
agreements and established terms 
of service governing who is respon-
sible for ongoing operations, main-
tenance, and the secure disposal of 
equipment.”

On the national level, many 
countries have initiatives to cre-
ate regulations and standards for 
IoT applications. In the US, several 
agencies — including the Food and 
Drug Administration, the Federal 
Communications Commission, the 
FTC, and the National Highway Traf-
fic Security Administration — are 
reviewing some aspects of IoT.16 As 
the technology moves into health-
care, and data from wearable health 
devices flows more from consum-
ers’ wrists to companies, the Food 
and Drug Administration (FDA) is 
keeping interest in the evolution 
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The difference between a good and bad Internet of Things depends on society’s 

ability to construct effective IoT governance models. This article proposes 

the formulation of principles as a means to unify the multiple bodies and 

organizations involved in the IoT governance ecosystem.

W ith the attack on Dyn in 2016, the Inter-
net of Things’ security and its potential 
impact on the Internet are once again 

in the spotlight.1 The Dyn attack, aimed at the 
Internet’s domain name server (DNS) infra-
structure, disrupted multiple major service 
providers, including Twitter, Netflix, Spotify, 
Airbnb, Reddit, and The New York Times.2 In a 
public announcement in September 2015, the 
FBI warned about the use of IoT devices and the 
potential virtual and physical threats they might 
pose.3 As Vint Cerf emphasized,4 the difference 
between good and bad IoT depends on society’s 
ability to construct effective IoT governance 
models. In this article, we discuss ideas for the 
development of the IoT governance ecosystem.

IoT’s logic arises primarily from tech com-
panies, who wish to use increased connectivity 
to market products that provide greater conve-
nience and more personalized services. Ama-
zon’s Alexa, Google’s driverless car, and the 
Fitbit Flex are all products that ride this new 
wave of digital convenience. However, beyond 
the consumer level, IoT applications are increas-
ingly used in industries, such as energy man-
agement systems, industrial automation, and in 
management of urban facilities, such as smart 
grids and smart traffic lights. Used in this way, 
IoT poses serious cybersecurity issues, creating 
“new risks in complex ecosystems.”5 Such IoT 
systems create new risks around privacy and 
security protections, especially when they’re 
used in mission-critical systems. In essence, IoT 

applications amplify vulnerabilities in existing 
software and hardware.

To ensure safety, security, and privacy in the 
IoT ecosystem, governments, civil society, the 
private sector, and academia must be at the table 
to discuss new governance mechanisms that 
minimize the risks introduced by IoT. The con-
sequences of delaying the construction of rules, 
norms, and regulations for IoT are potentially 
catastrophic.

Minimizing or Mitigating IoT  
Security Threats
There’s no doubt that IoT services provide ser-
vices and efficiency that can improve welfare. 
However, it opens up new levels of vulner-
abilities that raises further governance ques-
tions: for example, while ISPs used to be the 
only one able to retrieve web browsing history 
from someone’s personal WiFi, the explosion of 
devices connected through the home can now 
reasonably predict a person’s activities at home, 
raising new privacy and security concerns. 
Security researchers at Princeton University 
found that “the contents, patterns, and meta-
data of network traffic can all reveal sensitive 
information about a user’s online activity.”6 In 
particular, they found that even with encrypted 
traffic, a network observer can use network 
send/receive rates to tell if a user is sleeping, 
or if there’s a change in frequency of motion to 
determine if the house is occupied or if guests 
are coming.6



12	 ComputingEdge� October 2018

Internet Governance

80 www.computer.org/internet/ IEEE INTERNET COMPUTING

of IoT applications. The US Depart-
ment of Energy (DOE) established 
the Federal Smart Grid Task Force, 
with experts from 11 different fed-
eral agencies to coordinate strategies 
to promote integration of smart-grid 
technologies and practices. At the 
international level, different orga-
nizations have proposed guidelines 
and standards for the IoT. The Inter-
net Society (ISOC),17 the IETF,18 and 
the International Telecommunication 
Union (ITU)19 have published reports 
and recommendations of technical 
standards to enable IoT on a global 
scale.

IoT Governance Principles
So, out of this a natural ques-
tion arises: What could be used to 
“glue” different groups and interests 
together in a global IoT governance 
ecosystem? Even considering the 
importance of IoT governance, the 
way it can be structured is abso-
lutely open for debate. Nonetheless, 
the vectors this structure shall fol-
low can be drawn from the reflection 
utterly made in the face of the devel-
opment of governance tools to act on 
the Internet environment. Common 
principles could be the element that 
will put together different interests 
in an environment in an inclusive, 
effective, and legitimate governance 
framework. They could contribute 
to contextualizing the IoT as part of 
global resources that should be man-
aged in the public interest. In this 
sense, we chose a set of applicable 
principles developed in the NETmun-
dial Multistakeholder Conference.20

Governments and several stake-
holder groups, including civil soci-
ety, private sector, and academia, 
gathered to discuss issues and prin-
ciples for Internet governance and 
roadmap actions for the Internet’s 
future evolution. Among the issues 
discussed, the scope of Internet gov-
ernance was preeminent, in the sense 
of the tension between those who 
see Internet governance as a mostly 

technical matter (with, for example, 
IP numbers, routing and specifica-
tions, DNS, and critical resources) 
and others who approach Internet 
governance as something that must 
comprehend and factor important 
social and political issues, such as 
privacy, freedom of expression, and 
human rights in a general sense.

The final result, the NETmundial 
Declaration, encompassed principles 
both of a technical nature as well as 
non-technical ones. Some of these 
principles can be deemed as guid-
ance to IoT governance, as a relevant 
part of IoT’s impact can be related 
to them. For example, one principle 
refers to the structure of the Internet 
governance ecosystem, which should 
be built on democratic, multistake-
holder processes, ensuring the mean-
ingful and accountable participation 
of all stakeholders, including gov-
ernments, the private sector, civil 
society, the technical community, 
the academic community, and users. 
This principle reiterates the impor-
tance of having civil society repre-
sentatives in governance bodies. In 
the case of IoT, this should be a key 
principle, in particular because of the 
massive presence of IoT devices on 
the consumer side. Two other prin-
ciples could be used in the construc-
tion of the global IoT governance 
ecosystem: first, governance models 
should be open, participative, trans-
parent, and consensus-driven; and 
second, Internet governance should 
be carried out through a distributed, 
decentralized, and multistakeholder 
ecosystem.

I ssues related to security and privacy 
rise to the fore as IoT’s influence per-

meates our daily lives. Such issues then 
reflect onto the NETmundial principle 
about privacy that states, “The right 
to privacy must be protected. This 
includes not being subject to arbitrary 
or unlawful surveillance, collection, 
treatment and use of personal data” 

(www.netmundial.org/principles).  
This principle encompasses data pro-
tection as well. In fact, to the extent 
that IoT provides for a vast number 
of devices to be connected to the 
Internet, it happens that several of 
them gather personal data. Many 
of them are strictly sensors that are 
responsive to personal activities. This 
makes for a concrete increase in the 
volume of personal data gathered. It 
also makes the case regarding what 
these devices can do: they collect far 
more personal data than is reasonably 
expected, deemed fair, or authorized, 
and they proceed to the treatment 
of the personal data they collect 
with low security. These two points 
are linked to another characteristic 
tendency of IoT, which is the prolif-
eration of small and simple devices, 
in general too simple and cheap to 
include safeguards about excessive 
and unfair collection of personal data 
or to implement data security at a 
reasonable level.

Eventually, these IoT weaknesses 
can be addressed through a conjunc-
tion of other principles present in the 
NETmundial declaration, particularly 
the principles of accountability and 
transparency. And, moreover, there’s 
the fact that the IoT per se exponen-
tially expands the number of devices 
attached to the Internet (often small 
and cheap ones) and these devices, if 
expected to comply with privacy and 
security rules, shall be submitted to 
technical standards that emphasize 
this compliance. In this sense, some 
of the Internet governance principles 
of the NETmundial Declaration can 
be used as a basis to assemble inter-
ested stakeholders in an open and 
participative dialogue for construct-
ing the IoT governance ecosystem.  
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of IoT applications. The US Depart-
ment of Energy (DOE) established 
the Federal Smart Grid Task Force, 
with experts from 11 different fed-
eral agencies to coordinate strategies 
to promote integration of smart-grid 
technologies and practices. At the 
international level, different orga-
nizations have proposed guidelines 
and standards for the IoT. The Inter-
net Society (ISOC),17 the IETF,18 and 
the International Telecommunication 
Union (ITU)19 have published reports 
and recommendations of technical 
standards to enable IoT on a global 
scale.

IoT Governance Principles
So, out of this a natural ques-
tion arises: What could be used to 
“glue” different groups and interests 
together in a global IoT governance 
ecosystem? Even considering the 
importance of IoT governance, the 
way it can be structured is abso-
lutely open for debate. Nonetheless, 
the vectors this structure shall fol-
low can be drawn from the reflection 
utterly made in the face of the devel-
opment of governance tools to act on 
the Internet environment. Common 
principles could be the element that 
will put together different interests 
in an environment in an inclusive, 
effective, and legitimate governance 
framework. They could contribute 
to contextualizing the IoT as part of 
global resources that should be man-
aged in the public interest. In this 
sense, we chose a set of applicable 
principles developed in the NETmun-
dial Multistakeholder Conference.20

Governments and several stake-
holder groups, including civil soci-
ety, private sector, and academia, 
gathered to discuss issues and prin-
ciples for Internet governance and 
roadmap actions for the Internet’s 
future evolution. Among the issues 
discussed, the scope of Internet gov-
ernance was preeminent, in the sense 
of the tension between those who 
see Internet governance as a mostly 

technical matter (with, for example, 
IP numbers, routing and specifica-
tions, DNS, and critical resources) 
and others who approach Internet 
governance as something that must 
comprehend and factor important 
social and political issues, such as 
privacy, freedom of expression, and 
human rights in a general sense.

The final result, the NETmundial 
Declaration, encompassed principles 
both of a technical nature as well as 
non-technical ones. Some of these 
principles can be deemed as guid-
ance to IoT governance, as a relevant 
part of IoT’s impact can be related 
to them. For example, one principle 
refers to the structure of the Internet 
governance ecosystem, which should 
be built on democratic, multistake-
holder processes, ensuring the mean-
ingful and accountable participation 
of all stakeholders, including gov-
ernments, the private sector, civil 
society, the technical community, 
the academic community, and users. 
This principle reiterates the impor-
tance of having civil society repre-
sentatives in governance bodies. In 
the case of IoT, this should be a key 
principle, in particular because of the 
massive presence of IoT devices on 
the consumer side. Two other prin-
ciples could be used in the construc-
tion of the global IoT governance 
ecosystem: first, governance models 
should be open, participative, trans-
parent, and consensus-driven; and 
second, Internet governance should 
be carried out through a distributed, 
decentralized, and multistakeholder 
ecosystem.

I ssues related to security and privacy 
rise to the fore as IoT’s influence per-

meates our daily lives. Such issues then 
reflect onto the NETmundial principle 
about privacy that states, “The right 
to privacy must be protected. This 
includes not being subject to arbitrary 
or unlawful surveillance, collection, 
treatment and use of personal data” 

(www.netmundial.org/principles).  
This principle encompasses data pro-
tection as well. In fact, to the extent 
that IoT provides for a vast number 
of devices to be connected to the 
Internet, it happens that several of 
them gather personal data. Many 
of them are strictly sensors that are 
responsive to personal activities. This 
makes for a concrete increase in the 
volume of personal data gathered. It 
also makes the case regarding what 
these devices can do: they collect far 
more personal data than is reasonably 
expected, deemed fair, or authorized, 
and they proceed to the treatment 
of the personal data they collect 
with low security. These two points 
are linked to another characteristic 
tendency of IoT, which is the prolif-
eration of small and simple devices, 
in general too simple and cheap to 
include safeguards about excessive 
and unfair collection of personal data 
or to implement data security at a 
reasonable level.

Eventually, these IoT weaknesses 
can be addressed through a conjunc-
tion of other principles present in the 
NETmundial declaration, particularly 
the principles of accountability and 
transparency. And, moreover, there’s 
the fact that the IoT per se exponen-
tially expands the number of devices 
attached to the Internet (often small 
and cheap ones) and these devices, if 
expected to comply with privacy and 
security rules, shall be submitted to 
technical standards that emphasize 
this compliance. In this sense, some 
of the Internet governance principles 
of the NETmundial Declaration can 
be used as a basis to assemble inter-
ested stakeholders in an open and 
participative dialogue for construct-
ing the IoT governance ecosystem.  
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THE IOT CONNECTION

Security is a key factor in the 
success of enterprise Inter-
net of Things (IoT) systems 
that can be enhanced by 

operationalizing test-driven devel-
opment (TDD) through a process 
called device automated quali� ca-
tion (DAQ). In complex software 
systems, security   aws are nearly 
unavoidable and always pressing 
when devices are connected to the 
Internet, and the speed at which they 
can be addressed is a key factor in 
their mitigation. DAQ aims to nor-
malize an ecosystem of IoT devices 
by applying TDD at multiple stages, 
reducing the complexity of applying 
security policies and increasing the 
velocity by which policies and prin-
ciples can be enforced. This is one 
path to avoiding IoT’s “certi� cation 

Taming the IoT: 
Operationalized 
Testing to Secure 
Connected Devices
Trevor Pering, Kathy Farrington, and Thorsten Dahm, Google

Operationalized testing of built-environment 

IoT infrastructure is a key aspect of fostering 

security and development best practices. 

End-to-end automation can normalize the 

ecosystem and increase the velocity of system 

improvements and updates.

FROM THE EDITOR

A testing environment has become an essential tool for validating large soft-
ware systems. Understanding how small changes can affect a complex system 
is often not possible because the scale and abstractness make it hard for a de-
veloper to comprehend its consequences. In addition, the system was probably 
built by many people over time, and no one person has all the knowledge. Build-
ing-scale IoT infrastructure is no different. In this article, the authors describe how 
a test-driven environment can stem many of the operational problems the IoT is 
experiencing today. —Roy Want
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quagmire,” as discussed in this col-
umn’s last installment,1 by focusing on 
action (active tests) rather than policy 
(stated requirements).

Many IoT systems su� er from slow 
update cycles because they were ini-
tially intended to be single-use devices 
or have been closely tied to heavily 
regulated physical systems, which 
also change slowly. TDD increases the 
velocity of IoT software development, 
leading to faster security updates by 
making it easier for device developers 
to update their code; furthermore, it 
provides a mechanism for the security 
requirements (as tests) to be pushed 
into the device ecosystem itself.

A built environment is a physical 
space, such as a building, that is ex-
plicitly built with a speci� c purpose 
in mind. In the architectural study 
How Buildings Learn: What Happens 
After They’re Built,2 author Stewart 
Brand outlines several di� erent layers 
of a typical building along with how 
often each layer changes. The outer-
most skin of a building, for example, 
changes on average every 20 years 
(see Figure 1). A building’s services 
would be heating or lighting, which 
can change as infrequently as every 7 
to 15 years. As buildings are brought 
online, these physical constructs form 
the foundation for connected “things.”

The Internet, which has no � rm roots 
in the physical world, changes con-
stantly. IoT for a built environment—
the quintessential smart building—
is therefore sitting on a mismatch in 
update cycles that easily span several 
orders of magnitude. Addr essing secu-
rity in such an environment, therefore, 
involves being able to rapidly patch sys-
tems that have traditionally been left 
in situ for years without any updates.

From a security perspective, it is 
di�  cult to trust IoT devices.3 There are 
simply too many of them, and because 
of their constrained nature there 
are often compromises that weaken 

security overall. Most IoT devices are 
typically focused on a physical task 
rather than being general-purpose 
computing platforms. Accordingly, 
the core principle of “trust but verify” 
applies. Assuming that every device is 
doing its best to be secure, it is still im-
portant to externalize and automate 
the process to identify and � x prob-
lems before they can cause harm.

DEVELOPMENT AND 
OPERATIONS
The solution to the security problem 
is not just the obvious “quickly push 
a security patch to a device” method 
(which can reasonably be addressed 
with improved � rmware update capa-
bilities). The greater challenge lurks in 
the process of pushing requirements 
into the building device development 
ecosystem. It’s not enough to simply 
say what must be done, because un-
til a device correctly implements (or 
removes) a feature, the vulnerability 
still exists. The function of these de-
vices primarily represents a physical 
system, and are often embedded con-
trollers designed by control engineers 
whose primary considerations are far 
removed from the security of the de-
vice itself.

For many years, protocols with 
weak or nonexistent authentication, 
encryption, or integrity features have 
been regularly used by IoT systems. 
Consider the popular telnet protocol, 
which is a long-standing standard for 
accessing networked devices. Unfor-
tunately, it opens the door to compro-
mise because it uses unencrypted and 
poorly authenticated communication. 
The most straightforward solution to 
this is to simply disallow it, requiring 
the use of alternate protocols such as 
SSH (Secure Shell). In a perfect world, 
this would be enough; however, the 
question is not just what the device is 
designed to do, but rather what it actu-
ally does. 

There are any number of failure 
points that might remain without 
proper enforcement, including the fol-
lowing scenarios:

› a product owner doesn’t know 
they should disable a protocol;

› a developer doesn’t remove all 
of the o� ending code (just some 
uses of it);

› the documentation doesn’t men-
tion the protocol, even though 
the device implements it;

› people don’t always read the doc-
umentation, even if it’s there;

› a system might be miscon� g-
ured, enabling a protocol even 
though it should be disabled; 
and

› the replacement protocol is mis-
con� gured, as it’s new and not 
well understood.

For an advanced smart building, 
there is a long device pipeline starting 
with manufacturers and extending to 

 Stuff: 1 day-1 month
 Service plan: 3-30 years
 Services: 7-15 years
 Skin: 20 years
 Structure: 30-300 years
 Site: Eternal

Figure 1. A building’s internal lighting 
services change on the order of every 7 
to 15 years, much more rapidly than the 
building structure itself.

r6iot.indd   91 6/13/18   5:48 PM

90 C O M P U T E R P U B L I S H E D  B Y  T H E  I E E E  C O M P U T E R  S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 8 / $ 3 3 . 0 0  ©  2 0 1 8  I E E E

THE IOT CONNECTION

Security is a key factor in the 
success of enterprise Inter-
net of Things (IoT) systems 
that can be enhanced by 

operationalizing test-driven devel-
opment (TDD) through a process 
called device automated quali� ca-
tion (DAQ). In complex software 
systems, security   aws are nearly 
unavoidable and always pressing 
when devices are connected to the 
Internet, and the speed at which they 
can be addressed is a key factor in 
their mitigation. DAQ aims to nor-
malize an ecosystem of IoT devices 
by applying TDD at multiple stages, 
reducing the complexity of applying 
security policies and increasing the 
velocity by which policies and prin-
ciples can be enforced. This is one 
path to avoiding IoT’s “certi� cation 
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Connected Devices
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Operationalized testing of built-environment 

IoT infrastructure is a key aspect of fostering 

security and development best practices. 

End-to-end automation can normalize the 

ecosystem and increase the velocity of system 

improvements and updates.

FROM THE EDITOR

A testing environment has become an essential tool for validating large soft-
ware systems. Understanding how small changes can affect a complex system 
is often not possible because the scale and abstractness make it hard for a de-
veloper to comprehend its consequences. In addition, the system was probably 
built by many people over time, and no one person has all the knowledge. Build-
ing-scale IoT infrastructure is no different. In this article, the authors describe how 
a test-driven environment can stem many of the operational problems the IoT is 
experiencing today. —Roy Want
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installed systems (see Figure 2). Ini-
tially, the pool of potential IoT devices 
for built environments numbers in the 
thousands, many of which are regional 
or not specific in their function. In the 
best case, the initial design will spec-
ify two to three candidates for each 
particular function in a building. In-
dividual candidates for each type will 
then be selected, which is on the order 
of 10 qualified device types per build-
ing. Once the devices are selected, 
their integration into the building it-
self is architected, which could take a 
year or more. During this time, some 
devices themselves evolve (updated 
firmware, hardware specs, and so on), 
requiring an additional latest-model 
test phase. During the construction 
process, thousands of actual devices 
will be installed, and a continual pro-
cess of monitoring and maintenance 
supports ongoing building operation.

One mechanism currently em-
ployed to address qualifying devices 
is manual qualification, where devices 
are considered and ultimately placed 
into a new built environment. Device 
manufactures respond to a tender 
request from a building’s master sys-
tems integrator (MSI), who then qual-
ifies devices to make sure they meet 
required performance and security 
specifications. Before devices are in-
stalled in a building, they are again 

tested to make sure they continue to 
conform to requirements (which could 
have evolved in the two to three years 
it can take to design and construct a 
building). Finally, after installation, 
the entire system is tested in situ to 
verify functionality (and security 
through requirements).

This model only works if the rate 
of change is low, essentially matching 
the physical progression of the device 
itself. What happens when updates are 
more frequent, necessitated by more 
stringent security requirements? The 
manual process simply does not scale, 
and either becomes a roadblock to con-
structing smart buildings (because IT 
organizations won’t allow it), or breaks 
down by allowing vulnerabilities to 
creep inside the building (which isn’t 
very smart).

DAQ
The DAQ framework (https://github 
.com/faucetsdn/daq) is a software tool 
designed to apply security principles 
to IP-based devices throughout their 
lifecycle: before, during, and after 
construction. As an open source proj-
ect, it’s available to all device develop-
ers to help ensure that their products 
meet requisite security guidelines. 
Integrators can utilize the system to 
more comprehensively assess the suit-
ability of a wider selection of devices, 

and it can even be applied in situ to an 
(already) built environment to ensure 
the ongoing conformance of systems. 
So, instead of mandating that devices 
“shall not use telnet,” automated test-
ing can ensure that policy is enforced 
at all stages of the design and during 
operation (automation enables contin-
uous testing).

The DAQ system architecture (see 
Figure 3) borrows heavily from Fau-
cet SDN,4 which is used to validate 
network switches in an enterprise 
environment—a suite of integration 
tests runs against target devices that 
implement the OpenFlow networking 
standard. One notorious problem with 
standards is that they are ambiguous 
or intentionally vague: words don’t 
always translate into the same be-
havior when interpreted by different 
developers. By codifying the required 
behavior in a test, the exact intent that 
an organization requires can be un-
ambiguously specified, decreasing the 
overall time to conformance for a par-
ticular feature or behavior. (It might 
not even be conformance to the entire 
standard, just applying it to the parts 
that matter.) 

The primary difference between 
Faucet and DAQ lies in the nature of 
the device under test. First, network 
switches have a well-defined set of 
behaviors (specified in the OpenFlow 

Extended ecosystem
Thousands of providers

Candidate devices
~30 options

Quali�ed solutions
~10 types

Time passes
(eg. 1 year)

Latest-model instances
~10 types

Installed system
Thousands of instances
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Figure 2. Operationalized testing for the built environment spans all the way from an extensive ecosystem of device manufacturers 
to a live building.
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standard), which is expected across all 
devices. Second, switching function-
ality is inherently testable because 
packets injected into the system re-
sult in observable packets out as an 
indication of success or failure. Third, 
the network switches occupy a trusted 
place in a building’s infrastructure.

None of these properties hold true 
for a heterogeneous collection of em-
bedded IoT computing devices inter-
acting with physical systems. Instead, 
DAQ tests a wide variety of common 
attributes (such as exposed telnet 
ports) that can be generally applied to 
all devices connected on the network, 
rather than their intended function-
ality (for example, does a light switch 
actually turn on lights?). Scalability 
becomes paramount, not only in the 
ability to reach a large number of de-
vice manufacturers, but also in the 
community’s ability to write new tests 
to address potential vulnerabilities.

The DAQ and Faucet qualification 
model is an externalized form of the 
standard TDD development method-
ology. With TDD, a developer would 
typically write tests to drive the spe-
cific behavior of the code, testing that 
it conforms to internal expectations. 
With DAQ, the focus is on compliance 
to external criteria. In both cases, 
however, the general model of “write a 
test to reify the desired behavior” ex-
ists: use the test to drive and validate 
development.  

TEST COVERAGE
The range of tests required for security 
spans a number of different layers of 
a device’s stack, from vulnerabilities 
due to buffer overflows to the valida-
tion of Transport Layer Security (TLS) 
certificate chains. Furthermore, once 
in place, the qualification process can 
be used to normalize devices’ behav-
ior in terms of communication with 
upper layers of the system, such as 
the format of telemetry ingested into 
an upstream database. Normalization 
enables anomaly detection by mak-
ing patterns in an otherwise uniform 
dataset easier to analyze, increasing 

the system’s ability to detect subtle 
forms of intrusion or misbehavior.

As requirements for devices ex-
pand, the test suite can expand along 
with it, encouraging ecosystem com-
pliance much in the same way as a 
browser’s HTML5 compliance score. 
Note that the tests involved are not 
new: DAQ provides a new mechanism 
by which to apply them. A sampling of 
specific tests that merit automation in-
clude (but are not limited to):5

 › low-level networking: port scan-
ning, checksum validation, and 
buffer overflows;

 › core networking services: 
Dynamic Host Configuration 
Protocol (DHCP), Domain Name 
System (DNS), and Network Time 
Protocol (NTP);

 › service vulnerabilities: default 
passwords and unencrypted 
communication protocols;

 › system architecture: weak 
authentication schemas or bad 
access control;

 › communication patterns: un-
expected outgoing connections 
and network broadcast;

 › encryption fundamentals: 
entropy monitoring, TLS vali-
dation, 802.1x (IEEE standard 

for port-based network access 
control), and key rotation;

 › device management: automated 
firmware updates and device 
health reporting; and

 › data telemetry: schema confor-
mance and standard encodings.

At the basic levels of the stack (in 
other words, starting with low-level 
networking tests), expectations are 
clear: conform to baseline standards 
and limit vulnerabilities. Testing con-
formance for device management and 
data telemetry, however, moves into a 
territory that is much less standard-
ized across a fleet of diverse devices. 
Firmware updates in particular are 
problematic because there is cur-
rently no standard way for a build-
ing to manage updates across all its 
devices, which come from different 
manufacturers. This directly leads to 
security vulnerabilities because it be-
comes much more onerous to address 
pressing security problems. The need 
for additional standardization in this 
space is clear.

OPERATIONALIZED 
QUALIFICATION
Operationalization is the process of 
putting something into continuous 

?

?

?

Internet/external
systems

OpenFlow
network switch

DAQ
framework

DAQ test harness

Faucet SDN
controller

Test modules

Figure 3. The device automated qualification (DAQ) system architecture uses dynamic 
network switching to test devices in both lab and live environments.
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installed systems (see Figure 2). Ini-
tially, the pool of potential IoT devices 
for built environments numbers in the 
thousands, many of which are regional 
or not specific in their function. In the 
best case, the initial design will spec-
ify two to three candidates for each 
particular function in a building. In-
dividual candidates for each type will 
then be selected, which is on the order 
of 10 qualified device types per build-
ing. Once the devices are selected, 
their integration into the building it-
self is architected, which could take a 
year or more. During this time, some 
devices themselves evolve (updated 
firmware, hardware specs, and so on), 
requiring an additional latest-model 
test phase. During the construction 
process, thousands of actual devices 
will be installed, and a continual pro-
cess of monitoring and maintenance 
supports ongoing building operation.

One mechanism currently em-
ployed to address qualifying devices 
is manual qualification, where devices 
are considered and ultimately placed 
into a new built environment. Device 
manufactures respond to a tender 
request from a building’s master sys-
tems integrator (MSI), who then qual-
ifies devices to make sure they meet 
required performance and security 
specifications. Before devices are in-
stalled in a building, they are again 

tested to make sure they continue to 
conform to requirements (which could 
have evolved in the two to three years 
it can take to design and construct a 
building). Finally, after installation, 
the entire system is tested in situ to 
verify functionality (and security 
through requirements).

This model only works if the rate 
of change is low, essentially matching 
the physical progression of the device 
itself. What happens when updates are 
more frequent, necessitated by more 
stringent security requirements? The 
manual process simply does not scale, 
and either becomes a roadblock to con-
structing smart buildings (because IT 
organizations won’t allow it), or breaks 
down by allowing vulnerabilities to 
creep inside the building (which isn’t 
very smart).

DAQ
The DAQ framework (https://github 
.com/faucetsdn/daq) is a software tool 
designed to apply security principles 
to IP-based devices throughout their 
lifecycle: before, during, and after 
construction. As an open source proj-
ect, it’s available to all device develop-
ers to help ensure that their products 
meet requisite security guidelines. 
Integrators can utilize the system to 
more comprehensively assess the suit-
ability of a wider selection of devices, 

and it can even be applied in situ to an 
(already) built environment to ensure 
the ongoing conformance of systems. 
So, instead of mandating that devices 
“shall not use telnet,” automated test-
ing can ensure that policy is enforced 
at all stages of the design and during 
operation (automation enables contin-
uous testing).

The DAQ system architecture (see 
Figure 3) borrows heavily from Fau-
cet SDN,4 which is used to validate 
network switches in an enterprise 
environment—a suite of integration 
tests runs against target devices that 
implement the OpenFlow networking 
standard. One notorious problem with 
standards is that they are ambiguous 
or intentionally vague: words don’t 
always translate into the same be-
havior when interpreted by different 
developers. By codifying the required 
behavior in a test, the exact intent that 
an organization requires can be un-
ambiguously specified, decreasing the 
overall time to conformance for a par-
ticular feature or behavior. (It might 
not even be conformance to the entire 
standard, just applying it to the parts 
that matter.) 

The primary difference between 
Faucet and DAQ lies in the nature of 
the device under test. First, network 
switches have a well-defined set of 
behaviors (specified in the OpenFlow 
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Figure 2. Operationalized testing for the built environment spans all the way from an extensive ecosystem of device manufacturers 
to a live building.

r6iot.indd   92 6/13/18   5:48 PM



18	 ComputingEdge� October 2018
94 C O M P U T E R    W W W . C O M P U T E R . O R G / C O M P U T E R

THE IOT CONNECTION

use: it’s not enough for it to be avail-
able, used, or even useful. Because of 
the physical nature of construction 
projects, problems of scale are often 
solved by throwing more people or 
time at the project. However, good 
software engineering applies stream-
lined operations and robustness to 
maximize scalability.

To scale the built IoT ecosystem, 
where devices need to continually be 
monitored and updated, the entire 
“building” process should take a page 
or two from the Site Reliability Engi-
neering playbook6 that has grown out 
of the (relatively) recent expansion of 
cloud computing. If our buildings are 
to be trusted, managing them must be 
a seamless and error-free process. Not 
only does this mean increasing the 
confidence of deployments or updates 
with a “push on green” mentality, but 
it requires that problems can be iso-
lated to failure domains that are easily 
identifiable. Established best practices 
such as a carefully controlled rollouts 
of any changes can now be applied. 
Comprehensive automated testing is a 
means to this end.

One key aspect of operationaliza-
tion is ease of use; additionally, the 
system must be open (allowing every-
body and anybody to use it), robust, 
and reliable. It needs to enable testing 
en mass (such as a room filled with a 
hundred devices to test). Many people 
using it will not have much experience 
with computing systems, as they are 
experts in other fields such as mechan-
ical or environmental engineering. 
This is a tall order for any system, but 
the need is clear and the fundamentals 
are sound.

IoT in the built environment is a com-
plex opportunity with potentially 
great rewards, but also significant 

risk. Only by directly addressing this 
risk can the industry evolve the con-
cept of a smart building into one that 
rivals our mobile devices and cloud 
presence. Operationalized testing 
with DAQ is just one way to bridge the 

gap between the building and IT in-
dustries, collaboratively working to-
gether to tame the World Wide Wild of 
the IoT.  
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COLUMN: The Last Word 

Did Everybody Come? 
 

Clay Shirky’s influential book Here Comes Everybody: 
The Power of Organizing Without Organizations (Penguin 
Books, 2008) explored the potential for Internet-based so-
cial networking to change society by making it easier for 

people to communicate. In particular, Shirky envisioned “mass amateurization”:  

Our social tools remove older obstacles to public expression, and thus remove the bottle-
necks that characterized mass media. The result is the mass amateurization of efforts previ-
ously reserved for media professionals. 

When Shirky wrote the book, only 5 percent of US households had a smartphone. Geolocation, 
which makes ride-sharing apps like Uber possible, was in its infancy. Most Netflix customers 
opted to receive movies via mailed envelopes rather than the company’s new streaming service. 

Still, many of the current features of our digital lives were already in place 10 years ago. Face-
book opened to the general public in 2006. By 2008, it had 100 million users. Twitter and 
MySpace were also on the scene. Online magazine Slate was 12 years 
old. Personal blogging was flourishing.  

So, to what extent did everybody come? Perhaps the biggest validation 
of the nascent trends that Shirky spotted was the Women’s March on 
Washington, DC. The day after Donald Trump was elected US Presi-
dent, Teresa Shook, a retiree living on the Hawaiian island of Maui, 
took to Facebook to urge her friends to march on the nation’s capital 
in protest. Other individuals made the same plea on social media. And 
so on 20 January 2017, half a million people joined Shook in Wash-
ington, and an estimated three million marched in similar events 
around the world. 

On the other hand, it’s harder to claim that mass amateurization of 
journalism and other media is truly with us. Granted, YouTube has 
made stars of the likes of Joseph Garrett, who, in the persona of an or-
ange cartoon cat called Stampylonghead, posts daily Minecraft videos 
for his six million subscribers. But for every Stampylonghead, there 
are legions of YouTubers like Anti, whose physics-themed Minecraft 
videos garner a few hundred views. The ease with which content can 
be created, discovered, and shared has increased the premium on quality. Garrett is successful 
because he’s talented enough to stand out amid the 400 hours of content that gets uploaded to 
YouTube every minute. 

The mainstreaming of blogging also seems to contradict mass amateurization. What Nate Silver 
and Ezra Klein—two prominent bloggers—publish now looks just like online journalism.  

A final trend that contradicts Here Comes Everybody is how digital technology is making people 
less social. Thanks to Internet-mediated home delivery, staying at home is more attractive. 

Charles Day 
American Institute of Physics 

In my view, Shirky 

overestimated how 

much people, 

campaigning aside, 

really do want to 

come together. 
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Cloud-based streaming services give us access to vast libraries of audio and video content that 
we consume with solitary enjoyment. 

In my view, Shirky overestimated how much people, campaigning aside, really do want to come 
together. In the end, most technology, be it vacuum cleaners or voice-activated assistants, makes 
it easier for individuals to do what they want. 

ABOUT THE AUTHOR 
Charles Day is Physics Today’s editor in chief. The views in this column are his own and 
not necessarily those of either Physics Today or its publisher, the American Institute of 
Physics. 
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ously reserved for media professionals. 

When Shirky wrote the book, only 5 percent of US households had a smartphone. Geolocation, 
which makes ride-sharing apps like Uber possible, was in its infancy. Most Netflix customers 
opted to receive movies via mailed envelopes rather than the company’s new streaming service. 

Still, many of the current features of our digital lives were already in place 10 years ago. Face-
book opened to the general public in 2006. By 2008, it had 100 million users. Twitter and 
MySpace were also on the scene. Online magazine Slate was 12 years 
old. Personal blogging was flourishing.  

So, to what extent did everybody come? Perhaps the biggest validation 
of the nascent trends that Shirky spotted was the Women’s March on 
Washington, DC. The day after Donald Trump was elected US Presi-
dent, Teresa Shook, a retiree living on the Hawaiian island of Maui, 
took to Facebook to urge her friends to march on the nation’s capital 
in protest. Other individuals made the same plea on social media. And 
so on 20 January 2017, half a million people joined Shook in Wash-
ington, and an estimated three million marched in similar events 
around the world. 

On the other hand, it’s harder to claim that mass amateurization of 
journalism and other media is truly with us. Granted, YouTube has 
made stars of the likes of Joseph Garrett, who, in the persona of an or-
ange cartoon cat called Stampylonghead, posts daily Minecraft videos 
for his six million subscribers. But for every Stampylonghead, there 
are legions of YouTubers like Anti, whose physics-themed Minecraft 
videos garner a few hundred views. The ease with which content can 
be created, discovered, and shared has increased the premium on quality. Garrett is successful 
because he’s talented enough to stand out amid the 400 hours of content that gets uploaded to 
YouTube every minute. 

The mainstreaming of blogging also seems to contradict mass amateurization. What Nate Silver 
and Ezra Klein—two prominent bloggers—publish now looks just like online journalism.  

A final trend that contradicts Here Comes Everybody is how digital technology is making people 
less social. Thanks to Internet-mediated home delivery, staying at home is more attractive. 

Charles Day 
American Institute of Physics 

In my view, Shirky 

overestimated how 

much people, 

campaigning aside, 

really do want to 

come together. 
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wide range of aspects to which such emotional val-
ues apply. These aspects can include product features 
(such as a digital camera’s maximum resolution), 
common applications (such as a smartphone used as 
a car navigation system), or perceptions in conjunc-
tion with a specifi c event (for example, as part of a 
sponsorship agreement). Our approach integrates af-
fective and factual knowledge extraction to capture 
opinions related to specifi c aspects along multiple 
emotional dimensions. We use the automotive indus-
try as a sample domain to demonstrate the proposed 
approach, given the large number of aspects that 
characterize its complex technical products.

Affective knowledge includes sentiment and 
other emotions expressed in a document, which 
are captured and evaluated by opinion-mining al-
gorithms. Typically, such algorithms are based on 
machine learning, lexical methods, or a combina-
tion of both.1 To identify entities and aspects, the 
presented system also extracts factual knowledge
using a knowledge base built on data from linked 
data sources such as DBpedia and ConceptNet. This 
knowledge base holds information about products, 
including not only product characteristics but also 
corporate decision makers such as Martin Winter-
korn, the former CEO of Volkswagen AG (www
.dbpedia.org/page/Martin_Winterkorn).

The real-time social media streams used for the 
analysis originate from the Media Watch on Cli-
mate Change (www.ecoresearch.net/climate), a con-

tinuously updated knowledge repository on climate 
change and related environmental issues.2 The system 
is based on the webLyzard Web intelligence platform 
(www.weblyzard.com), which extracts and visualizes 
knowledge from digital content streams to measure 
the impact of events and communication campaigns, 
independent of a specifi c domain. Adapted to the spe-
cifi c requirements of the Media Watch on Climate 
Change, the system collects, fi lters, and annotates 
documents from news media, social networking plat-
forms, and the websites of Fortune 1000 companies 
and environmental organizations.3

Figure 1 shows the results of a sample query for 
the term “Volkswagen” in English-language news 
media published between July and Decem ber 2016. 
The screenshot refl ects the signifi cant media impact 
of the “Dieselgate” scandal (that is, manipulations to 
cheat offi cial pollution tests), with most of the arti-
cles about Volks-wagen still focusing on this story. 
The event’s dominance highlights the importance 
of aspect-centered approaches to opinion mining. 
Although the overall sentiment is negative, specifi c 
features such as seat quality or the gearbox receive 
positive feedback. Only a granular analysis that con-
siders all relevant aspects can reveal such hidden 
knowledge, which is highly relevant for planning and 
evaluating corporate communication campaigns.

We tackle this challenge using the four emotional 
categories of SenticNet4 in addition to the standard 
sentiment polarity, which helps to distinguish dif-
ferent aspects of the target’s emotional load, and 
computing per-aspect sentiment values that account 
for different properties relevant to users. The major 
challenge lies in identifying these relevant aspects. 
Most aspect-oriented sentiment analysis approaches 

This article introduces an approach to an-

alyze emotional values associated with 

brands and companies. Online media coverage 

about products and services typically refers to a 
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use frequency- and syntax-based meth-
ods without linking to background 
knowledge for further reasoning.

For evaluation purposes, we asked 
domain experts to assess the retrieved 
common and commonsense knowl-
edge  (for example, aspect is relevant, 
not relevant, or unsure whether it is 
relevant), and provided a radar chart 
visualization to demonstrate how 
the entities and the corresponding as-
pects perform according to the Sentic-
Net emotional categories.

Methodology
Our approach pursues a flexible and 
automated strategy by linking input en-
tities to DBpedia to obtain background 
knowledge on relevant properties of 
these entities (aspects). The dependency 
graph enrichment adds background  
information on emotional categories 
and trigger terms, as well as sentiment 

targets and aspects obtained from the 
knowledge acquisition components, 
yielding the opinion graph used in the 
knowledge extraction process. A text 
document is represented by several of 
these opinion graphs. Sentiment-target 
linking uses a machine learning classi-
fier to connect sentiment targets and as-
pects to trigger terms. The component 
relies on sentence dependency graphs as 
input, which represent tokens as nodes 
and their dependencies as directed 
edges. The sentiment-parsing compo-
nent finally extracts affective knowl-
edge from the opinion graph. It refines 
this knowledge with factual knowl-
edge on relevant sentiment targets and 
aspects obtained from graph mining, 
and stores it in the affective knowledge  
repository. Figure 2 summarizes the  
affective knowledge extraction process 
for identifying beliefs, opinions, and  
arguments in text documents.

Knowledge Acquisition
The knowledge acquisition compo-
nent provides information for enrich-
ing dependency graphs, as outlined in 
the next section, with information on 
a term’s polarity obtained from a po-
larity lexicon, its SenticNet emotional 
categories, common knowledge ac-
quired from DBpedia, and common-
sense knowledge from ConceptNet.

Since our work focuses on car brands 
and models, we only mine sentiment 
targets and sentiment aspects relevant 
to this domain. Algorithm 1 (Figure 3) 
captures information on companies, 
products, and aspects from DBpedia and 
ConceptNet. It obtains relations that  
lead from the entity (for example, “Volks-
wagen”) to an associated aspect. For in-
stance, the relation “manufacturer”  
yields “Lupo” or “Golf” from DBpedia.  
This association reveals that Volks-
wagen manufactured the car models 

Figure 1. Screenshot of the Media Watch on Climate Change, a public Web intelligence application available at www.ecoresearch.
net/climate (query: “Volkswagen”; English-language news media sites, 07–12/2016).
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Figure 2. Main components of the affective knowledge extraction process. Preprocessing transforms documents into 
dependency graphs that are then enriched with external knowledge obtained from the knowledge acquisition component to 
create opinion graphs. Sentiment analysis extracts affective knowledge from these graphs that is then combined and extended 
with common and commonsense knowledge.
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Figure 3. Algorithm 1 extracts sentiment targets and aspects as well as the corresponding context information from DBpedia. 
At first, the algorithm mines companies and products relevant to the target industry and then obtains subgraphs with context 
information on these two entity types.

Require: sets of target_industries, target_predicates and product_predicates

1: // Lists for storing the results of the graph mining process

2: companies ← {}, products ← {}, entity_graph ← {},
3: // graph mining

4: for all triple from query (?s <rdf:type> <dbo:Company>) do

5:  if (?s <dbp:industry> ?o) and ?o in target_industries then

6:   companies.add(triple.s)

7:   entity_graph.add_triple(triple)

8:  end if

9: end for

10: for all triple from (query (?s ?p ?o ∈companies)
∪query(?s ∈companies ?p ?o) 
∪query(?s ?p ∈target_predicates ?o))

do

11:  if triple.p ∈product_predicates then
12:   products.add(triple.o)

13:  end if

14:  entity_graph.add_triple(triple)

15: end for

16: for all triple from query (?s <dbp:aka> ?o) do

17:  entity_graph.add_triple(triple)

18: end for
19: return companies, products, entity_graph
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Lupo and Golf. The DBpedia relation 
“keyPerson” yields “Martin Winter-
korn” and “Ferdinand Piëch,” both 
former chairs of Volkswagen, as impor-
tant persons related to the company. 

A set of predefined relations helps 
restrict the aspects to those most rel-
evant for the investigation:

•	 DBpedia: dbo:manufacturer, dbo:key 
Person, dbo:product, dbp:team 

•	ConceptNet: PartOf, HasA, Used-
For, MadeOf 

The algorithm obtains not only the 
label of the DBpedia resources 
but also all linked aliases. Addition-
ally, it automatically creates aliases 
by removing tokens that are shared 
between the manufacturer and the 
product. This means it can automati-
cally create the alias “Golf” from the 
car entity “Volks-wagen Golf” and 
the company entity “Volkswagen,” 
thereby increasing the achievable 
recall.

To increase coverage, the graph- 
mining component queries Concept-
Net for automobile properties and 
adds commonsense knowledge, such as 
that a car is a means of transport and 
has a steering wheel and a trunk (as-
pects). This component later uses the 
obtained relations (such as products 
produced by a company or key people 
working for that company) in con-
junction with commonsense knowl-
edge (such as major parts of such an 
entity or its typical applications) to 
enrich the dependency graph.

This knowledge-rich approach has 
two advantages over frequency-based 
methods that rely on syntactic features. 
First, the created affective knowledge 
base captures not only related enti-
ties but also the corresponding rela-
tion types. Second, grounding targets 
to DBpedia helps to obtain additional 
information such as abstracts, further 
relations, and car type.

Sentiment Analysis
Using the affective and factual resources 
provided by the knowledge acquisition 
component, sentiment analysis follows 
a three-step process: dependency graph 
enrichment, sentiment-target linking, 
and sentiment parsing.

Dependency graph enrichment. En-
riching the sentence dependency graphs 
with emotional categories, trigger 

terms that indicate negations or mod-
ify sentiment values, sentiment targets, 
and sentiment aspects obtained from 
the knowledge acquisition compo-
nent yields the opinion graph, which 
we use in the subsequent sentiment-tar-
get linking and sentiment parsing steps.

After creating the dependency parse 
tree (see Figure 4a), the system draws 
upon the knowledge acquisition com-
ponent to ground target concepts 

Figure 4. Dependency graph enrichment: (a) dependency tree of the sentence, “The 
new X5 has an updated design and comes with the latest and greatest engines”; 
and (b) enriched with opinions (blue: targets with type and DBpedia concept; violet: 
aspects with type and ConceptNet grounding; green: positive sentiment terms and 
sentic values; and dashed lines connect sentiment terms with their targets).
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(that is, cars) to DBpedia. Afterward, 
it uses this information together with 
the context retrieved from DBpedia 
to query the knowledge acquisition 
component for aspects relevant to the 
targets from ConceptNet and to link 
these aspects to the corresponding 
ConceptNet nodes (see Figure 4b).

The affective knowledge extrac-
tion uses lexical lookups to identify 
tokens carrying affective knowledge 
and assigns them a value in the range 
[–1, 1]. The component supports mul-
tiple emotional categories. Ground-
ing emotion triggers is not limited 
to string matching; rather, it is also 
aware of parts-of-speech (POS) tags. 
In the case of “like,” for example, it 
differentiates between the use as a 

positive verb and as a neutral com-
parison term.

The system ignores product 
aliases unless the entity (obtained 
from DBpedia), its manufacturer, or 
the company’s aliases occur in the 
text. This avoids problems with ge-
neric names (such as numbers, fre-
quent domain-agnostic terms, or 
short character sequences) and al-
lows it to correctly identify “BMW” 
and “X5” (for example, in “Yesterday 
BMW showed its newest SUV for the 
first time. The new X5 has an updated 
design and comes with the latest and 
greatest engines”) without creating 
links if “BMW” is not mentioned.

The discovery of an aspect requires 
its subsequent linking to an entity 

(for example, “steering wheel” and  
“car”). A colocation heuristic helps find  
the closest candidate by scanning the 
current sentence first and, if unsuc-
cessful, the entire document. The sen-
timent-target linking classifier then 
links the common and commonsense 
knowledge to the affective knowledge 
targeted at it.

Sentiment-target linking. Sentiment-
target linking uses a set of sentiment 
terms (that is, terms indicating a certain 
emotion or sentiment) { }=S tm si

 and  
target terms (that is, sentiment targets 
or aspects) { }=T tm tj

 extracted from 
sentence m, and returns a set of valid 

sentiment-target pairs: { }( )t t,s ti j
,  

A better understanding of sentiment is crucial for 
building next-generation artificial intelligence sys-
tems and increasing the value of business intelli-

gence applications.1 This requires the integration of mul-
tiple approaches into a unified system, including the three 
research areas outlined in the following.

Emotion Analysis
Emotion analysis draws upon psychology research. For instance, 
SenticNet2 is based on Plutchik’s wheel of emotions.3 It contains 
50,000 concepts and maps them to the four dimensions pro-
posed in the Hourglass of Emotions4: “aptitude” (confident in 
interaction benefits), “attention” (interested in interaction con-
tents), “pleasantness” (amused by interaction modalities), and 
“sensitivity” (comfortable with interaction dynamics). Word-
Net-Affect5 has affective labels such as “emotion,” “mood,” and 
“cognitive state” to approximately 2,800 WordNet synsets. The 
General Inquirer provides emotional categories such as “vir-
tual,” “pleasure,” and “pain.”6 EmoLex contains approximately 
10,000 terms,7 and Affective Norms for English Words knows 
the three categories “valence” (from unpleasant to pleasant), 
“arousal” (from calm to excited), and “dominance.”8

Sentiment-Target Linking
This research field identifies the target of an opinionated 
statement. For instance, “VW Golf” is the target of “reliable” 
in the statement, “The VW Golf is reliable.” Rule-based ap-
proaches to sentiment-target linking use manually designed 
heuristics to find valid sentiment-target pairs—for example, 
sentiment-target proximity (distance-based approaches),9 
semantic frames,10 or syntax-based approaches relying on a 
handful of patterns.11,12 Supervised machine learning meth-
ods collect patterns from annotated corpora automatically. 
For example, Lei Zhuang and his colleagues13 and Liheng Xu14 

automatically extract dependency patterns between senti-
ments and their targets.

Corpora such as J.D. Power and Associates (JDPA) support 
the evaluation of such tools.15 We used a similar approach to 
build our classifier and further optimized its performance by 
evaluating and selecting features and including additional 
patterns learned from the multiperspective question answer-
ing (MPQA) corpus.16

Aspect-Based Sentiment Analysis
Aspect-based sentiment analysis extends target-dependent 
sentiment analysis and identifies opinions on aspects of that 
entity. For example, given an entity “car,” its design and en-
gine characteristics are different aspects of the same entity. 
Most research focuses on product reviews and links men-
tioned aspects to opinions.17 State-of-the-art approaches 
use term or n-gram frequencies18,19 and frequently employ 
machine learning—for example, conditional random fields 
(CRF),20 deep learning,21 and latent Dirichlet allocation 
(LDA).22 Other approaches combine syntactic rules and lexi-
cal resources.23,24

Our approach uses a knowledge base to identify as-
pects. This approach is similar to work by Caroline Brun 
and her colleagues, who bootstrap an aspect lexicon using 
a training corpus by combining WordNet and Wikipedia,25 
or Basant Agarwal and his colleagues, who access Con-
ceptNet and WordNet to create a product-review-specific 
ontology.26

Proper opinion analysis is a combination of all these meth-
ods. After identifying an emotion, it is necessary to connect 
it to its target to allow reasoning such as, “who thinks what 
about whom?” Finally, identifying additional aspects related 
to the target gives higher granularity and further insight into 
the true meaning of the expressed opinion.

Related Work in Sentiment Analysis
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where ( ) =y t t True, .s ti j
 Hereby, we 

formulate the sentiment-target link-
ing task as a binary classification 
problem. The classification function y 
reflects whether sentiment tsi

 and tar-
get tokens tt j

 constitute a valid senti-
ment-target pair.

The component starts by generat-
ing all possible edges between the set 
of targets and the set of sentiments as 
candidates for valid sentiment-target 
pairs and further evaluates each of 
them independently.

The component extracts features 
for every observation of a sentiment-
target pair and uses them as input 
for the classification model previ-
ously trained on a corpus annotated 
with correct sentiment-target pairs. 

To train the classifier, it uses obser-
vations from a corpus annotated with 
words and phrases expressing senti-
ments { }tsi

, targets { }tt j
, and relations 

between them { }( )t t,s tk l
. An observation 

( )x t t,s ti j
 is a set of features that cap-

tures syntactic relations between the 
sentiment token tsi

 and the target 
token tt j

. A recursive feature elimi-
nation (RFE) procedure yields an 
optimal feature set to be extracted 
from the opinion graph for each ob-
servation of a sentiment-target pair 

( )x t t,s ti j
, which comprises features 

such as POS tags and dependencies 
between the sentiments and target 
nodes in the graph.

The sentiment-target linking uses a  
logistic regression classifier trained 
on the J.D. Power and Associates 
(JDPA, http://verbs.colorado.edu/ 
jdpacorpus) sentiment corpus and 
the Multiperspective Question An-
swering (MPQA, http://mpqa.cs.pitt.
edu/corpora/mpqa_corpus) opinion 
corpus, version 2.0 (also see the side-
bar). An evaluation of the sentiment-
target linking performance achieved 
an F-measure of 0.90 when evalu-
ated on the gold-standard annota-
tions for about 12,000 sentiment-tar-
get pairs with stratified tenfold cross 
validation.

Sentiment parsing. Grammar rules 
and heuristics help identify and extract 

References
 1. E.  Cambria, “Affective Computing and Sentiment Analysis,” 

IEEE Intelligent Systems, vol. 31, no. 2, 2016, pp. 102–107.
 2. E. Cambria and A. Hussain, Sentic Computing: A Common-

Sense-Based Framework for Concept-Level Sentiment Analysis, 
Springer, 2015.

 3. R. Plutchik, “The Nature of Emotions,” Am. Scientist, vol. 89, no. 
4, 2001, pp. 344–350.

 4. E. Cambria, A. Livingstone, and A. Hussain, “The Hourglass of 
Emotions,” Cognitive Behavioural Systems, LNCS 7403, Springer, 
2012, pp. 144–157.

 5. C.  Strapparava and A.  Valitutti, “WordNet-Affect: An Affec-
tive Extension of WordNet,” Proc. 4th Int’l Conf. Language Re-
sources and Evaluation (LREC 04), 2004, pp. 1083–1086.

 6. P.J. Stone, The General Inquirer: A Computer Approach to Con-
tent Analysis, MIT Press, 1966.

 7. S. Mohammad and P.D. Turney, “Crowdsourcing a Word-Emo-
tion Association Lexicon,” Computational Intelligence, vol. 29, 
no. 3, 2013, pp. 436–465.

 8. M.M. Bradley and P.J. Lang, Affective Norms for English Words 
(ANEW): Stimuli, Instruction Manual, and Affective Ratings, 
tech. report, Center for Research in Psychophysiology, Univ. of 
Florida, Gainesville, 1999.

 9. M.  Hu and B.  Liu, “Mining and Summarizing Customer Re-
views,” Proc. 10th ACM SIGKDD Int’l Conf. Knowledge Discov-
ery and Data Mining, 2004, pp. 168–177.

 10. S.-M. Kim and E. Hovy, “Extracting Opinions, Opinion Holders, 
and Topics Expressed in Online News Media Text,” Proc. Work-
shop Sentiment and Subjectivity in Text, 2006, pp. 1–8.

 11. S. Gindl, A. Weichselbraun, and A.  Scharl, “Rule-Based Opin-
ion Target and Aspect Extraction to Acquire Affective Knowl-
edge,” Proc. WWW Workshop Multidisciplinary Approaches to 
Big Social Data Analysis (MABSDA 13), 2013, pp. 557–564.

 12. S. Poria et al., “Sentiment Data Flow Analysis by Means of Dy-
namic Linguistic Patterns,” IEEE Computational Intelligence, 
vol. 10, no. 4, 2015, pp. 26–36.

 13. L. Zhuang, F.  Jing, and X.-Y. Zhu, “Movie Review Mining and 
Summarization,” Proc. 15th ACM Int’l Conf. Information and 
Knowledge Management, 2006, pp. 43–50.

 14. L. Xu et al., “Mining Opinion Words and Opinion Targets 
in a Two-Stage Framework,” Proc. 51st Ann. Meeting As-

soc. for Computational Linguistics (ACL 13), vol. 1, 2013, 
pp. 1764–1773.

 15. J.S. Kessler and N. Nicolov, “Targeting Sentiment Expressions through 
Supervised Ranking of Linguistic Configurations,” Proc. 3rd Int’l 
AAAI Conf. Weblogs and Social Media (ICWSM 09), 2009, pp. 90-97.

 16. T. Wilson, “Fine-Grained Subjectivity and Sentiment Analysis: 
Recognizing the Intensity, Polarity, and Attitudes of Private 
States,” PhD diss., Univ. of Pittsburgh, 2008.

 17. M.  Pontiki et al., “Semeval-2014 Task 4: Aspect-Based Senti-
ment Analysis,” Proc. 8th Int’l Workshop Semantic Evaluation 
(SemEval 14), 2014, pp. 27–35.

 18. E.  Marrese-Taylor, J.D. Velásquez, and F.  Bravo-Marquez, “A 
Novel Deterministic Approach for Aspect-Based Opinion Min-
ing in Tourism Products Reviews,” Expert Systems with Appli-
cations: An Int’l J., vol. 41, no. 17, 2014, pp. 7764–7775.

 19. Y.  Wu and M.  Ester, “FLAME: A Probabilistic Model Combin-
ing Aspect Based Opinion Mining and Collaborative Filtering,” 
Proc. 8th ACM Int’l Conf. Web Search and Data Mining (WSDM 
15), 2015, pp. 199–208.

 20. M.  Chernyshevich, “Cross-Domain Extraction of Product Fea-
tures Using Conditional Random Fields,” Proc. 8th Int’l Work-
shop on Semantic Evaluation (SemEval 14), 2014, p. 309–313.

 21. S. Poria, E. Cambria, and A. Gelbukh, “Aspect Extraction for Opinion 
Mining with a Deep Convolutional Neural Network,” Knowledge-
Based Systems, vol. 108, Special Issue on New Avenues in Knowl-
edge Bases for Natural Language Processing, 2016, pp. 42–49.

 22. S. Poria et al., “Sentic LDA: Improving on LDA with Semantic 
Similarity for Aspect-Based Sentiment Analysis,” Proc. Int’l 
Joint Conf. Neural Networks (IJCNN 16), 2016, pp. 4465–4473.

 23. K. Veselovská and A. Tamchyna, “UFAL: Using Hand-crafted Rules 
in Aspect Based Sentiment Analysis on Parsed Data,” Proc. 8th Int’l 
Workshop Semantic Evaluation (SemEval 14), 2014, pp. 694–698.

 24. A.G. Pablos et al., “Unsupervised Acquisition of Domain Aspect 
Terms for Aspect Based Opinion Mining,” Procesamiento del 
Lenguaje Natural, vol. 53, Sept. 2014, pp. 121–128.

 25. C. Brun, D.N. Popa, and C. Roux, “XRCE: Hybrid Classification 
for Aspect-Based Sentiment Analysis,” Proc. 8th Int’l Work-
shop Semantic Evaluation (SemEval 14), 2014, pp. 838–842.

 26. B.  Agarwal et al., “Sentiment Analysis Using Common-Sense 
and Context Information,” J. Computational Intelligence and 
Neuroscience, vol. 2015, Jan. 2015, article 30.

84  www.computer.org/intelligent Ieee InTeLLIGenT SySTemS

(that is, cars) to DBpedia. Afterward, 
it uses this information together with 
the context retrieved from DBpedia 
to query the knowledge acquisition 
component for aspects relevant to the 
targets from ConceptNet and to link 
these aspects to the corresponding 
ConceptNet nodes (see Figure 4b).

The affective knowledge extrac-
tion uses lexical lookups to identify 
tokens carrying affective knowledge 
and assigns them a value in the range 
[–1, 1]. The component supports mul-
tiple emotional categories. Ground-
ing emotion triggers is not limited 
to string matching; rather, it is also 
aware of parts-of-speech (POS) tags. 
In the case of “like,” for example, it 
differentiates between the use as a 

positive verb and as a neutral com-
parison term.

The system ignores product 
aliases unless the entity (obtained 
from DBpedia), its manufacturer, or 
the company’s aliases occur in the 
text. This avoids problems with ge-
neric names (such as numbers, fre-
quent domain-agnostic terms, or 
short character sequences) and al-
lows it to correctly identify “BMW” 
and “X5” (for example, in “Yesterday 
BMW showed its newest SUV for the 
first time. The new X5 has an updated 
design and comes with the latest and 
greatest engines”) without creating 
links if “BMW” is not mentioned.

The discovery of an aspect requires 
its subsequent linking to an entity 

(for example, “steering wheel” and  
“car”). A colocation heuristic helps find  
the closest candidate by scanning the 
current sentence first and, if unsuc-
cessful, the entire document. The sen-
timent-target linking classifier then 
links the common and commonsense 
knowledge to the affective knowledge 
targeted at it.

Sentiment-target linking. Sentiment-
target linking uses a set of sentiment 
terms (that is, terms indicating a certain 
emotion or sentiment) { }=S tm si

 and  
target terms (that is, sentiment targets 
or aspects) { }=T tm tj

 extracted from 
sentence m, and returns a set of valid 

sentiment-target pairs: { }( )t t,s ti j
,  

A better understanding of sentiment is crucial for 
building next-generation artificial intelligence sys-
tems and increasing the value of business intelli-

gence applications.1 This requires the integration of mul-
tiple approaches into a unified system, including the three 
research areas outlined in the following.

Emotion Analysis
Emotion analysis draws upon psychology research. For instance, 
SenticNet2 is based on Plutchik’s wheel of emotions.3 It contains 
50,000 concepts and maps them to the four dimensions pro-
posed in the Hourglass of Emotions4: “aptitude” (confident in 
interaction benefits), “attention” (interested in interaction con-
tents), “pleasantness” (amused by interaction modalities), and 
“sensitivity” (comfortable with interaction dynamics). Word-
Net-Affect5 has affective labels such as “emotion,” “mood,” and 
“cognitive state” to approximately 2,800 WordNet synsets. The 
General Inquirer provides emotional categories such as “vir-
tual,” “pleasure,” and “pain.”6 EmoLex contains approximately 
10,000 terms,7 and Affective Norms for English Words knows 
the three categories “valence” (from unpleasant to pleasant), 
“arousal” (from calm to excited), and “dominance.”8

Sentiment-Target Linking
This research field identifies the target of an opinionated 
statement. For instance, “VW Golf” is the target of “reliable” 
in the statement, “The VW Golf is reliable.” Rule-based ap-
proaches to sentiment-target linking use manually designed 
heuristics to find valid sentiment-target pairs—for example, 
sentiment-target proximity (distance-based approaches),9 
semantic frames,10 or syntax-based approaches relying on a 
handful of patterns.11,12 Supervised machine learning meth-
ods collect patterns from annotated corpora automatically. 
For example, Lei Zhuang and his colleagues13 and Liheng Xu14 

automatically extract dependency patterns between senti-
ments and their targets.

Corpora such as J.D. Power and Associates (JDPA) support 
the evaluation of such tools.15 We used a similar approach to 
build our classifier and further optimized its performance by 
evaluating and selecting features and including additional 
patterns learned from the multiperspective question answer-
ing (MPQA) corpus.16

Aspect-Based Sentiment Analysis
Aspect-based sentiment analysis extends target-dependent 
sentiment analysis and identifies opinions on aspects of that 
entity. For example, given an entity “car,” its design and en-
gine characteristics are different aspects of the same entity. 
Most research focuses on product reviews and links men-
tioned aspects to opinions.17 State-of-the-art approaches 
use term or n-gram frequencies18,19 and frequently employ 
machine learning—for example, conditional random fields 
(CRF),20 deep learning,21 and latent Dirichlet allocation 
(LDA).22 Other approaches combine syntactic rules and lexi-
cal resources.23,24

Our approach uses a knowledge base to identify as-
pects. This approach is similar to work by Caroline Brun 
and her colleagues, who bootstrap an aspect lexicon using 
a training corpus by combining WordNet and Wikipedia,25 
or Basant Agarwal and his colleagues, who access Con-
ceptNet and WordNet to create a product-review-specific 
ontology.26

Proper opinion analysis is a combination of all these meth-
ods. After identifying an emotion, it is necessary to connect 
it to its target to allow reasoning such as, “who thinks what 
about whom?” Finally, identifying additional aspects related 
to the target gives higher granularity and further insight into 
the true meaning of the expressed opinion.

Related Work in Sentiment Analysis
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affective knowledge—for example, 
negation detection to invert the po-
larity of a negated term. It uses nodes 
marked as triggers and stoppers to de-
termine the start and end of the nega-
tion scope within the opinion graph, 
and supports multiple negation.

Aggregating the opinion triggers 
that have been linked to a particu-
lar sentiment target yields the tar-
get’s value for the corresponding 
emotional category. By considering 
different sentiment aspects in this 
aggregation process, the system can 
analyze the emotions contributed 
by each aspect, yielding visualiza-
tions such as the one presented in 
Figure 5.

Data Analytics
An RDF triple store serves to store 
affective and factual knowledge. A 
proof-of-concept data analytics ap-
plication queries the affective knowl-
edge base to compare the emotions 
associated with four automobile 
brands having high media coverage 
(Audi, Daimler, Porsche, and Volks-
wagen). It contrasts this analysis with 
an evaluation of two different aspects 
(drive and engine) relevant to prod-
ucts of two of these brands (Audi and 
Porsche).

The affective knowledge repository  
facilitates polarity classification and 
emotional analysis aligned with the 
“Hourglass of Emotions” (see the 
sidebar). For instance, the “engine” 
of “VW” receives a sensitivity of 
−0.07, whereas “Golf” has a sensi-
tivity of 0.014. After determining the 
emotional strength associated with 
each company and aspect, we ag-
gregate over all aspects and calcu-
late a total value using the following 
formula:

=strength
k
n

,emotion  (1)

where k is the number of positive oc-
currences (negative occurrences for 
negative strength) of the emotional 
dimension, while n is the total num-
ber of occurrences of this emotion. 
A summary of the obtained results is 
presented later.

Experiments
Using a subset of the archive of the Me-
dia Watch on Climate Change (social  
media messages published between 28 
September and 28 November 2015),  
the evaluation corpus consists of 
1,000 Twitter and Google+ postings 
containing the word “car,” and 4,000 
referring to one of the car brands  
Audi, Daimler, Porsche, and Volks- 
wagen. The former helped extract 
sentiment aspects and targets con-
tained in the knowledge base, the latter  
supported the evaluation of aspect-
based emotion analysis.

Graph Mining Results
The approach introduced earlier yields 
a considerable amount of background 
knowledge from DBpedia and Con-
ceptNet that has been used for the senti-
ment analysis. Table 1 lists the number  

Figure 5. SenticNet emotional categories and polarities for (a) selected car brands, and (b) the aspects (in this case, product 
features) “drive” and “engine.”
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Table 1. Statistics of the acquired 
background knowledge.

Description No.

Companies active in the  
automotive industries

881

Key people in these companies 349

Car entities 4,898

Car aliases 7,111

Car aspects 30
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of entities, aliases, and aspects acquired  
from the common and commonsense 
knowledge sources.

Table 2 shows the obtained enti-
ties and properties for the company 
Tesla Motors and the car Tesla Model 
S, demonstrating the level of detail 
achieved with the presented approach.

Evaluation of the Extracted 
Knowledge
The following evaluation draws upon 
the 50 most frequently occurring sen-
timent aspects and targets in the eval-
uation corpus to assess the usefulness 
and impact of the knowledge ex-
tracted by the graph mining. Five in-
dependent domain experts classified 
the usefulness of each extracted con-
cept for describing aspects relevant to 
the perception (polarity, emotions) of 
car companies, brands, and products 
in one of three categories: useful (the 
aspect is related to the domain), not 
useful (the aspect has no connection 
to the domain), and neutral (the term 
is too generic to be clearly associated 
with the domain). On average, 81.2 
percent of the extracted concepts 
have been considered useful. The 
Krippendorff alpha for inter-rater 
agreement between experts is 0.504, 
reflecting only a moderate agreement 
among domain experts.

The evaluation illustrates two short- 
comings of the current approach. 
First, the assumption that automotive 
companies only manufacture cars does 
not hold true. Among the 50 most 
frequent entities/aspects in the “car” 
corpus, the system identified “knife” 
because the company American Expe-
dition Vehicles also produces knives. 
We investigated narrowing the prod-
ucts based on their rdfs:class prop-
erty but encountered a diverse set 
of assigned classes that have no single 
common superclass or shared property.

S econd ,  t wo ambiguous ca r 
brands showed up in the evaluation: 

the short-lived WiLL and SEAT, 
which was often confused with car 
seat. WiLL could be tackled by al-
lowing only certain aspects to be 
matched with verbs (for example, as-
pects connected with the “UsedFor” 
predicate to a car). SEAT, however, 
is difficult to ground: in social me-
dia, capitalization cannot reliably be 
used for disambiguation (since often 
the text is all lowercase), and the do-
main car fits both car seat and the car 
brand SEAT. 

Aspect-Based Analysis of Brand 
Perceptions
Using the data analytics approach pre-
sented earlier and building on previous 
work to visualize emotions along mul-
tiple dimensions,5 we show how the af-
fective knowledge extracted from social 
media messages can be associated with 
the investigated car brands (Figure 5a). 
Applying the Hourglass of Emotions to 
the emotional dimensions “aptitude,” 
“attention,” “pleasantness,” and “sensi-
tivity” lets us map numerical chart val-
ues to their emotional equivalents. The 
car brand Audi, for example, shows 
a strong association with positive ap-
titude (0.86), which maps to the 
emotion “admiration” on the Hourglass 
of Emotions. The brand is also associ-
ated with a moderate negative sensitivity 

(0.65), which is equivalent to “fear.” Neg-
ative attention (0.45) reveals that “sur-
prise” is also associated with “Audi.”

“Volkswagen” has the most sig-
nificant peaks in the negative direc-
tion—for example, a negative attention  
of 0.5, a negative pleasantness of 0.36,  
and a negative sensitivity of 0.72. These  
values map to “surprise,” “sadness,” and  
“terror” on the Hourglass of Emo-
tions. This result is in line with the 
negative media coverage about the 
exhaust scandal.

Emotion analysis provides detailed 
feedback on the public perception of a 
company. A brand might outperform 
another in one aspect, such as prod-
uct quality, but might have to catch 
up on another aspect, such as service. 
The radar chart in Figure 5b, for ex-
ample, shows that the Porsche engine 
has a considerably higher attention 
and sentiment than its competitor, but 
Audi excels in pleasantness and senti-
ment when focusing on actually driv-
ing the car.

Among the main challenges of de-
ploying aspect-based opinion mining 
algorithms for Web intelligence ap-
plications are the required scalability 
of the computational methods, and 
appropriate visual representations  

Table 2. Extracted entities and aspects connected to the car company Tesla Motors 
and the car Tesla Model S.

Entity Relation Aspect

Tesla Motors

Type Company

Industry Car

Manufacturer Tesla Model S, Tesla Roadster

Product Luxury vehicle

Key person JB Straubel, Elon Musk, chief executive officer, chief technol-
ogy officer, chair

Tesla Model S

Aka WhiteStar, Model S

HasA trunk, radio, headlight, four wheel, seat, wheel, engine, win-
dow, four tires

MadeOf steel, metal

PartOf trunk, engine, transmission, radiator, body, hood, tire, fender, 
door, tire, engine, steer wheel, drive train, wheel

UsedFor drive, transportation, travel

86  www.computer.org/intelligent Ieee InTeLLIGenT SySTemS

affective knowledge—for example, 
negation detection to invert the po-
larity of a negated term. It uses nodes 
marked as triggers and stoppers to de-
termine the start and end of the nega-
tion scope within the opinion graph, 
and supports multiple negation.

Aggregating the opinion triggers 
that have been linked to a particu-
lar sentiment target yields the tar-
get’s value for the corresponding 
emotional category. By considering 
different sentiment aspects in this 
aggregation process, the system can 
analyze the emotions contributed 
by each aspect, yielding visualiza-
tions such as the one presented in 
Figure 5.

Data Analytics
An RDF triple store serves to store 
affective and factual knowledge. A 
proof-of-concept data analytics ap-
plication queries the affective knowl-
edge base to compare the emotions 
associated with four automobile 
brands having high media coverage 
(Audi, Daimler, Porsche, and Volks-
wagen). It contrasts this analysis with 
an evaluation of two different aspects 
(drive and engine) relevant to prod-
ucts of two of these brands (Audi and 
Porsche).

The affective knowledge repository  
facilitates polarity classification and 
emotional analysis aligned with the 
“Hourglass of Emotions” (see the 
sidebar). For instance, the “engine” 
of “VW” receives a sensitivity of 
−0.07, whereas “Golf” has a sensi-
tivity of 0.014. After determining the 
emotional strength associated with 
each company and aspect, we ag-
gregate over all aspects and calcu-
late a total value using the following 
formula:

=strength
k
n

,emotion  (1)

where k is the number of positive oc-
currences (negative occurrences for 
negative strength) of the emotional 
dimension, while n is the total num-
ber of occurrences of this emotion. 
A summary of the obtained results is 
presented later.

Experiments
Using a subset of the archive of the Me-
dia Watch on Climate Change (social  
media messages published between 28 
September and 28 November 2015),  
the evaluation corpus consists of 
1,000 Twitter and Google+ postings 
containing the word “car,” and 4,000 
referring to one of the car brands  
Audi, Daimler, Porsche, and Volks- 
wagen. The former helped extract 
sentiment aspects and targets con-
tained in the knowledge base, the latter  
supported the evaluation of aspect-
based emotion analysis.

Graph Mining Results
The approach introduced earlier yields 
a considerable amount of background 
knowledge from DBpedia and Con-
ceptNet that has been used for the senti-
ment analysis. Table 1 lists the number  

Figure 5. SenticNet emotional categories and polarities for (a) selected car brands, and (b) the aspects (in this case, product 
features) “drive” and “engine.”
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that convey the aspect structure 
and associated emotions in an intui-
tive manner. The European research 
project Adaptive Scalable Analyt-
ics Platform (ASAP, www.asap-fp7.
eu) is currently tackling both chal-
lenges. ASAP will enable us to per-
form the required complex com-
putations on high-volume content 
streams from social networking plat-
forms, and to provide real-time vi-
sualizations of the evolving aspect 
structure as part of an interactive 
dashboard—going beyond standard 
representations such as trend lines 
and radar charts.6

Future research will also apply 
the presented methods in different 
domains and demonstrate their ap-
plicability beyond specific products 
and services. Measuring the impact 
of international marketing and pub-
lic outreach campaigns, for exam-
ple, would significantly benefit from 
an aspect-oriented approach. Simple 
bipolar metrics such as sentiment 
cannot adequately reflect the under-
lying complexities when millions of 
stakeholders use digital channels to 
participate in public debates about 
complex, multi-faceted topics. 
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Cyber-physical systems (CPS) are orchestrations 
of computers, machines, and people working to-
gether to achieve goals using computation, com-
munications, and control (CCC) technologies. 

Although the term CPS was coined only in 2006 by Helen 
Gill of the National Science Foundation (NSF), the CCC core 
technologies of CPS have had a rich and long history. Major 
milestones for CPS include control theory in 1868, wireless 
telegraphy in 1903, cybernetics feedback in 1948, embedded 
systems in 1961, software engineering in 1968, and ubiqui-
tous computing in 1988. CPSs have risen from the � eld of 
embedded systems to the realm of digital ecosystems and 
are becoming increasingly intelligent as a result of ana-
lytics and machine-learning capabilities being readily 
available in the cloud and accessible over networks. The 
advances in the interconnected capabilities of CPSs a� ect 
virtually every engineered system and will enable adapt-
ability, scalability, resiliency, safety, security, and usabil-
ity in future CPSs that will far exceed the systems of today.

Over the past two decades, the 
number of cyber components has 
grown gradually to the point where 
CPSs are now software-intensive 
systems with more and more inte-
grated computing hardware and 
computational algorithms. In to-

day’s CPS, software dominates all aspects of connecting 
the physical and cyber worlds by orchestrating the CCC 
technologies in CPS applications. Consequently, the en-
gineering of high-con� dence CPSs has also evolved. The 
resulting process is neither an extension of traditional 
engineering nor a straightforward application of soft-
ware engineering,1 but rather a new systems engineering 
science. Granting agencies around the world have recog-
nized this problem and initiated large research programs 
to investigate CPS foundations. A key goal of the NSF CPS 
research program is to develop the core systems science 
needed to engineer complex CPSs. The idea is to abstract 
from speci� c systems and application domains to reveal 
fundamental CPS engineering principles. 

Over the years, engineers have been highly successful 
in developing models for speci� c control system applica-
tions. Integrating discrete, continuous, and adaptive con-
trol as well as deterministic and nondeterministic models 
are fundamental challenges in dealing with uncertainty 
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in modern CPSs. Developing models 
and modeling frameworks for CPS has 
become a mature research field.2–4 
The software engineering community 
has made tremendous strides in de-
signing and operating highly dynam-
ical software systems by developing 
methods and techniques to standard-
ize and distribute CPS components 
and services effectively through au-
tonomic computing5 (for example, 
the Monitor-Analyze-Plan-Execute 
loop operating on a shared Knowledge 
[MAPE-K] base), to control feedback 
in computing systems,6 to deal with 
inherent uncertainty in CPS through 
models at runtime, and to adapt and 
then validate CPS at runtime. Several 
research communities have emerged 
to deal with software engineering 

aspects of CPS, including CPS con-
ferences and workshops (such as 
CPS Week), software engineering for 
adaptive and self-managing systems 
(SEAMS),7 Models@run.time,8,9 as 
well as runtime validation, verifica-
tion, and certification techniques.10

For the past decade, think tanks 
and granting agencies (such as NSF, 
NIST, the National Institutes of Health 
[NIH], EU Horizon 2020, and Europe 
2020) have articulated their vision on 
the future of CPS applications. Their 
tenor is similar: the expectation is that 
the CPS revolution will be more trans-
formative than the IT revolution of the 
past four decades.11,12 

Why is this CPS revolution hap-
pening now? The primary reason is 
the recent confluence of technologies, 
including adaptive systems and run-
time models, an increasingly instru-
mented world due to pervasive sensing 
and actuating capabilities, advanced 
real-time and networked control, an-
alytical and cognitive capabilities, 

and compute and storage clouds. With 
the advent of cognitive intelligent as-
sistants readily available on personal 
devices, human-in-the-loop CPSs are 
proliferating in our lives.13,14 In other 
words, CPS is at the center of a perfect 
technology storm. Countries around 
the world are investing heavily in CPS 
research programs, seeking a techno-
logical and economic edge.1 

There are several terms and fields 
closely related and competing with the 
notion of CPS, including embedded sys-
tems, the Internet of Things (IoT), the 
Industrial Internet (II), the Internet of 
Everything (IoE), machine-to-machine 
(M2M), Industry 4.0, Smarter Planet, 
cyber-physical-human systems (CPHS), 
smart and intelligent systems, and 
adaptive systems. While all these 

fields have their own publications and 
communities, UC Berkeley professor 
Edward A. Lee argues convincingly 
that the CPS term is more founda-
tional and encompassing than these 
related terms, because the term em-
bodies the fundamental engineering 
problem of integrating the cyber and 
physical worlds.2

There are many challenges that 
must be addressed to be able to har-
vest CPS’s rich economic opportuni-
ties. As Sir Francis Bacon said, “If we 
are to achieve results never before ac-
complished, we must expect to employ 
methods never before attempted.”

First and foremost, creating and 
maintaining a skilled workforce to 
support the design, engineering, de-
ployment, and operation of future CPS 
is a significant challenge for industry, 
academia, and governments. CPS engi-
neers, scientists, and developers need 
not only strong backgrounds in CCC, 
but also significant knowledge in rel-
evant application domains. Existing 

engineering and computer science 
programs are challenged in teaching 
the comprehensive skills required for 
a successful career in the CPS realm. 
Urgently, computer science and soft-
ware engineering programs need to 
require control engineering courses, 
and traditional engineering programs 
need to include advanced software en-
gineering courses.

CPS technologies are becoming 
the key enablers for building 
smarter infrastructures for 

industrial applications. Growing hu-
man populations consume enormous 
natural resources and require increas-
ingly instrumented and optimized 
food supply chains. Flourishing cities 
require renewable energy systems and 
instrumented transportation infra-
structure. Connected and autonomous 
vehicles combine situational aware-
ness in vehicles with the networked in-
frastructure of the modern city. Rising 
costs put pressure on healthcare and 
elder care, requiring outcome predic-
tion based on improved diagnostics 
using smart medical devices. Assistive 
healthcare systems—including wear-
able sensors, implantable devices, and 
home monitoring systems—are being 
developed to improve outcomes and 
quality of life. Thus, the technologies 
and applications emerging from com-
bining the cyber and physical worlds 
will provide an innovation and incu-
bation engine for a broad range of in-
dustries—creating entirely new mar-
kets and platforms for years to come. 
Our modern societies and economies 
increasingly depend on integrated, 
software-intensive CPS. 
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in modern CPSs. Developing models 
and modeling frameworks for CPS has 
become a mature research field.2–4 
The software engineering community 
has made tremendous strides in de-
signing and operating highly dynam-
ical software systems by developing 
methods and techniques to standard-
ize and distribute CPS components 
and services effectively through au-
tonomic computing5 (for example, 
the Monitor-Analyze-Plan-Execute 
loop operating on a shared Knowledge 
[MAPE-K] base), to control feedback 
in computing systems,6 to deal with 
inherent uncertainty in CPS through 
models at runtime, and to adapt and 
then validate CPS at runtime. Several 
research communities have emerged 
to deal with software engineering 

aspects of CPS, including CPS con-
ferences and workshops (such as 
CPS Week), software engineering for 
adaptive and self-managing systems 
(SEAMS),7 Models@run.time,8,9 as 
well as runtime validation, verifica-
tion, and certification techniques.10

For the past decade, think tanks 
and granting agencies (such as NSF, 
NIST, the National Institutes of Health 
[NIH], EU Horizon 2020, and Europe 
2020) have articulated their vision on 
the future of CPS applications. Their 
tenor is similar: the expectation is that 
the CPS revolution will be more trans-
formative than the IT revolution of the 
past four decades.11,12 

Why is this CPS revolution hap-
pening now? The primary reason is 
the recent confluence of technologies, 
including adaptive systems and run-
time models, an increasingly instru-
mented world due to pervasive sensing 
and actuating capabilities, advanced 
real-time and networked control, an-
alytical and cognitive capabilities, 

and compute and storage clouds. With 
the advent of cognitive intelligent as-
sistants readily available on personal 
devices, human-in-the-loop CPSs are 
proliferating in our lives.13,14 In other 
words, CPS is at the center of a perfect 
technology storm. Countries around 
the world are investing heavily in CPS 
research programs, seeking a techno-
logical and economic edge.1 

There are several terms and fields 
closely related and competing with the 
notion of CPS, including embedded sys-
tems, the Internet of Things (IoT), the 
Industrial Internet (II), the Internet of 
Everything (IoE), machine-to-machine 
(M2M), Industry 4.0, Smarter Planet, 
cyber-physical-human systems (CPHS), 
smart and intelligent systems, and 
adaptive systems. While all these 

fields have their own publications and 
communities, UC Berkeley professor 
Edward A. Lee argues convincingly 
that the CPS term is more founda-
tional and encompassing than these 
related terms, because the term em-
bodies the fundamental engineering 
problem of integrating the cyber and 
physical worlds.2

There are many challenges that 
must be addressed to be able to har-
vest CPS’s rich economic opportuni-
ties. As Sir Francis Bacon said, “If we 
are to achieve results never before ac-
complished, we must expect to employ 
methods never before attempted.”

First and foremost, creating and 
maintaining a skilled workforce to 
support the design, engineering, de-
ployment, and operation of future CPS 
is a significant challenge for industry, 
academia, and governments. CPS engi-
neers, scientists, and developers need 
not only strong backgrounds in CCC, 
but also significant knowledge in rel-
evant application domains. Existing 

engineering and computer science 
programs are challenged in teaching 
the comprehensive skills required for 
a successful career in the CPS realm. 
Urgently, computer science and soft-
ware engineering programs need to 
require control engineering courses, 
and traditional engineering programs 
need to include advanced software en-
gineering courses.

CPS technologies are becoming 
the key enablers for building 
smarter infrastructures for 

industrial applications. Growing hu-
man populations consume enormous 
natural resources and require increas-
ingly instrumented and optimized 
food supply chains. Flourishing cities 
require renewable energy systems and 
instrumented transportation infra-
structure. Connected and autonomous 
vehicles combine situational aware-
ness in vehicles with the networked in-
frastructure of the modern city. Rising 
costs put pressure on healthcare and 
elder care, requiring outcome predic-
tion based on improved diagnostics 
using smart medical devices. Assistive 
healthcare systems—including wear-
able sensors, implantable devices, and 
home monitoring systems—are being 
developed to improve outcomes and 
quality of life. Thus, the technologies 
and applications emerging from com-
bining the cyber and physical worlds 
will provide an innovation and incu-
bation engine for a broad range of in-
dustries—creating entirely new mar-
kets and platforms for years to come. 
Our modern societies and economies 
increasingly depend on integrated, 
software-intensive CPS. 
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How Do You Create an 
Internet of Things 
Workforce? 
 

Internet of Things (IoT) products and cyber-physical 
systems (CPS) are being utilized in almost every 
discipline. According to Forbes, there will be a significant 
increase in spending on the design and development of IoT 
applications and analytics. Furthermore, the most 
significant increase in spending will be in the business-to-
business (B2B) IoT systems (such as manufacturing, 
transportation, and utilities), which is projected to reach 
$267 billion by 2020.1 In addition to B2B, smart products 
are becoming more prevalent, such as thermostats, energy 
monitors, and light bulbs. Products that sense, learn, and 
react to user preferences are gaining popularity.  

There are also CPS/IoT applications for healthcare with the goal of improving a patient’s 
treatment regime. For example, the closed-loop insulin delivery system connecting a glucose 
monitor to an insulin pump can continuously alter the amount of insulin dosed to a patient to 
assist in managing the patient’s blood sugar. In fact, any product that continuously monitors 
patient activity to improve treatment would be an effective IoT application. Imagine how much 
more effective treatment could be for a Parkinson’s patient when a physician has more than a 
static snapshot from an office visit exam. With months of data and information, the physician 
could determine a more effective treatment plan. Accordingly, engineers and computer scientists 
also need the appropriate training to build safe and effective systems, whether part of the IoT or 
not. However, it is not sufficient to simply add one or two IoT or CPS courses to an existing 
program curriculum for students to gain the knowledge necessary to build reliable, efficient, and 
safe CPS or IoT systems.  

It is time for a new engineering discipline that adapts to the reasons why IoT and CPS are 
different than existing engineering disciplines. History has shown that new engineering 
disciplines follow the newest technologies, and IoT and CPS are the newest technology trends. 
Electrical engineering emerged in the late 19th century with the invention of the electric motor. 
Chemical engineering emerged during the Industrial Revolution with the mass production of 
chemicals. Biomedical engineering rolled out in the early 1980s. Even the latest engineering 
discipline—software engineering—emerged as a result of the increased complexity of software 
systems. Now, with the capability of “things” that collect, aggregate, calculate, and send mounds 
of data for actuation, we argue that it is time for a new engineering/computer science discipline 
to emerge that is focused on this space. 
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A college-level program to educate a new workforce with the necessary skills to build effective 
and safe IoT and CPS systems is warranted. We suggest developing CPS and IoT engineering 
programs at colleges and universities that have established engineering departments, given the 
estimate of needing hundreds of thousands of IoT-educated engineers in the near future.2 This 
does not suggest that vocational schools and other educational institutions cannot also help build 
this needed workforce—all help is needed.  

A search on Indeed.com for US-based jobs that mentioned IoT resulted in more than 1,900 job 
opportunities. This doesn’t include open positions in data analytics testing, algorithms, machine 
learning, or security, which are important disciplines in the design and implementation of 
CPS/IoT. In fact, the Bureau of Labor and Statistics predicts a 30 percent increase in jobs related 
to those technical domains by 2026. 

IOT/CPS TRAINING 
Academic institutions might already be considering an IoT-focused computer science degree or 
adapting curriculum from existing programs. To assist with that effort, co-author Voas, along 
with Phillip Laplante, mapped out five “Network of Things” (NoT) primitives that have been 
discussed by the National Institute of Standards and Technology (NIST)4 relative to 
IEEE/ACM’s 2013 computer science curricula knowledge areas (KAs; see Table 1).5  

NoT is a term that applies to both CPS and IoT. The five primitives of all NoT systems include 
sensors (something that measures physical properties, such as RFID), aggregators (software to 
transform data from a sensor), a communication channel (data transmission, such as wired or 
wireless), an eUtility (software or hardware to execute processes, such as a database), and a 
decision trigger (which creates the final result, such as an actuator). Note that any specifically 
purposed NoT might not include all five. For example, some NoTs don’t have sensors.  

The easiest way to think about this is that the “things” are what make IoT unique. Many people 
question whether IoT is just marketing hype or if there is a science behind it. So, what is IoT? 
We’d better know before we start educating people about it. 

IoT is an acronym of three letters. “I” (Internet) existed long before the acronym was termed and 
“o” does not matter, so “T” (things) is the letter in the acronym that we should pay attention to. 
So, the five NoT primitives define the “Lego-like” building blocks for any IoT-based system. 
The primitives are the “things,” and this is where we need to focus our education efforts.  

There are 18 KAs in computer science (for example, architecture and operating systems) that 
correspond well with understanding IoT in terms of the “things.” Voas and Laplante 
recommended a set of topics to consider when creating new curricula or when modifying 
existing computer science curricula.3 Further, if you are looking more at CPS issues than IoT 
concerns, modifying a systems engineering, electrical engineering, or mechanical engineering 
curricula might be worth pursing as well.  

Table 1. IEEE/ACM computer science knowledge areas.5 

1 Algorithms and complexity 10 Networking and communications 

2 Architecture and organization 11 Operating systems 

3 Computational science 12 Platform-based development  

4 Discrete structures 13 Parallel and distributed 
computing 

5 Graphics and visualization 14 Programing languages 

6 Human-computer interaction 15 Software development 
fundamentals 
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7 Information assurance and security 16 Software engineering 

8 Information management 17 Systems fundamentals 

9 Intelligent systems 18 Social issues and professional 
practice 

CPS/IOT PROGRAM STATUS 
We reviewed CPS/IoT-related programs at the top 50 universities ranked by Collegechoice.net 
(an aggregate of US News & World Report and the National Center for Education Statistics) and 
TopUniversities.com (international universities) for IoT and CPS course offerings as of 
December 2017. More than half of those universities (see Table 2) had courses with a CPS/IoT 
focus, most of which were in graduate programs. Interestingly, more than half of those courses 
are taught in electrical engineering and computer engineering programs.  

Table 2. Number of Internet of Things (IoT)/cyber-physical systems (CPS) courses at the top 50 
ranked universities. 

Universities with 
IoT/CPS courses 

Total IoT/CPS 
courses 

Undergrad courses Graduate courses 

28 49 17 32 
 

The course descriptions of those 49 courses reveal that the IoT primitives are covered; however, 
only 11 percent seem to cover all five primitives (see Figure 1). These courses, “Interconnected 
Embedded Systems,” “Networked Cyber-Physical Systems,” “Internet of Things—Intelligent 
and Connected Systems,” and “Body Sensor Networks in the Internet of Things,” appear to be 
introductions to IoT and CPS technical and design understanding. 

  
Figure 1. Number of IoT primitives covered in the courses at the top 50 ranked universities. 

We reviewed more extensively some of the courses in CPS/IoT to gain a deeper understanding of 
the course content and structure. The courses reviewed focused on embedded systems with a 
CPS concentration, and on either CPS or IoT specifically. The difficulty in creating these courses 
is addressing the challenges of a CPS/IoT designer,6 which include heterogeneous network 
technology integration, fault tolerance on the many individual devices in a system, prioritizing 
critical actions during system degradation situations, and distributed system energy management. 

Despite these challenges, there are many open opportunities for course development. In addition 
to course content, there are numerous projects and use cases to include in these courses that 
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would foster real-world experiences for students. For example, creating a “smart city” could 
involve installing sensor boxes around a city to monitor pedestrian or automobile flow to make 
informed decisions about traffic lights, bus stops, or where the next convenience store is located. 
A robot project might also be an effective learning tool by using camera and location sensors on 
the robot and then communicating the information (such as the location of the robot in the room) 
back to an embedded server. Another interesting project might be simulating a miniature factory 
by using a robotic arm and a controller to communicate to the outside world, where an app is 
developed to control the arm. These sample projects could be integrated into CPS or IoT courses.  

Table 3 shows plausible examples of CPS or IoT course content. These examples are also 
mapped to the IEEE/ACM KAs discussed earlier (see Table 1). Considering that these could be 
CPS/IoT courses, they will also map to the five NoT primitives. 

Table 3. Example CPS/IoT courses. 

Course focus Knowledge areas covered 

Embedded systems with more focus on critical thinking 
about the effects of embedded software on the behavior, 
safety, and reliability of a CPS 

1, 2, 3, 4, 10, 11, 12, 14, 
15, 17 

Implementation of functional prototype sensor/control 
networks (wired or wireless through available mobile 
device apps) 

2, 3, 8, 9, 10, 12, 13, 16, 
17 
 

Learning to design embedded and CPS systems with 
real-time behaviors 

1, 3, 4, 9, 10, 11, 12, 16 

CPS applications focusing on resource management, 
timing constraints, distributed sensing, computation, 
control, modeling verification, and testing 

1, 8, 9, 10, 11, 12, 13, 16, 
17, 
 

Embedded controls, field programmable gate array 
design, and server programming 

1, 2, 8, 9, 10, 12, 14, 15, 
16 

CPS architecture and their vulnerabilities to cyber-
attacks 

1, 2, 3, 6, 7, 9, 
10,12,14,17 

IoT physical and logical architecture and functional 
blocks, communications protocols, smart objects, 
security, data analytics, system management, and 
ethical and environmental impact  

1, 2, 3, 6, 7, 8, 9, 10, 12, 
16, 17, 18 

Focus on IoT by using RaaS (Robot as a Service) 
integrating a robot, sensors, and actuators into a cloud 
computing environment 

1, 2, 3, 4, 5, 6, 9, 11, 12, 
13, 14, 15, 16, 17 

Focus on IoT to design and prototype an ambient 
intelligence system 

2, 6, 9, 10, 12, 13, 14, 15, 
16 

A lab implementing the functionality of an entire facility to 
test specific concepts 

2, 8, 9, 10, 11, 12 

RECOMMENDATIONS 
Elective courses are the least onerous way to begin the development of a CPS/IoT curricula. It is 
a challenge to revise an existing academic program and even more challenging to offer a new 
academic program—especially one that is to be accredited.  
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In Table 3, we described examples of elective courses that could combine concepts from the 
major academic programs (for example, electrical engineering or computer science), as well as 
integrating CPS/IoT concepts into the course content. However, this is not a long-term solution 
given the workforce needs for employees with expertise in developing safe, reliable, and secure 
CPS/IoT systems. In other words, elective courses are a quick and easy way to pioneer a 
program and gauge interest among current and future students; however, for a long-term 
solution, academic institutions need to begin to define new curriculums and degrees. One option 
would be certificate programs that eventually grow into full undergraduate or graduate degree 
programs. 

Another approach would be to integrate CPS/IoT concepts into existing program courses by 
developing learning modules. These modules would highlight specific CPS/IoT concepts. For 
example, researchers at Virginia Tech created CPS security-focused learning modules.7 The 
easily accessible learning modules contain a specific learning objective with tools and hands-on 
exercises relevant for conventional embedded systems, control system design, and cybersecurity 
courses. 

There is no doubt that a complete CPS/IoT curriculum will require core skills from multiple 
existing engineering and/or computer science programs. Courses on subjects such as embedded 
systems, computer security, software architecture, software construction, and others will apply. 
Accordingly, the path of least resistance is to create new programs by modifying existing 
programs, as many of these courses might already exist at the institution and only require slight 
modifications. This process can be used with other academic program KAs. This appears to be 
the most efficient way to create new CPS/IoT educational programs that are relevant and timely. 
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I n a relatively short time, deep learn-
ing principles and algorithms have 

transformed how the world processes, 
models, and interprets data.1 For dis-
criminative learning tasks routinely 
integrated into mobile and embedded 
systems—such as recognizing spoken 
words, objects, and faces—deep net-
works have been the state of the art for 
many years. Looking ahead to future 
device-based applications of learning, 
deep models are proving pivotal in the 
development of control algorithms  
for autonomous cars and drones (for 
example, for deep reinforcement learn-
ing). Deep models are also expanding 
into the area of core system issues—
improving, for example, methods for 
encryption and compression.2

The blending of learning algorithms 
and mobile computing taking place 
today is only the beginning. We believe, 
in particular, that deep learning will 
play a prominent role in the evolution of 
smart devices (such as phones, watches, 
and embedded sensors) moving for-
ward. It is therefore of paramount 
importance that we advance our under-
standing of how to simply and effi-
ciently integrate current—and future—
deep learning breakthroughs within 
constrained computing platforms 
(for more information, see the “Deep 
Learning under Constrained Devices”  

sidebar). This, along with continued 
research into the use of deep neural 
networks that support the diverse infer-
ence needs of sensor systems, will help 
produce radical improvements in how 
on-device context modeling and activ-
ity recognition is performed.

The emergence of mobile and embed-
ded forms of deep learning has been 
slowed by the extreme resource over-
head that it can easily introduce. Deep 
networks often contain hundreds of 
layers of interconnected nodes, and 
performing a single classification from 
a frame of sensor data can require com-
putations over potentially hundreds 
of millions of parameters. Model rep-
resentations and inference algorithms 
originally conceived for deep networks 
can easily overwhelm the resources of 
constrained platforms. In response to 
this resource barrier, the past 18 months 
have seen a surge in the investigation 
of resource-efficient deep learning for 
mobile and embedded platforms.

Promising early results are appear-
ing across many domains, including 
hardware,3,4 systems,5,6 and learning 
algorithms.7,8 Likely to further acceler-
ate progress is the rate at which existing 
commercially supported deep learning 
tools, libraries, and frameworks have 
begun to address the specific needs of 
constrained devices (examples include 

TensorFlow, Caffe2, SNPE, Compute 
Library from Google, Facebook, Qual-
comm, and ARM). These tools are 
starting to offer building blocks that 
enable fundamental research in this 
area by simplifying key steps such as 
runtime support on Android devices, 
processor-optimized low/mix preci-
sion matrix multiplication, or access to 
often unavailable heterogeneous device 
processors such as digital signal proces-
sors (DSPs) or GPUs.

In this short article, we provide an 
overview of the progress we have made 
toward overcoming a variety of core 
challenges facing deep learning for 
mobile and embedded devices, while 
also attempting to connect our findings 
to those of the wider community in the 
area. This discussion is largely focused 
on improvements seen within on-device 
execution of deep networks, which 
assumes the models are trained off-
device. This is because execution (that 
is, inference) is the critical first step 
toward deep learning support, and it’s 
the focus of almost all existing work, 
although exploration of on-device 
training has begun. Finally, given space 
constraints, we only superficially touch 
upon the ways in which deep learning 
is changing the face of activity and con-
text recognition,9 again limiting our 
focus to on-device examples.
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DEEP LEARNING UNDER CONSTRAINED DEVICES

The deep learning revolution has been powered by major ad-
vances in training algorithms, leaps in the availability of comput-
ing resources (primarily GPUs), and of course increased access 
to large-scale data. But at the core of any on-device, use of deep 
learning remains a neural architecture that must be efficiently 
executed.

PRIMER ON DEEP LEARNING  
INFERENCE AND ARCHITECTURES
Although a variety of deep model architectures have been de-
veloped, here we briefly describe two popular networks (shown 
in Figure A): deep neural networks (DNNs) and convolutional 
neural networks (CNNs). The role of training algorithms is to set 
the parameters of these neural architectures based on available 
data. This process is almost always assumed to occur off-device, 
and so the device itself is concerned with efficient inference.

Under a DNN, inference follows a feed-forward approach that 
operates on input data segments in isolation. The algorithm starts 
at the input layer and moves layer-wise sequentially while updat-
ing the activation states of all nodes within each layer. The process 
finishes at the output layer when all nodes in the layer have been 
updated. Finally, the inferred class is identified as the class cor-
responding to the output layer node with the greatest activation 
value. DNNs are often used in familiar mobile sensing tasks, such 
as spoken keyword spotting or identifying a speaker, but they’re 
also use in extracting high-level human behaviors and contexts 
from inertial, location,1 and (again) audio sensors.

Primarily used for vision and image-related tasks, CNNs are an 
alternative formulation of deep learning models. A CNN model 
contains one or more convolutional layers, pooling or subsampling 
layers, and fully connected layers. The objective of these layers is to 
extract simple representations from the input data and convert the 
representations into a more complex representation at much coarser 
resolutions within the subsequent layers. Lastly, fully connected lay-
ers often are used to help a CNN make predictions. CNNs can rec-
ognize a place type (such as a kitchen), accurately estimate age and 
gender, or more broadly recognize daily events from even noisy 
complex images, even those from wearable cameras.2 Certain de-
signs of CNN architectures like AlexNet or VGG3 can be specialized 
to support many distinct tasks, and so their particular performance 
on constrained devices can become particularly important.

SYSTEM RESOURCE BOTTLENECKS
Model training is not the only computationally challenging 
process in deep learning. Even executing the straightforward 
inferencing step using a parameter-heavy model on a resource-
limited device must overcome several challenges, including  

limited memory, limited computational power, and an unusual-
ly large inference time.4,5 For example, deep models often have 
millions of parameters, and their storage on limited memory 
devices quickly becomes infeasible. Under low memory condi-
tions, neural networks are often represented with low-precision 
parameters (8-bit or 16-bit) or by quantizing the weights of 
the architecture. Remarkably, even when heavily compressed 
with such methods, deep architectures can retain much of their 
accuracy. However, due to runtime memory limits, performing 
inference might still require frequent paging operations.

Inference time is also impacted by the overall number of 
computations. The availability of multiple cores and low-power 
processors on mobile platforms can be used to parallelize partial 
state updates of nodes to improve the inference time. More-
over, inferences often come with real-time requirements. Local 
execution of the memory- and computation-optimized models 
can potentially meet the requirements, overcoming intermittent 
connectivity problems prevalent in cloud-based systems.

Also, when running deep models continuously on embedded 
or wearable devices, high energy efficiency is crucial for maintain-
ing a prolonged battery life. The energy consumption, among 
many things, mainly depends on the amount of computations, 
the use of low-power processors—such as digital signal processors 
(DSPs)—and the number of cache accesses. Thus, energy opti-
mization requires a detailed understanding of the deep-model-
execution pipeline on heterogeneous hardware platforms.

REFERENCES

 1. J. Zhang et al. “DNN-Based Prediction Model for Spatio-Temporal 
Data,” Proc. 24th ACM SIGSPATIAL Int’l Conf. Advances in Geographic 
Information Systems (GIS), 2016, article no. 92.

 2. D. Castro et al., “Predicting Daily Activities from Egocentric 
Images Using Deep Learning,” Proc. 2015 ACM Int’l Symp. Wearable 
Computers, 2015, pp. 75–82.

 3. K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks 
for Large-Scale Image Recognition,” Proc. Int’l Conf. Learning 
Representations (ICLR), 2015; https://arxiv.org/pdf/1409.1556.pdf.

 4. N.D. Lane et al., “An Early Resource Characterization of Deep 
Learning on Wearables, Smartphones, and Internet-of-Things 
Devices,” Proc. 2015 Int’l Workshop on Internet of Things towards 
Applications (IoT-App), 2015, pp. 7–12.

 5. J. Albericio et al., “Cnvlutin: Ineffectual-Neuron-Free Deep Neural 
Network Computing,” Proc. 43rd Int’l Symp. Computer Architecture 
(ISCA), 2016, pp. 1–13; https://doi.org/10.1109/ISCA.2016.11.

Hidden layers

(1) (2)

Input layer
Output layer

Input Fully connected
layers

Pooling
layer

Convolution
layer

Output
layer 

Convolution
layer

Figure A. Two popular neural network architectures: (1) deep neural networks (DNNs) and (2) convolutional neural 
networks (CNNs).
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putations over potentially hundreds 
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on improvements seen within on-device 
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assumes the models are trained off-
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the focus of almost all existing work, 
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training has begun. Finally, given space 
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upon the ways in which deep learning 
is changing the face of activity and con-
text recognition,9 again limiting our 
focus to on-device examples.
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EARLY SMARTPHONE  
SENSING RESULTS
In late 2014, we began our explora-
tion into deep learning, starting with 
smartphones. These early investigations 
were motivated by two questions. First, 
could typical mobile and embedded 
sensing tasks, such as activity recogni-
tion and context sensing, be improved 
by the same deep learning approaches 
that were revolutionizing so many 
other inference domains? Second, how 
feasible was it to use these notoriously 
resource-heavy modeling techniques for 
user devices such as smartphones?

Fast forward to today, and deep 
networks for activity recognition—
and smartphone sensing in general—
have become much more mainstream. 
Researchers are developing powerful 
methods to train various deep architec-
tures, raising the level of accuracy for 
models of human behavior.9 Similarly, 
the ability to push neural networks 
into phone DSPs for low-power opera-
tion, a core innovation in our 2014 
work (discussed next),10 is an upcom-
ing feature of Google’s TensorFlow in 
partnership with Qualcomm.11

Deep Networks for Activity 
Recognition and Audio Sensing
We devised early deep learning solutions 
for well-known smartphone recogni-
tion tasks to quantify the benefits for 
on-device sensing.10,12 A unique aspect 
of our approach was our focus on build-
ing constrained deep networks suitable 
for mobile and embedded devices. We 
wanted to know if deep learning was a 
viable and transformative replacement 
for the existing classifiers of mobile con-
text and activities, grounded in shallow 
learning techniques. A core finding of 
our work was that for a range of sens-
ing tasks, generic (nontask specific) 
deep networks could outperform state-
of-the-art hand-selected features and 
shallow models—even when the deep 
networks were constrained to a size that 
made them more resource efficient than 
shallow alternatives.10

We then applied these findings to the 
audio domain and developed Deep-
Ear,12 a system for training and execut-
ing small-footprint deep neural net-
works (DNNs)—specifically, Restricted 
Boltzmann Machines (RBMs)—which 
were able to classify many audio con-

texts despite being a modest size of 
2.3 million parameters each. As Table 
1 summarizes, we stress-tested Deep-
Ear, as well as a range of task-specific 
mobile audio classifiers, and on average, 
the accuracy was more than 30 percent 
higher for each task using DeepEar, 
even though each DNN was designed 
to execute not only within the CPU but 
even in the phone’s DSP, a critical factor 
we explain next.

Low-Power Deep Networks  
via Heterogeneous Compute
Just as GPUs are a primary enabler for 
scaling up the training of larger and 
larger deep networks, we have found 
that non-CPU heterogeneous proces-
sors (such as DSPs) play a key role in 
scaling down deep networks for con-
strained devices. The DSPs in phones, 
for example, are sufficiently energy-effi-
cient to compute on sensor data almost 
continuously while still supporting a 
device battery life beyond 24 hours.

Motivated by such efficiencies, we exe-
cuted our proposed activity and audio 
targeting deep networks within the con-
straints of phone DSPs of the time—in 

TABLE 1 
A comparison of accuracy between our low-resource generic-task deep classifiers and existing hand-designed and task-specific 

(shallow) classifiers from the literature for various mobile sensing tasks. Note, reported microphone accuracy is lower than might be 
expected (for example, speaker identification), because experiments were conducted under severe acoustic conditions. (Experimental 

setup and classifier specifications appear elsewhere.12,13 For each shallow classifier, we indicate the original venue of publication.)

Device type Sensor Sensing task
Task-specific shallow  
classifier (%)

Generic-task deep 
classifier (%)

Smartphone Microphone Ambient scene  
detection

81 (baseline from MobiSys 2009) 86

Smartphone Microphone Stress detection 62 (UbiComp 2012) 82

Smartphone Microphone Emotion recognition 72 (UbiComp 2010) 81

Smartphone Microphone Speaker identification 36 (Pervasive 2011) 57

Smartwatch Accelerometer, gyroscope Gesture recognition 68 (Activity Recognition in Perva-
sive Intelligent Environments 2010)

72

Smartwatch Accelerometer, gyroscope Physical activity  
recognition

82 (SenSys 2010) 93

Smartwatch Light sensor, magnetic sen-
sor, microphone, tempera-
ture sensor, proximity sensor

Location detection 
(indoor/outdoor)

87 (SenSys 2014) 94
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particular, within memory footprints 
of just 8 Mbytes (using the Hexagon 
DSP of the Qualcomm Snapdragon 
800).10,12 DeepEar, under the Hexagon 
DSP, could run for 24 hours while using 
just 6 percent of a typical phone battery 
life with interleaved DNNs supporting 
four different audio tasks. In our follow-
up system, DeepX,5 we showed that by 
dividing models across a wide range of 
commodity phone processors (CPUs, 
DSPs, and GPUs), such efficiency gains 
were possible for not just small-scale 
DNNs but also other architectures, 
including even large image-based deep 
networks (such as the CNN AlexNet 
with 61 million parameters).

Our algorithms in DeepX allowed 
neural networks to be partitioned 
across different processor types within 
a local device using a runtime form of 
model compression that used singular 
value decomposition (SVD) to cope 
with processor constraints and mini-
mize inter-processor overhead. Our 
smartphone prototype (on the Snap-
dragon 800) showed that this let various 
well-known deep models execute with 
efficiencies far in excess of baselines 
based on single processors or model 
compression alone (our prototype was 
up to seven times more energy efficient, 
for approximately a five percent loss in 
accuracy).

VGG AND MORE  
ON A SMARTWATCH
As techniques for deep learning on 
phones have matured, we have started 
studying how these issues manifest under 
smartwatches. The capabilities (com-
pute and memory) of watches, coarsely 
speaking, lag phones often by one or two 
device generations; a typical Android 
smartwatch has not only 512 Mbytes of 
RAM and a multicore CPU but also a 
GPU and DSP. Watches are also natural 
for performing continuous and diverse 
behavior and context inferences—unlike 
phones, which can spend most of the day 
in pockets and bags. These two factors 
make it both conceivable and warranted 
for watches to join phones in performing 
nontrivial deep learning.

Transforming Watches  
from Smart to Deep
As in DeepEar,12 our first proposed 
watch,13 deep learning models were 
applicable to a range of common watch 
sensing tasks (shown in Table 1). Just 
as the DeepEar experiments had done 
for the smartphone audio domain, we 
demonstrated that typical inertial and 
wearable sensor data (such as acceler-
ometer, barometer, and magnetometer 
data), fed into DNNs suitable in size for 
watches (around 200,000 parameters), 
could outperform existing task-agnostic 
classifiers from the literature.

This result further added to the 
understanding of feature representa-
tion learning by showing that these 
DNN models, produced by a single (off-
watch) training framework, could out-
perform custom per-task combinations 
of hand-selected features and shallow 
models. On average, tasks were more 
than 7 percent more accurate com-
pared to the best performing manually 
constructed classifier, while exerting a 
reasonable overhead.13 For example, a 
commodity LG smartwatch could run 
one such RBM at 3 Hz and still main-
tain a 32-hour battery life.

Leveraging Layer  
Separation and Compression
Most examples of deep models—
designed to process images, for exam-
ple—dwarf the DNNs just described. 
The well-known VGG architecture can 
perform object recognition (and many 
other visual tasks) but at a cost of 138 
million parameters or more. To prove 
the potential of smartwatches to sup-
port such demanding deep models, we 
showed that the VGG can be run locally 
on commodity smartwatches with a 
loss of approximately 3 percent accu-
racy (a tuneable parameter).7 This was 
achieved primarily through a method 
applicable to any CNN, which reduces 
the computational bottleneck of apply-
ing thousands of convolutional kernels 
through what we call kernel separation. 
This technique replaces the 2D kernels 
defined during training with a pair of 
1D vertical and horizontal kernels that, 

when used together, produce a result 
that approximates that of the original 
2D version.

We coupled this optimization with 
the earlier described SVD-based 
model-compression technique for the 
fully connected layers at the end of the 
CNN, which simplifies the description 
of how nodes are connected and allows 
a further reduction in the number of 
parameters. We studied this approach 
on commodity watches under a vari-
ety of deep models, with VGG being 
the most resource intensive.7 VGG, for 
example, executes in just under 1.2 sec-
onds (a 2.7 times gain over conventional 
implementations) on LG smartwatches. 
These results, under some of the heavi-
est examples of deep models, pair with 
our low-resource DNN-based findings 
to show how deep solutions can not 
only improve over shallow methods but 
also be adopted in watches.

OVERCOMING SEVERE 
EMBEDDED CONSTRAINTS
As we have discussed, resource con-
straints present nontrivial barriers for 
deep learning on phones and watches. 
However, within embedded processors, 
these issues are magnified to extreme 
levels. Smartphones can address multi-
ple Gbytes of RAM, but embedded pro-
cessors, such as the ARM Cortex series, 
typically are limited to just hundreds or 
even tens of Kbytes. Similar resource 
differentials also extend into energy and 
compute domains. For these reasons, 
unlike the proliferation of phone-based 
deep learning in the last 18 months, few 
examples of deep learning under embed-
ded constraints currently exist.

Toward filling this void, promising 
results are being seen in the form of 
binary deep architectures that are com-
posed solely of 1-bit weights14 instead of 
32-bit or 16-bit parameters. Such archi-
tectures offer incredibly small models 
and remove the need for expensive mul-
tiplication operations, but their ability 
to perform well with real-world prob-
lems is still an open question. Solutions 
more closely tied to hardware will also 
undoubtedly play a key role in the area, 
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mobile audio classifiers, and on average, 
the accuracy was more than 30 percent 
higher for each task using DeepEar, 
even though each DNN was designed 
to execute not only within the CPU but 
even in the phone’s DSP, a critical factor 
we explain next.

Low-Power Deep Networks  
via Heterogeneous Compute
Just as GPUs are a primary enabler for 
scaling up the training of larger and 
larger deep networks, we have found 
that non-CPU heterogeneous proces-
sors (such as DSPs) play a key role in 
scaling down deep networks for con-
strained devices. The DSPs in phones, 
for example, are sufficiently energy-effi-
cient to compute on sensor data almost 
continuously while still supporting a 
device battery life beyond 24 hours.

Motivated by such efficiencies, we exe-
cuted our proposed activity and audio 
targeting deep networks within the con-
straints of phone DSPs of the time—in 

TABLE 1 
A comparison of accuracy between our low-resource generic-task deep classifiers and existing hand-designed and task-specific 

(shallow) classifiers from the literature for various mobile sensing tasks. Note, reported microphone accuracy is lower than might be 
expected (for example, speaker identification), because experiments were conducted under severe acoustic conditions. (Experimental 

setup and classifier specifications appear elsewhere.12,13 For each shallow classifier, we indicate the original venue of publication.)

Device type Sensor Sensing task
Task-specific shallow  
classifier (%)

Generic-task deep 
classifier (%)

Smartphone Microphone Ambient scene  
detection

81 (baseline from MobiSys 2009) 86

Smartphone Microphone Stress detection 62 (UbiComp 2012) 82

Smartphone Microphone Emotion recognition 72 (UbiComp 2010) 81

Smartphone Microphone Speaker identification 36 (Pervasive 2011) 57

Smartwatch Accelerometer, gyroscope Gesture recognition 68 (Activity Recognition in Perva-
sive Intelligent Environments 2010)

72

Smartwatch Accelerometer, gyroscope Physical activity  
recognition

82 (SenSys 2010) 93

Smartwatch Light sensor, magnetic sen-
sor, microphone, tempera-
ture sensor, proximity sensor

Location detection 
(indoor/outdoor)

87 (SenSys 2014) 94
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such as the unique co-design opportu-
nities for embedded-scale deep models 
that are built for field-programmable 
gate arrays processors,3 or even emerg-
ing small form-factor deep learning 
accelerators (see, for example, https://
uploads.movidius.com/1463156689-
2016-04-29_VPU_ProductBrief.pdf).

Sparse Compression for  
Embedded Processors
Our contribution to the embedded area 
has been to devise a new form of model 
compression7 that enables conventional 
DNNs to both fit and execute within the 
embedded processors, such as the ARM 
Cortex M3, and even the ARM Cortex 
M0! With this technique, fully connected 
layers of the DNN are represented using 
a sparse dictionary. As shown in Figure 1, 
dense matrices that capture the pair-wise 
dependencies of nodes (that is, weight 
matrices) are replaced with a code-book 
and sparse matrix that, together, closely 
approximate the dense original. We dis-
covered a sparse-coding formulation that 
lets this approximation (and therefore the 
model accuracy) remain high. The dic-
tionary is trained from the initial model 
representation, and a large saving in com-
putation and memory results because 
nonzero elements can be ignored.

Compute savings under our approach 
are even further magnified, because, 
at execution, high-efficiency sparse 
matrix multiplication algorithms can 
be adopted in favor of conventional 
varieties that assume dense matrices. 

Although this method is only applicable 
to fully connected layers, it addresses 
the central embedded bottleneck of 
model size and still remains broadly 
useful, because the operations opti-
mized are a key component to alterna-
tives such as recurrent and convolu-
tional architectures.

Experiences on the ARM Cortex
To measure the gains of our sparse- 
coding method for embedded proces-
sors, we tested DNNs for two audio 
tasks: speaker recognition and classifi-
cation of the acoustic environments. We 
adopted an existing DNN architecture 
and training methods designed for low-
resource platforms while still maximiz-
ing audio task robustness. Our findings 
showed, for example, that at the expense 
of 2 percent in accuracy, model com-
pression by sparse coding can reduce 
these already optimized models by a 
factor of approximately 17 times for 
both tasks. In the case of speaker recog-
nition, DNNs executed within our run-
time that could leverage the sparsity of 
model representation showed a tenfold 
improvement in execution time within 
both ARM Cortex processors.

These gains make it feasible to run 
what are normally smartphone-class 
audio models in severely constrained 
processors. However, work remains to 
make deep models of this scale com-
pletely practical, because they still can’t 
execute these models in real time— 
execution is still in the order of tens of 

seconds even to process a single five-
second audio clip.

LOCAL EXECUTION  
OF MULTIPLE DEEP MODELS
Virtually all of the progress made thus 
far in mobile and embedded deep learn-
ing assumes that a single model executes 
on a constrained device. This is natural, 
because even a single deep model can 
present considerable technical challenges. 
However, most devices and applications 
will need to execute multiple models  
as part of their daily operations. For 
example, a wearable camera likely won’t 
just recognize objects; it will also identify 
people and track facial expressions.

Between-model optimization oppor-
tunities exist most often when the col-
lection of models perform related tasks 
(like image models), because each is 
trained independently, which lets natu-
ral redundancies emerge. For example, 
models that perform face recognition 
and object recognition will both learn 
layers that perform a type of edge detec-
tion during training, even though this 
operation could, in theory, be shared. 
Optimization opportunities such as this 
present an important class of perfor-
mance improvements that has received 
little attention thus far.

Multiple Model Inference Pipeline
As a first step in addressing this issue, we 
designed an inference pipeline for wear-
ables that targets the local execution of 
multiple image-based CNNs.15 This 

≈
·

m × n m × k k × n

Zero elements
(majority)

Non-zero
elements

Weight matrix (dense) Activation matrix (sparse)Code Book (dense)

Figure 1. Illustration of our sparse-coding approach that factorizes dense matrices typically necessary to describe the connectivity 
between layers. A single dense matrix is approximated with two matrices; one is the weight code-book and the other is the sparse 
layer connectivity descriptor. We note a similar factorization is used in DeepX (not shown), but sparse coding is replaced by a 
light-weight singular value decomposition (SVD)-based method.
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pipeline builds on a single fundamen-
tal optimization insight—namely, that 
CNNs are comprised of both compu-
tation-heavy convolutional layers and 
memory-heavy fully connected layers. 
Although convolutional layers only 
lightly tax the memory resources, they 
are computationally demanding. In 
contrast, fully connected layers place 
the exact opposite resource demands.

Due to these orthogonal resource 
demands of memory and compute, it’s 
possible to schedule and batch layers 
together from multiple models to better 
maximize the resources of constrained 
devices and avoid bottlenecks that pre-
vent multiple deep models from being 
executed. Our layer-centric execution 
framework for the inference stage of 
multiple CNNs focuses on optimal 
scheduling and batching decisions for 
device performance with a global view 
of all models, while still adhering to the 
layer dependencies of the neural net-
work architecture.

Beyond this core idea, the execution 
framework incorporates memory cach-
ing of frequently used fully connected 
layers, selective use of SVD-based com-
pression (described earlier), and logic 
that identifies the visual similarity in 
consecutive images to avoid unneces-
sary operations. Although designed for 
CNNs, the underlying concepts of this 
pipeline can generalize to other deep 
architectures.

DeepEye Wearable Camera
To study this multiple model pipeline, 
we integrated it within DeepEye—a 
prototype wearable camera based on a 
commodity processor (the Qualcomm 
Snapdragon 410) that offers execu-
tion of multiple CNN models without 
offloading computation to the cloud. 
DeepEye supports two use cases: life-
logging and vision assistance. Lifelog-
ging seeks to log various everyday user 
experiences, with DeepEye realizing 
this through CNNs that can recognize 
objects, places, and faces and infer 
important image regions and how 
memorable an image is for the user.  
In contrast, vision assistance aims to 

help users who have low-vision capa-
bilities by applying the same deep mod-
els that detect faces or objects, along 
with additional CNNs that infer age, 
gender, and emotions.

We compared the performance of 
DeepEye against the serial execution 
and single-model optimization alter-
natives. Experiments revealed that the 
latency for executing the multimodel 
inference pipeline is 10.10 seconds 
and 8.2 seconds for lifelogging and 
vision assistance, respectively (gains 
of 1.7 and 1.88 times over baselines, 
respectively).15 These gains translate 
into a battery life of nearly 20 hours 
(1.4 times gain over the baseline), 
assuming images are captured every 
30 seconds.

D eep learning on constrained 
devices, such as phones, watches, 

and even embedded sensors, is already 
well on its way to becoming main-
stream. This is being enabled by a 
growing community of academic 
and industrial researchers who are 
bridging the worlds of machine learn-
ing, mobile systems, and hardware 
architecture.

Looking toward what is next, in the 
short term, we’re likely to see continued 
leaps in activity and context-recogni-
tion accuracy, as insights from deep 
learning continue to propagate. We’re 
also likely to see not just inference but 
also training being performed more 
routinely on devices. More funda-
mentally, applications of deep learn-
ing today are largely limited to clas-
sification tasks, yet the broader trend 
is for these algorithms to perform a 
wider range of computation. Within 
constrained devices, the potential 
definitely exists for them to begin to 
perform control and decision tasks, 
as well as more application logic, 
where their ability to learn and adapt 
dynamically to complex conditions 
might overcome some of the more 
brittle characteristics of sensory sys-
tem behavior that have proven diffi-
cult to overcome. 
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for the job market and considers the 
question of whether, in the long run, 
IoT will be used as a source of good 
or evil.

In our Smartphones department, 
Nayeem Islam, Saumitra Das, and Yin 
Chen describe an approach to protect-
ing mobile devices from malicious 
events using machine-learning tech-
niques. They propose detecting mali-
cious apps using both static analysis 
and runtime behavior analysis. The 
runtime system is trained offline using 
a binary classifier and then performs 
online detection of both benign and 
malicious behavior based on this train-
ing. The authors make a very good 
point that, in the future, cyber security 
will be performed by machine-learn-
ing attackers and machine-learning 
defenders! The question will be whose 
AI will be better.

In our Human Augmentation 
department, Kai Kunze, Kouta Min-
amizawa, Stephan Lukosch, Masa-
hiko Inami, and Jun Rekimoto discuss 
their efforts to create superhuman  
sports and sporting events. They 
explore different approaches to this 
idea, including enhancing human capa-
bilities through the use of technology,  
exploring ways in which technology 
can make the sports more enjoyable 
to play and watch, and improving  
training methods to help humans 
become better within the limitations 
of the human body. They have even 
created an entirely new sport that 
uses augmented reality and gesture 
recognition—and it’s commercially 
available in Japan! Finally, they have 
founded a superhuman sports society 
in Japan and are looking at hosting 
superhuman sporting events in the 
coming years. For all of you sports 
fans, this is an area to watch as this 
field of superhuman sports takes off! 
(Also, look for our special issue on 
Human Augmentation next year; see 
the Call for Papers at www.computer.
org/pervasive-computing/2017/02/16/
augmenting-humans-call-for-papers.)

Another area to watch is in the medi-
cal field. Our Pervasive Health depart-

ment presents an effort to establish a 
National Center for Excellence in the 
US focused on collecting mobile sen-
sor data and enabling researchers to 
turn that data into valuable knowledge  
that can improve the lives of those liv-
ing with chronic health conditions. 
The effort is truly cross-disciplinary, 
with medical and behavioral experts 
working with computer scientists and 
electrical engineers. This will be an 
exciting space to watch in the coming 
years, as I expect that the collected 
data will enable new results to reach 
patients more quickly. My hope is that 
this effort can be expanded over time 
to include data and researchers from 
around the world!

the effort to standardize the collec-
tion of medical data is necessary 

and admirable. I wish more people 
would take this approach. We need 
similar infrastructures for smart cities 
data and beyond. We could take this as 
a lesson for our power infrastructure 
as well!  
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such as the unique co-design opportu-
nities for embedded-scale deep models 
that are built for field-programmable 
gate arrays processors,3 or even emerg-
ing small form-factor deep learning 
accelerators (see, for example, https://
uploads.movidius.com/1463156689-
2016-04-29_VPU_ProductBrief.pdf).

Sparse Compression for  
Embedded Processors
Our contribution to the embedded area 
has been to devise a new form of model 
compression7 that enables conventional 
DNNs to both fit and execute within the 
embedded processors, such as the ARM 
Cortex M3, and even the ARM Cortex 
M0! With this technique, fully connected 
layers of the DNN are represented using 
a sparse dictionary. As shown in Figure 1, 
dense matrices that capture the pair-wise 
dependencies of nodes (that is, weight 
matrices) are replaced with a code-book 
and sparse matrix that, together, closely 
approximate the dense original. We dis-
covered a sparse-coding formulation that 
lets this approximation (and therefore the 
model accuracy) remain high. The dic-
tionary is trained from the initial model 
representation, and a large saving in com-
putation and memory results because 
nonzero elements can be ignored.

Compute savings under our approach 
are even further magnified, because, 
at execution, high-efficiency sparse 
matrix multiplication algorithms can 
be adopted in favor of conventional 
varieties that assume dense matrices. 

Although this method is only applicable 
to fully connected layers, it addresses 
the central embedded bottleneck of 
model size and still remains broadly 
useful, because the operations opti-
mized are a key component to alterna-
tives such as recurrent and convolu-
tional architectures.

Experiences on the ARM Cortex
To measure the gains of our sparse- 
coding method for embedded proces-
sors, we tested DNNs for two audio 
tasks: speaker recognition and classifi-
cation of the acoustic environments. We 
adopted an existing DNN architecture 
and training methods designed for low-
resource platforms while still maximiz-
ing audio task robustness. Our findings 
showed, for example, that at the expense 
of 2 percent in accuracy, model com-
pression by sparse coding can reduce 
these already optimized models by a 
factor of approximately 17 times for 
both tasks. In the case of speaker recog-
nition, DNNs executed within our run-
time that could leverage the sparsity of 
model representation showed a tenfold 
improvement in execution time within 
both ARM Cortex processors.

These gains make it feasible to run 
what are normally smartphone-class 
audio models in severely constrained 
processors. However, work remains to 
make deep models of this scale com-
pletely practical, because they still can’t 
execute these models in real time— 
execution is still in the order of tens of 

seconds even to process a single five-
second audio clip.

LOCAL EXECUTION  
OF MULTIPLE DEEP MODELS
Virtually all of the progress made thus 
far in mobile and embedded deep learn-
ing assumes that a single model executes 
on a constrained device. This is natural, 
because even a single deep model can 
present considerable technical challenges. 
However, most devices and applications 
will need to execute multiple models  
as part of their daily operations. For 
example, a wearable camera likely won’t 
just recognize objects; it will also identify 
people and track facial expressions.

Between-model optimization oppor-
tunities exist most often when the col-
lection of models perform related tasks 
(like image models), because each is 
trained independently, which lets natu-
ral redundancies emerge. For example, 
models that perform face recognition 
and object recognition will both learn 
layers that perform a type of edge detec-
tion during training, even though this 
operation could, in theory, be shared. 
Optimization opportunities such as this 
present an important class of perfor-
mance improvements that has received 
little attention thus far.

Multiple Model Inference Pipeline
As a first step in addressing this issue, we 
designed an inference pipeline for wear-
ables that targets the local execution of 
multiple image-based CNNs.15 This 
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Figure 1. Illustration of our sparse-coding approach that factorizes dense matrices typically necessary to describe the connectivity 
between layers. A single dense matrix is approximated with two matrices; one is the weight code-book and the other is the sparse 
layer connectivity descriptor. We note a similar factorization is used in DeepX (not shown), but sparse coding is replaced by a 
light-weight singular value decomposition (SVD)-based method.
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COLUMN: THINK PIECE 

Critical Failure 
Computer-Aided Instruction and the Fantasy of 
Information 

The history of the use of various kinds of computers 

in education involves frequent triumphalist claims 

about the inevitable automation of instruction and 

equally frequent declarations of the failure of this 

project. This article situates both types of claims 

within a broader cultural understanding, one that holds that the human world is 

fundamentally informational and therefore amenable to improvement by computers. 

In the pages of this magazine, Joy Rankin called for a history of social 
computing, encouraging historical scholarship to examine not only the 
successive engineering feats that produced modern computers but also 
“the activity of computing as a social and cultural phenomenon.”1 
Central to this pursuit would be “an important but little studied area,” 
the history of education and computers. This project might include 
records of educational computing projects (such as PLATO, the com-
puter system that Rankin wrote about), software and logs created by 
students across various sites, and exploration of the range of conflict-
ing meanings ascribed to computers and computing.1 In what follows, 
I take up the last part of this challenge by asking about a central com-
ponent of the meaning of social computing: the persistent vison of rad-
ically improving education through various forms of “computer-aided 
instruction.” Just as the promise that computers will radically change 
education for the better has persisted for decades, so too have con-
stant, bitter reports of the failure of computers to make good on this 
promise. The history of the use of computers in education is a story 
that oscillates between triumphant declarations of the arrival of an im-
minent future and equally vehement announcements of present failure.  

Experts and hucksters alike have attempted to replace the teacher, the 
book, and the chalkboard as the primary media of education for much 
of the 20th century.2 Early adopters of radio, then motion pictures, 
then television all claimed to be on the cusp of reforming instruction 
based on a new kind of educational media. These attempted transfor-
mations never quite happened, and these emergent media gradually 
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found their places as supplements to human-led, bibliocentric, face-to-face instruction. For over 
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information age, a clever compression of the worlds of knowledge, leisure, work, play, research, 
and finance into the space of information.14 An all-purpose machine for an all-purpose concept.  
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A stark counter-discourse of failure animates the history of computer-aided instruction in both 
popular and academic accounts. In a matter-of-fact dismissal of technological solutionism writ-
ten in 1995, Alfred Bork—physicist, computer scientist, and foundational figure in the design of 
interactive, educational multimedia—asked, “Why Has the Computer Failed in Schools and Uni-
versities?”15 Building on decades of research and teaching, Bork leveled a stern indictment of the 
state of the art of computer-mediated pedagogy by insisting, “We could have rebuilt education 
with technology many years ago.”15 Bork’s complaint identified several culprits, including an 
emphasis on hardware rather than on learning or students, “elitist” software designed exclusively 
for expert users, and the pointless pursuit of innovation. Bork’s broadside placed blame not on 
machines themselves, but on humans who refused to take advantage of the beneficial aspects of 
computers, their power, their organization, their logic. In this version of the story, it is humans 
who have become idiots by missing out on an essential quality of computers that could transform 
teaching and learning for the better, if only humans would get with the program.  

Bork’s fiery editorial evokes a feeling of world-weariness, a sense of fatigue at being forced to 
point out what is so indisputably self-evident. If the accomplishment of this self-evident link be-
tween computers and their value in instruction predates the birth of the personal computer, it has 
also survived its demise. For several years, I studied an attempt to use successors to the personal 
computer in urban education. During a period in 2013 to 2015, many schools in Southern Cali-
fornia that serve minoritized communities, primarily Black and Latino, set out to provide every 
teacher, student, and administrator with a tablet computer to “close the digital divide and level 
the playing field, not only with educational access but technological access.”16 What is most 
striking about these projects is how insistently they call back to Apple’s “special ways” of mak-
ing education better, and also to Bork’s insistence that machines, if let to do their work, could 
correct troubled schools. What these attempts to introduce a certain kind of computing in the 
poorest schools of Los Angeles produced was spectacular failure, one imputed not to tablet com-
puters, but to the schools who refused to use them correctly.17 This points to the importance of 
the ever-changing material forms of information and media technology, a way they have of keep-
ing themselves new.18 But the persistence of the commonsense assertion that computers in any 
form can reinvent instruction also points to a willful, collective suspension of disbelief. 

Public failure of a technological project is a moment ripe for analysis, a way “to think of the so-
cial in terms of unfinished stories.”19 In the case of computers applied to education, failure has a 
way of reinforcing a story about how improvements in computer technology turn into improve-
ments in society, despite all evidence to the contrary. At stake in the always unfinished project 
started by Gerard, Gates, Jobs, Wozniack, and others and kept alive by Bork and Wired maga-
zine is not just the promotion of any particular regime of computing in instruction (since many 
kinds of computers and devices are already collecting dust or waiting for repair in any given 
school), but the belief that the world can be organized and improved by computing. The “special 
ways” that computing can improve work, school, government, and play are norms built on a de-
cidedly narrow conception of information, a progressive and optimistic vision that takes the nat-
ural sciences as an exemplar for all forms of knowledge transmission and communication. 
Computers and education are only “made for each other” (as Bork put it) in a cosmology where 
the world is made of information, that banal and mysterious ether that is both fuel and precipitate 
of global capitalism. The trope of failure is, in short, symptomatic of a powerful fantasy that sub-
sumes all actual and potential human knowledge into flows of machine-readable information. In 
such a vison, it is only a matter of time before all learning and thought become informational, 
despite the constant refusal of the world to conform to this structure.20 If we recognize that very 
little of life resembles information processing, the social history of computing might suggest that 
it is the foundational myth of information that has failed rather than humans or machines alone. 
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SOUNDING BOARD

WITH GLOBAL SOFTWARE engineer-
ing (GSE) becoming standard practice, 
today’s software engineering students 
will be tomorrow’s global software en-
gineers. So, the education systems un-
derpinning the profession will need to 
change accordingly. However, current 
approaches to teaching software engi-
neering are outdated and lack authen-
ticity, as Florian Matthes and his col-
leagues noted:

When considering the personal require-
ment today’s software engineers are 
facing in their daily work life, it is 
surprising to see that teaching GSE at 
universities is still in its infancy.1

GSE is an established � eld, and 
nearly all practitioners and academ-
ics agree that graduating students must 
have experience in it. A report from the 
20th Annual Conference on Innovation 
and Technology in Computer Science 
Education reviewed the GSE education 
literature, exposed the challenges to 
teaching GSE, and provided a frame-
work for meeting these challenges in a 
university setting.2

To stimulate debate on how to change 
current approaches to teaching software 
engineering to re� ect the global work-
place, Sarah Beecham asked Tony Clear, 
Daniela Damian, John Barr, John Noll, 

and Walt Scacchi to discuss how they 
inject realism into their courses. (This 
Oxford-style debate took place at the 
GSE education workshop at UC Irvine 
in August 2016; for workshop details, 
visit gse.sivrex.com.) Although they all 
agreed that changes are necessary, their 
approaches differed considerably. Clear 
and Damian argued that the best way 
to emulate the workplace is to engage 
in cross-university, multisite courses. 
In contrast, Barr suggested that having 
students contribute to open source proj-
ects gives them real-world experience 
without the overhead involved in cross-
university courses. Finally, Noll and 
Scacchi argued for using online simula-
tions and games to provide students a 
range of experiences that wouldn’t be 
possible within the constraints of a uni-
versity term.

The following provides an overview 
of the approaches they discussed, in 
their own words.

The Multisite, Cross-University 
View (Clear and Damian)
In our work with students, we seek to 
conduct authentic global virtual collabo-
rations in cross-university courses. Our 
key goals are to develop global collabor-
ative capabilities, develop cross-cultural 
understanding, and demonstrate the 
challenges and complexities of working 

How Best to Teach Global 
Software Engineering?
Educators Are Divided

Sarah Beecham, Tony Clear, Daniela Damian, John Barr, John Noll, and Walt Scacchi
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in global virtual teams, thereby fos-
tering international understanding, 
peace, and global sustainability.

In doing so, we’ve also challenged 
ourselves to work with global col-
leagues in complex, sophisticated 
ventures. We’ve taken what has of-
ten been pioneering work, in which 
the course becomes a living labora-
tory, as an opportunity to engage 
students in research-based teaching. 
Through this teaching, we model 
and encourage inquiry-based learn-
ing. This form of teaching or learn-
ing isn’t easy or comfortable, and 
mistakes and frustrations abound. 
It’s true that we don’t have all the an-
swers, but why should we shield our 
students from that? This is how stu-
dents develop the insight and skills 
to work effectively and sensitively as 
tomorrow’s global practitioners.

Over two decades of diverse col-
laborations, we’ve inquired deeply 
into GSE and GSE education jointly 
with our students, created course 
models and instances, and generated 
new knowledge. We’ve developed 
global friendships with colleagues 
and students and seen these courses 
open doors for graduates. We argue 
that students learn best about GSE 
by doing GSE. Optimally, that oc-
curs in a structured, conscious global 
learning experience—although at 
times we must eat some of our own 
dog food!

Can we really teach GSE compe-
tencies in the classroom? How do we 
expose students to the reality of com-
plex working relationships speci� c to 
globally distributed software devel-
opment? How do we mentor them 
through the sustained effort of � nd-
ing strategies for successful global-
software-development projects?

Not only can GSE learning be 
achieved in the classroom, but also a 
university course offers a safe envi-

ronment for students to experiment 
and work through different strate-
gies when facing new challenges. 
We believe that students can learn 
GSE competencies in the classroom 
but that this requires an educational 
environment that offers realistic 
challenges and more questions than 
answers. Our experience designing 
and evaluating GSE teaching frame-
works in which students engaged 
in hands-on GSE projects indicates 
that these courses resembled, as 
much as possible, the reality of the 
software industry.

The outcome is convincing. 
For example, we recently tried out 
distributed- Scrum practices in a 
project led by a real client and in-
volving distributed university envi-

ronments. The students experienced 
realistic challenges of working with 
remote peers and the client across 
organizational, cultural, and tempo-
ral boundaries. In keeping with ag-
ile processes, the students engaged in 
ongoing re� ection about their chal-
lenges, their response to these chal-
lenges, and GSE learning. The em-
pirical evidence we collected on the 
students’ learning of GSE competen-
cies shows clearly that they learned, 
for example, to minimize cross-
boundary communication when al-
locating work to respond to the cli-
ent’s feature requests.3

However, a note of caution: De-
spite this success, setting up, teach-

ing, and evaluating student work 
in such educational environments 
requires more effort, strategy, and 
instructor resilience than in tradi-
tional courses. Enabling students’ 
learning of global software devel-
opment has many facets. However, 
multisite, multi-university courses 
let educators design an experience to 
best relate to the current processes, 
supporting tools, and realities of 
GSE. Despite the challenges we ex-
perienced running these courses, we 
should continue to do so.

A Pragmatic Approach
to GSE Education (Barr)
Education in an academic setting 
must always be a facsimile of reality. 
In particular, any education must 

take place in an arti� cial frame-
work—namely, the academic insti-
tution, which places constraints on 
the pedagogy. Challenges include 
these issues:

• Course design and organiza-
tion. Universities and instruc-
tors, even within a country, have 
different philosophical beliefs 
about how to structure and as-
sess courses.

• Students. Students from differ-
ent universities and cultures have 
different work ethics, skill levels 
(grad versus undergrad), expecta-
tions from instructors, and expec-
tations about class requirements.

A university course offers a safe 
environment to experiment with 
GSE strategies.
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• Tools. Universities, instructors, 
and students have experience 
with different communication 
and development tools. Some-
times, these tools are determined 
at the department or university 
level, which makes changing 
them dif� cult.

• Class management. Course in-
structors generally have set re-
sponsibilities (lectures, grading, 
of� ce hours, and so on), which 
become more problematic when 
spread across multiple universi-
ties and geographic locations. 
Which instructor is responsible 
for what? How do instructors 
support students in remote loca-

tions? How are student teams 
managed across several loca-
tions? How does the instructor 
manage student relationships 
with remote clients?

• Sustainability, scalability, and 
reusability. How do you scale 
a GSE education class? Such 
scaling greatly magni� es the 
GSE challenges, and instructors 
normally receive few if any new 
resources to deal with them.

As a result of these intrinsic chal-
lenges, I propose an alternative to 
the multi-university approach: intro-
duce students to GSE through par-
ticipation in a global open source 
project. Open source projects have 
many advantages. If the project is 

indeed global, students are intro-
duced to GSE challenges and can 
participate in the GSE process—
GSE education’s major goals. Open 
source projects use speci� c tools and 
processes that students will need to 
master; this provides essential expe-
rience in using communication and 
development tools. As students par-
ticipate in development, they com-
municate globally with a team that’s 
experienced in GSE and in integrat-
ing new developers.

This approach also amelio-
rates many of GSE education’s con-
straints. The GSE infrastructure al-
ready exists, the development tools 
are set and typically are universally 

known and used (for example, git, 
Internet Relay Chat, wikis, and 
blogs), the languages are usually well 
known (for example, Python, Java, 
and C++), and many resources are 
available to new developers. An open 
source project is also highly motivat-
ing; it’s a real project for a solution 
that’s often in widespread use, and 
the open source community gener-
ally is accepting and encouraging. 
Because there’s such a large selection 
of open source projects to choose 
from, instructors can choose a proj-
ect (or a piece of a project) that � ts 
their course objectives and their stu-
dents’ abilities.

Finally, many of the institu-
tional challenges are vastly re-
duced. Instructors don’t have to 

deal with differing philosophical 
approaches, manage remote stu-
dents, negotiate schedules, or deal 
with many of the constraints of a 
multi-university approach.

Of course, an open source project 
isn’t the same as a GSE project in a 
commercial company. However, it 
meets GSE education’s general learn-
ing objectives and reduces the chal-
lenges signi� cantly. I believe that, for 
most universities, it’s the most cost-
effective and practical approach.

Why Not Use Simulations? 
(Noll and Scacchi)
Regardless of how much effort 
educators devote to making a 
distributed- project course realistic, 
it will always have constraints im-
peding its � delity. University terms 
rarely last longer than 16 weeks, stu-
dents have other classes and obliga-
tions competing for their time, and 
they don’t earn a salary.

Nevertheless, a GSE course is 
still a simulation of a real indus-
trial software development project. 
So why not go the full distance and 
train students using an online simu-
lation or game? After all, airline pi-
lots train extensively in � ight simu-
lators, which let them experience 
critical situations without putting 
themselves at risk. A “GSE simula-
tor” could have the same advantage, 
letting students experience problems 
and make mistakes without putting 
their projects (and grades) at risk. A 
simulator can also compress time, 
simulating an entire project in an 
hour, letting students run many tri-
als involving different project sce-
narios or strategies. And, simula-
tions and games can be fun.

 Educators can use simulations 
and games focusing on GSE pro-
cesses in many interesting ways, 
providing educational and research 

For most universities, open source 
projects are the most cost-effective 
and practical approach.
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affordances that are too dif� cult, 
costly, or lengthy to realize in live 
GSE course projects. Such affor-
dances can include the capability to

• progressively guide students 
through GSE processes across 
dif� culty levels, through short, 
self-paced training scenarios;

• monitor and incrementally assess 
student progress during simu-
lated GSE process enactments;

• control the triggering or emer-
gence of situated or contextual 
problems, conflicts, misalign-
ments, time-zone asymmetries, 
and so on that can arise in 
GSE projects;

• capture and replay simulated GSE 
process enactments, allowing for 
close-up analysis and retrospec-
tive diagnosis of the actions taken 
and their consequences;

• incorporate live or simulated 
GSE tools and repositories;

• simulate benign to problematic 
GSE project circumstances such 
as mid-project staff termination 
and budget and schedule reduc-
tions; and

• accommodate student errors, 
mistakes, and process enactment 
failures as learning experi-
ences that are safe, don’t require 
remote confederates, and can 
simulate differences or gaps in 
cultural practices and diversity.

Simulations and games for GSE 
are no panacea; they’re only as good 
as their developers have allowed. 
Poor design or implementation, or 
ill- conceived and poorly matched 
ontologies underlying the simula-
tion, can render a simulator or game 
ineffective. But well-designed simu-
lations and games offer capabilities 
that are scalable and open to experi-
mentation and replicability in ways 

that are much easier to adopt and 
implement than with live role-play-
ing GSE projects.

T he approaches described here 
are, of course, simulations of 
the real workplace. The key 

message is that educators are chang-
ing how they teach, to try to re� ect 
industry needs. Industry is calling 
for more and better-skilled software 
engineers; perhaps this is one way to 
address the skills shortage.
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• Tools. Universities, instructors, 
and students have experience 
with different communication 
and development tools. Some-
times, these tools are determined 
at the department or university 
level, which makes changing 
them dif� cult.

• Class management. Course in-
structors generally have set re-
sponsibilities (lectures, grading, 
of� ce hours, and so on), which 
become more problematic when 
spread across multiple universi-
ties and geographic locations. 
Which instructor is responsible 
for what? How do instructors 
support students in remote loca-

tions? How are student teams 
managed across several loca-
tions? How does the instructor 
manage student relationships 
with remote clients?

• Sustainability, scalability, and 
reusability. How do you scale 
a GSE education class? Such 
scaling greatly magni� es the 
GSE challenges, and instructors 
normally receive few if any new 
resources to deal with them.

As a result of these intrinsic chal-
lenges, I propose an alternative to 
the multi-university approach: intro-
duce students to GSE through par-
ticipation in a global open source 
project. Open source projects have 
many advantages. If the project is 

indeed global, students are intro-
duced to GSE challenges and can 
participate in the GSE process—
GSE education’s major goals. Open 
source projects use speci� c tools and 
processes that students will need to 
master; this provides essential expe-
rience in using communication and 
development tools. As students par-
ticipate in development, they com-
municate globally with a team that’s 
experienced in GSE and in integrat-
ing new developers.

This approach also amelio-
rates many of GSE education’s con-
straints. The GSE infrastructure al-
ready exists, the development tools 
are set and typically are universally 

known and used (for example, git, 
Internet Relay Chat, wikis, and 
blogs), the languages are usually well 
known (for example, Python, Java, 
and C++), and many resources are 
available to new developers. An open 
source project is also highly motivat-
ing; it’s a real project for a solution 
that’s often in widespread use, and 
the open source community gener-
ally is accepting and encouraging. 
Because there’s such a large selection 
of open source projects to choose 
from, instructors can choose a proj-
ect (or a piece of a project) that � ts 
their course objectives and their stu-
dents’ abilities.

Finally, many of the institu-
tional challenges are vastly re-
duced. Instructors don’t have to 

deal with differing philosophical 
approaches, manage remote stu-
dents, negotiate schedules, or deal 
with many of the constraints of a 
multi-university approach.

Of course, an open source project 
isn’t the same as a GSE project in a 
commercial company. However, it 
meets GSE education’s general learn-
ing objectives and reduces the chal-
lenges signi� cantly. I believe that, for 
most universities, it’s the most cost-
effective and practical approach.

Why Not Use Simulations? 
(Noll and Scacchi)
Regardless of how much effort 
educators devote to making a 
distributed- project course realistic, 
it will always have constraints im-
peding its � delity. University terms 
rarely last longer than 16 weeks, stu-
dents have other classes and obliga-
tions competing for their time, and 
they don’t earn a salary.

Nevertheless, a GSE course is 
still a simulation of a real indus-
trial software development project. 
So why not go the full distance and 
train students using an online simu-
lation or game? After all, airline pi-
lots train extensively in � ight simu-
lators, which let them experience 
critical situations without putting 
themselves at risk. A “GSE simula-
tor” could have the same advantage, 
letting students experience problems 
and make mistakes without putting 
their projects (and grades) at risk. A 
simulator can also compress time, 
simulating an entire project in an 
hour, letting students run many tri-
als involving different project sce-
narios or strategies. And, simula-
tions and games can be fun.

 Educators can use simulations 
and games focusing on GSE pro-
cesses in many interesting ways, 
providing educational and research 

For most universities, open source 
projects are the most cost-effective 
and practical approach.
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