
 Embedded
Systems

 Software
Development

 Autonomous
Vehicles

 Education

JANUARY 2022 www.computer.org

Publications Seek
2023 Editors in Chief
The application deadline is 1 March 2022.

The IEEE Computer Society (IEEE CS) seeks applicants for the position of editor in chief (EIC) for several of
its leading publications: IEEE Annals of the History of Computing, IEEE Computer Graphics and Applications,
IEEE MultiMedia, IEEE Pervasive Computing, IT Professional, IEEE Transactions on Affective Computing, IEEE
Transactions on Dependable and Secure Computing, IEEE Transactions on Mobile Computing, IEEE
Transactions on Parallel and Distributed Systems, and IEEE Transactions on Software Engineering. EIC terms
begin 1 January 2023.

Candidates for any IEEE CS EIC position should possess a good understanding of all aspects of the
publication’s field. Candidates must demonstrate the managerial skills necessary to process
manuscripts through the editorial cycle in a timely fashion. An EIC must be able to attract
a diverse group of talented and respected experts to their editorial board. Candidates
with significant prior publications experience are preferred.

We seek applicants who are (or are willing to become) IEEE members
and have clear employer support.

For more information, please go to www.computer.org/press
-room/2021-news/ieee-cs-pubs-seek-2023-editors-in-chief.

I E E E C O M P U T E R S O C I E T Y

Submit an application today!

2469-7087/22 © 2022 IEEE	 Published by the IEEE Computer Society	 January 2022� 1

STAFF

Editor
Cathy Martin

Publications Operations Project Specialist
Christine Anthony

Production & Design Artist
Carmen Flores-Garvey

Publications Portfolio Managers
Carrie Clark, Kimberly Sperka

Publisher
Robin Baldwin

Senior Advertising Coordinator
Debbie Sims

Circulation: ComputingEdge (ISSN 2469-7087) is published monthly by the IEEE Computer Society. IEEE Headquarters, Three Park Avenue, 17th
Floor, New York, NY 10016-5997; IEEE Computer Society Publications Office, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720; voice +1 714 821 8380;
fax +1 714 821 4010; IEEE Computer Society Headquarters, 2001 L Street NW, Suite 700, Washington, DC 20036.

Postmaster: Send address changes to ComputingEdge-IEEE Membership Processing Dept., 445 Hoes Lane, Piscataway, NJ 08855. Periodicals Postage
Paid at New York, New York, and at additional mailing offices. Printed in USA.

Editorial: Unless otherwise stated, bylined articles, as well as product and service descriptions, reflect the author’s or firm’s opinion. Inclusion in
ComputingEdge does not necessarily constitute endorsement by the IEEE or the Computer Society. All submissions are subject to editing for style,
clarity, and space.

Reuse Rights and Reprint Permissions: Educational or personal use of this material is permitted without fee, provided such use: 1) is not made for
profit; 2) includes this notice and a full citation to the original work on the first page of the copy; and 3) does not imply IEEE endorsement of any third-
party products or services. Authors and their companies are permitted to post the accepted version of IEEE-copyrighted material on their own Web
servers without permission, provided that the IEEE copyright notice and a full citation to the original work appear on the first screen of the posted copy.
An accepted manuscript is a version which has been revised by the author to incorporate review suggestions, but not the published version with copy-
editing, proofreading, and formatting added by IEEE. For more information, please go to: http://www.ieee.org/publications_standards/publications
/rights/paperversionpolicy.html. Permission to reprint/republish this material for commercial, advertising, or promotional purposes or for creating new
collective works for resale or redistribution must be obtained from IEEE by writing to the IEEE Intellectual Property Rights Office, 445 Hoes Lane,
Piscataway, NJ 08854-4141 or pubs-permissions@ieee.org. Copyright © 2022 IEEE. All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy for private use of patrons,
provided the per-copy fee indicated in the code at the bottom of the first page is paid through the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923.

Unsubscribe: If you no longer wish to receive this ComputingEdge mailing, please email IEEE Computer Society Customer Service at help@
computer.org and type “unsubscribe ComputingEdge” in your subject line.

IEEE prohibits discrimination, harassment, and bullying. For more information, visit www.ieee.org/web/aboutus/whatis/policies/p9-26.html.

IEEE COMPUTER SOCIETY computer.org

IEEE Computer Society Magazine Editors in Chief

Computer
Jeff Voas, NIST

Computing in Science
& Engineering
Lorena A. Barba, George
Washington University

IEEE Annals of the History
of Computing
Gerardo Con Diaz, University
of California, Davis

IEEE Computer Graphics
and Applications
Torsten Möller,
Universität Wien

IEEE Intelligent Systems
Longbing Cao, University
of Technology Sydney

IEEE Internet Computing
George Pallis, University
of Cyprus

IEEE Micro
Lizy Kurian John, University
of Texas at Austin

IEEE MultiMedia
Shu-Ching Chen, Florida
International University

IEEE Pervasive Computing
Marc Langheinrich, Università
della Svizzera italiana

IEEE Security & Privacy
Sean Peisert, Lawrence
Berkeley National
Laboratory and University
of California, Davis

IEEE Software
Ipek Ozkaya, Software
Engineering Institute

IT Professional
Irena Bojanova, NIST

14
Formal

Verifi cation of
Cyberphysical

Systems

34
The Emergence

of Vehicle
Computing

42
Teaching Clustering

Algorithms
With EduClust:

Experience Report
and Future
Directions

JANUARY 2022 � VOLUME 8 � NUMBER 1

Embedded Systems

 8	 Determining Reliable and Precise Execution Time
Bounds of Real-Time Software
REINHARD WILHELM

14	 Formal Verification of Cyberphysical Systems
JAMES BRET MICHAEL, DORON DRUSINSKY, AND DUMINDA WIJESEKERA

Software Development

26	 Boris Cherny on TypeScript
NATE BLACK

30	 Toward Unseating the Unsafe C Programming Language
PAUL C. VAN OORSCHOT

Autonomous Vehicles

34	 The Emergence of Vehicle Computing
SIDI LU AND WEISONG SHI

40	 Secure V2V and V2I Technologies for the Next-Generation
Intelligent Transportation Systems

SUDIP MITTAL

Education

42	 Teaching Clustering Algorithms With EduClust:
Experience Report and Future Directions

JOHANNES FUCHS, PETRA ISENBERG, ANASTASIA BEZERIANOS, MATTHIAS
MILLER, AND DANIEL A. KEIM

Departments
 4	 Magazine Roundup

 7	 Editor’s Note: Embedded Systems Software

50	 Conference Calendar

Subscribe to ComputingEdge for free at
www.computer.org/computingedge.

4 January 2022 Published by the IEEE Computer Society 2469-7087/22 © 2022 IEEE

Magazine Roundup

The IEEE Computer Society’s lineup of 12 peer-reviewed technical magazines covers cutting-edge topics rang-

ing from software design and computer graphics to Internet computing and security, from scientific appli-

cations and machine intelligence to visualization and microchip design. Here are highlights from recent issues.

Explainable
Recommendations and
Calibrated Trust: Two
Systematic User Errors

The increased adoption of col-

laborative human-artificial intel-

ligence decision-making tools

triggered a need to explain rec-

ommendations for safe and effec-

tive collaboration. The authors of

this article from the October 2021

issue of Computer explore how

users interact with explanations

and why trust-calibration errors

occur, taking clinical decision-sup-

port systems as a case study.

Performance Portability in
the Exascale Computing
Project: Exploration Through
a Panel Series

Performance portability is a criti-

cal issue for the Exascale Comput-

ing Project (ECP) because of non-

trivial architectural differences

between machines available today

and those expected at exascale.

Many ECP project teams are work-

ing toward performance portability

and would expect to benefit from

sharing lessons learned, identify-

ing gaps, and discovering opportu-

nities for partnerships. To facilitate

this communication, the IDEAS-

ECP project partnered with the

three focus areas of ECP (applica-

tion development, software tech-

nology, and hardware and integra-

tion) and Department of Energy

computing facilities to lead a series

of panel discussions on perfor-

mance portability. The panels were

organized around broadly common

themes of algorithmic and data

locality challenges. In this article

from the September/October 2021

issue of Computing in Science &

Engineering, the authors describe

the panel series, its objectives,

and perspectives from the various

areas of the project.

Theoretical Computer Science
in Italy: The Early Years

In this article from the July–Sep-

tember 2021 issue of IEEE Annals

of the History of Computing, the

authors provide an overview of the

early developments of theoreti-

cal computer science research in

Italy in the 1960s and early 70s. The

community of researchers work-

ing in this domain were organizing

to gain an identity among the more

traditional disciplines and to obtain

a recognition for the “new science”

that was taking its first steps. This

led in Italy to the creation of the

Group of Researchers in Theoret-

ical Informatics, in parallel to the

institution of the European Asso-

ciation for Theoretical Computer

Science at the European level.

A Visual Analytics
Approach for Structural
Differences Among Graphs
via Deep Learning

Representing and analyzing struc-

tural differences among graphs

present insight into difference-

related patterns such as dynamic

evolutions of graphs. Conventional

solutions leverage representa-

tion learning techniques to encode

structural information but lack an

intuitive way of studying structural

semantics of graphs. In this article

from the September/October 2021

issue of IEEE Computer Graphics

and Applications, the authors pro-

pose a representation-and-analysis

scheme for structural differences

www.computer.org/computingedge� 5

among graphs. They propose a

deep learning-based embedding

technique to encode multiple

graphs while preserving semantics

of structural differences.

Fuzzy Graph and Collective
Multiagent Reinforcement
Learning for Traffic
Signals Control

Multiagent systems provide proper

modeling in real-world applica-

tions such as intelligent transpor-

tation systems. The interaction

between the agents can be repre-

sented by the graph theory. In this

article from the July/August 2021

issue of IEEE Intelligent Systems, a

fuzzy graph is used for urban traf-

fic network modeling. A network

composed of several intersections

is considered a multiagent system

composed of multiple interacting

agents. The interaction between

the agents can be represented by

a fuzzy graph in which each ver-

tex shows an agent in the network.

The network is divided into cor-

related agent’s sets. In each set,

collective learning composed of

Q-learning and function approx-

imation method is used to learn

the optimal control policy. The

total average energy of the sets

of correlated agents as fuzzy sub-

graphs is computed, and the rela-

tionship between these values and

the effectiveness of the collective

learning is studied.

Autonomics at the Edge:
Resource Orchestration for
Edge Native Applications

With the increasing availability of

edge computing resources, there

is a need to develop edge orches-

tration and resource management

techniques to support application

resilience and performance. Sim-

ilar to the use of containers and

microservices for cloud environ-

ments, it is important to understand

the key attributes that characterize

edge native applications. As edge

devices increase in their autonomy

and intelligence, orchestration tech-

niques are needed to respond to

changes in device properties, avail-

ability, security credentials, migra-

tion, and network connectivity pro-

tocols. Implementing autonomics

techniques for edge computing can

increase the resilience of the inter-

action between devices and appli-

cations, reducing execution time

and cost. Read more in this article

from the July/August 2021 issue of

IEEE Internet Computing.

Quantum Codesign

Codesign has been an integral

part of computer architecture

since the very first systems were

brought online. From the early

days of the field until now, end-

user applications inevitably shape

the design and capabilities of

subsequent generations of hard-

ware. Likewise, the characteris-

tics and capabilities of new com-

putational hardware and systems

often impact the algorithms and

software that run on them. Quan-

tum computing (QC) is similarly

reliant on codesign approaches,

particularly now in its resource

constrained early days. This arti-

cle from the September/October

2021 issue of IEEE Micro discusses

what codesign means in a QC set-

ting, gives examples of its value to

QC, and proposes key attributes

of QC codesign approaches going

forward.

Class-Balanced Text to
Image Synthesis With
Attentive Generative
Adversarial Network

Although the text-to-image syn-

thesis task has shown significant

progress, generating high-quality

images remains a challenge. In this

article from the July–September

2021 issue of IEEE MultiMedia, the

authors first propose an attention-

driven, cycle-refinement genera-

tive adversarial network, AGAN-v1,

6	 ComputingEdge� January 2022

MAGAZINE ROUNDUP

to bridge the domain gap between

visual contents and semantic con-

cepts by constructing spatial con-

figurations of objects. Second, an

advanced class-balanced gener-

ative adversarial network, AGAN-

v2, is proposed to address the

problem of long-tailed data distri-

bution. Importantly, it is the first

method to solve this problem in

the text-to-image synthesis task.

Hybrid Body Craft:
Toward Culturally and
Socially Inclusive Design for
On-Skin Interfaces

Sensor device miniaturization and

breakthroughs in novel materi-

als have enabled technology to

progress directly onto the skin

surface. However, unlike all other

media, the human body is a com-

plex and meaning-laden surface

that encompasses a wearer’s indi-

vidual, social, and political identi-

ties. Yet, research in on-skin inter-

faces has focused on engineering

aspects, with a scant focus on the

cultural and social dimensions of

device design. Hybrid Body Craft

presents a design approach for

bridging the cultural aspects of

body crafts with emerging on-skin

interfaces. The authors of this arti-

cle from the July–September 2021

issue of IEEE Pervasive Computing

present a series of more socially

and culturally inclusive on-skin

interface designs that incorpo-

rate various emerging materials

and technologies into body craft

customs.

Demystifying Android’s
Scoped Storage Defense

Android recently introduced the

scoped storage defense to better

protect application use of shared

external storage. This article from

the September/October 2021 issue

of IEEE Security & Privacy exam-

ines the evolution of Android

external storage defenses leading

to scoped storage and assesses

the impact of the scoped storage

defense for limiting opportunities

for exploitation.

What Do We Know
About Time Pressure in
Software Development?

Time pressure means that time

experienced by an individual is

scarce in relation to the task

demands at hand. In this article

from the September/October 2021

issue of IEEE Software, the authors

summarize findings and provide

practitioner takeaways based on

a systematic review of existing

literature.

Healthcare Insurance
Frauds: Taxonomy and
Blockchain-Based Detection
Framework (Block-HI)

Medical health insurance fraud

has been a major concern for the

healthcare industry and govern-

mental institutions. In the United

States, health insurance compa-

nies record a loss of tens of bil-

lions yearly due to healthcare

fraud. Some types of fraud are at

the risk of the patient’s health.

This is because the system that

performs the manual processing

of medical insurance claims fre-

quently misses the endorsement

of some stakeholders (such as

the patient, pharmaceutical com-

panies, wholesale dealers, and

medical equipment suppliers) in a

claim’s validation process. Block-

chain is a peer-to-peer distributed

system that can enable the vali-

dation of healthcare claims in a

secure, immutable, and transpar-

ent manner. The authors of this

article from the July/August 2021

issue of IT Professional present

a taxonomy of healthcare insur-

ance claims frauds and propose

a blockchain-based healthcare

insurance claims fraud detection

framework.

Join the IEEE
Computer
Society
computer.org/join

2469-7087/22 © 2022 IEEE Published by the IEEE Computer Society January 2022 7

Editor’s Note

Embedded Systems Software

Software in embedded sys-

tems is often time- and

safety-critical, so dependability is

essential. For cyberphysical sys-

tems such as autonomous vehi-

cles, it’s important to be able to

verify the software’s security and

reliability. Two articles in this issue

of ComputingEdge explore ways to

improve verification of software in

embedded systems.

IT Professional ’s “Determin-

ing Reliable and Precise Execu-

tion Time Bounds of Real-Time

Software” stresses the impor-

tance of robust timing verifica-

tion for embedded control system

software in transportation, med-

icine, and manufacturing. Com-

puter’s “Formal Verification of

Cyberphysical Systems” brings

together seven experts to dis-

cuss a promising verification

approach for embedded systems

software.

The programming language

used in software development

can either help or hurt the qual-

ity of the software. “Boris Cherny

on TypeScript,” from IEEE Soft-

ware, presents an interview about

a scalable programming language

aimed at catching mistakes. In

“Toward Unseating the Unsafe C

Programming Language,” from

IEEE Security & Privacy, the author

makes the case for using mod-

ern languages with built-in safety

properties.

Tomorrow’s self-driving cars

will be more connected than

ever. The authors of IEEE Internet

Computing’s “The Emergence

of Vehicle Computing” describe

their vision of autonomous vehi-

cles that communicate with one

another and with the environ-

ment. Computer’s “Secure V2V

and V2I Technologies for the Next-

Generation Intelligent Trans-

portation Systems” highlights

a model for securing smart car

communication.

This ComputingEdge issue

closes with new ideas in educa-

tion. The authors of “Teaching

Clustering Algorithms With Edu-

Clust: Experience Report and

Future Directions,” from IEEE Com-

puter Graphics and Applications,

recount using an online visualiza-

tion application to teach cluster-

ing algorithms.

8	 January 2022	 Published by the IEEE Computer Society � 2469-7087/22 © 2022 IEEE

DEPARTMENT: SOFTWARE TECHNOLOGY

Determining Reliable and
Precise Execution Time Bounds
of Real-Time Software
Reinhard Wilhelm, Saarland University and AbsInt Angewandte Informatik

TIME-CRITICAL
EMBEDDED SYSTEMS

Embedded-control systems in transportation, med-
ical instruments, and manufacturing are often time
critical, that is, they have to finish execution within
their period or they have to respond to sensor input
within a given deadline. Both period and deadline are
dictated by the physics of the system. Examples for
sensor-actuator control are the airbag and the auto-
matic brake control in cars. Clearly, if the airbag con-
troller fails to inflate the airbag in time, the driver will
hit the steering wheel. Flight control and guidance,
collision-avoidance, or ground proximity warning sys-
tems in airplanes are examples from the aviation
domain. Deadlines in airplanes are often in the order of
milliseconds, while crankshaft-synchronous tasks in
cars often have periods on the order of microseconds.

A rigid verification of time-critical soft-
ware should include a static timing verification.
Measurement-based methods cannot guarantee to
hit the worst case and to determine its execution time
(WCET) because the number of cases to consider is
too large to allow exhaustive methods. Certification
rules and practice of the European Union Aviation
Safety Agency (EASA) requires the use of static tim-
ing analysis in the certification of time-critical plane
components.

PROBLEM
The general setting for WCET analysis is that a set of
hard real-time tasks is to be executed on a given hard-
ware platform. Hard real-time tasks have associated

deadlines within which they have to finish their exe-
cution. The deadlines may be given by periods. Timing
Verification has to verify that these timing constraints
are satisfied.

Traditionally, Timing Verification is split into a
WCET analysis, which determines upper bounds on the
execution times of all tasks, and a schedulability anal-
ysis, which takes these upper bounds and attempts to
verify that the given set of tasks when executed on the
given platform will all respect their deadlines.

The introduction of performance-enhancing archi-
tectural components and features, such as caches,
pipelines, and speculation, made the execution time
of instructions dependent on the architectural state
in which they are executed, essentially the occupancy
of resources. The execution times of instructions now
vary largely. For example, an instruction accessing
memory may last a few cycles but also up to several
hundred cycles. The variability of execution times
grew with several architectural parameters, e.g., the
cache-miss penalty and the costs for pipeline stalls
and for control-flow mis-predictions. For these archi-
tectures the determination of WCETs became difficult.
We started research into the WCET-analysis problem
in the middle of the 90s.

The introduction of multicore execution plat-
forms into the embedded real-time domain made the
problem still more difficult. These platforms typically
have shared resources, and the interference on these
shared resources complicates the determination of
upper execution-time bounds for tasks executed on
such a platform.

A few words about terminology: From the begin-
ning, we aimed at sound WCET-analysis methods. The
results of a sound WCET analysis are conservative,
i.e., they will never be exceeded by an execution. We

Digital Object Identifier 10.1109/MITP.2020.2972138

Date of current version 21 May 2020.

This article originally
appeared in

vol. 22, no. 3, 2020

www.computer.org/computingedge� 9

SOFTWARE TECHNOLOGY

consider being conservative as a Boolean property.
Often, conservative is used as a metric, being more
conservative meaning being less accurate. For an
unsound, e.g., measurement-based method, it does
not make sense to speak about being more or less
conservative. Such a method may under-estimate or
over-estimate the real WCET. So, being “more conser-
vative” may mean moving toward the real WCET from
below, or it may mean moving further away from the
real WCET by increasing over-estimation. Besides
soundness, the second, quite important property is
accuracy of the results of a WCET analysis. For a sound
WCET analysis method, accuracy corresponds to the
degree of over-estimation.

The execution of a program can be seen as one
particular walk through its call- and control-flow
graphs: branches in the graph taken, depending on
input values. There may be many such walks. How-
ever, there are even more different paths through the
architecture, depending on the execution state of the
architecture, essentially the occupancy of resources.
A memory access may hit or miss the cache, resulting
in at least two different paths; in the cache-miss case,
there may be again at least two different continua-
tions, depending on whether the bus is occupied or
not. WCET-analysis can be seen as the search for a lon-
gest path in the state space spanned by the potential
paths through the program and by the potential paths
through the architectural platform.

WCET analysis is based on the assumption that the
analyzed programs terminate, that is, all recursions
and iterations are bounded. We are not confronted

with the undecidability of the halting problem. Our
tool might discover that it cannot determine bounds
on recursion or iteration in a program and will ask
the user for annotations. All WCET bounds are then
valid with respect to the given annotations. This state
space is thus finite but too large to be exhaustively
explored. The implementation of the technology is a
permanent fight with the complexity of the task. Safe
over-approximation is used in several places (Figure 1).
In particular, an abstraction of the execution platform
is employed by the WCET analysis.

PROBLEMS TO BE SOLVED
At the core of the WCET-analysis problem was the
notion of a Timing Accident: We understand it to be
any architectural effect that lets an instruction exe-
cute longer than its fastest execution time. Examples
for such timing accidents are cache misses, pipeline
stalls, bus-access conflicts, and branch mispredic-
tions. Each such timing accident has to be paid for,
in terms of execution-time cycles, by an associated

A ccuracy: For a sound tool, i.e., one that
never under-estimates the WCET, accuracy

is defined as the degree of over-estimation. Over-
estimation is the difference between the upper
bound computed by the tool and the worst ever
observed execution time. 15–25% over-estimation
was reported for Airbus code in.8

FIGURE 1. Upper bound of all execution times is computed instead of the real WCET.

10	 ComputingEdge� January 2022

SOFTWARE TECHNOLOGY

Timing Penalty. The size of a timing penalty can be
constant but may also depend on the execution state.
We consider the property that a particular instruction
will not cause a particular timing accident as a safety
property. The occurrence of a timing accident thus vio-
lates a corresponding safety property.

These fundamental notions led us to our approach.

›› Use an appropriate method for the verification
of safety properties to prove that for indi-
vidual instructions in the program, some of the
potential timing accidents will never happen.
Reduce the worst-case execution-time bound
for an instruction, which a sound WCET analysis
would have to assume, by the penalties for the
excluded timing accidents.

›› Abstract interpretation1 is a powerful method
to prove safety properties. Use it to compute
certain invariants at each program point, namely
an upper approximation of the set of execution
states that are possible when execution reaches
this program point.

›› Derive safety properties, that certain timing
accidents will never happen, from these invari-
ants. This method for the microarchitectural

analysis was the central innovation that made
our WCET analysis work and scale.

Given this understanding, our task was to design
abstract domains for the analysis of the behavior of
several relevant architectural components and com-
bine them in a sound way.

This meant we had to define

›› domains of abstract states with a partial order
representing which domain elements contained
better information than other elements;

›› corresponding to this partial order, a join func-
tion, used to combine incoming abstract domain
elements at control-flow merge points;

›› abstract effects for each instruction, describing
the update of abstract states corresponding to
this instruction.

I cannot stress enough that this systematic design
of the instances of our timing-analysis technology for
different architectures was essential for our success.
It opened a way to use a generic approach, which was
essential for the instantiation of the technology for
new architectures. Our competition in this research
field typically presented a page of pseudo-C code and
a claim that this would be a solution to, say, cache
analysis. It was next to impossible to give correctness
arguments for this claim.

I will explain our timing-analysis approach along
Figure 2. Timing analysis has to be performed on the
binary-executable level because the actually executed
program is what matters for execution time. Compiler
optimizations, memory, and register allocation may
have a huge impact on timing. Fully linked binary
executables have to be decoded, and the control flow
of the program has to be reconstructed. These are
nontrivial, compiler-dependent tasks. Jump tables
and the nonexistence of function-return instructions
are the most complex issues.

A number of static analyses are performed on
the resulting control-flow graph. The first one, called
Value Analysis, propagates information about stati-
cally known values in program variable and registers.
It essentially is an Interval Analysis computing inter-
vals for these variables and registers at each program
point. These intervals enclose all potential values

Legend:

Data

Binary
Executable

CFG Re-
construction

Value
Analysis

Loop Bound
Analysis

Annotated
CFG

Basis Block
Timing Info

Micro-
architectural

Analysis

Global
Bound

Analysis

Control-flow
Analysis

Control-flow
Graph

Phase

FIGURE 2. Tool architecture.

www.computer.org/computingedge� 11

SOFTWARE TECHNOLOGY

the variables or registers may have when execution
reaches this program point. This information is abso-
lutely needed for data-cache analysis. Without it, one
would rarely know where a data access would go in
memory. Value Analysis often also determines loop
bounds. Such bounds are needed to arrive at bounded
execution times. The user is asked to supply loop
bounds in case they cannot be statically determined.
Control-Flow Analysis also exploits results of Value
Analysis to get rid of infeasible control-flow paths.
Such infeasible paths may dilute the accuracy by con-
tributing execution times that are, in fact, not possible.
The control-flow graph is annotated with the results of
these three static analyses.

At the heart of our timing-analysis technique is
the Microarchitectural Analysis. It performs what I
have sketched above; namely, it computes invariants
at all program points that describe all states of plat-
form components that are possible when execution
reaches this program point, and it finds out which tim-
ing accidents cannot happen. The results are upper
bounds for the execution time of all basic blocks.
Details about the analyses of caches, pipelines, and
system controllers can be found in3–5. The overall
approach is described in.6

The control flow is translated into an integer linear
program (ILP) roughly according to what Li and Malik
have proposed.7 Additional information about the con-
trol flow can often be encoded into the ILP to increase
accuracy. This information may originate from user
annotations. The solution of this ILP gives a longest
path through program and architecture and an associ-
ated execution-time bound.

BREAKTHROUGH
We were lucky to receive consecutive research grants
from DFG, our National Science Foundation, and the
European Union. The Daedalus project, funded by
the EU, brought us together with an extremely valu-
able partner, Airbus, who was searching for a solu-
tion for their WCET-analysis problem. They knew that
their previously used measurement-based method,
also used in certification, did not work any longer
for the execution platform selected for the Airbus
A380, namely the Motorola MPC755. The Airbus peo-
ple kept us focused on the real problems, including
the analysis of peripheries and system controllers:

architectural components that WCET researchers had
never considered.

They provided us with benchmark software, a set
of 12 denatured tasks, each consisting of several mil-
lion instructions, as they were flying them in the A340.
The tool we developed until 2001 was able to analyze
the benchmark provided by Airbus in decent time and
with quite precise results. The upper bounds it com-
puted made the Airbus people quite happy because
they were roughly in the middle between the worst
observed execution times and the upper bound deter-
mined by Airbus with a measurement-based method
using safety margins. More precisely, our analysis
results were overestimating the worst observed exe-
cution times by roughly 15%. This breakthrough was
reported in2. This article received the EMSOFT 2019
Test-of-Time Award.

As a result of our successful development, Airbus
offered our tools to the certification authorities for the
certification of several Airbus plane generations, start-
ing with the Airbus A380. The European Union Aviation
Safety Agency (EASA) has accepted the AbsInt WCET
analysis tool as validated tool for several time-critical
subsystems of these plane types. We were less suc-
cessful with Airbus’ competitor, who partly certifies
their planes themselves, as it recently turned out, and
with the certification authority in charge, who does
not seem to require the use of a sound verification
technology for real-time requirements.

ABSINT AND THE
INDUSTRIALIZATION OF
WCET TECHNOLOGY

We had essentially solved the WCET-analysis prob-
lem for single-core architectures in a sequence of
Ph.D. theses in my group. The only import was the
Implicit Path Enumeration Technique (IPET) of Li and
Malik.7 However, there is more to it when a practi-
cally usable tool is required. WCET analysis consists
of many phases. A practically usable WCET-analysis
method requires strong solutions to all the subprob-
lems and their adequate interaction. Otherwise, either
the effort is too high, or the accuracy is too low.

The people at AbsInt did an excellent engineering
job to come up with WCET-Analysis tools and later,
also, other tools that were usable on an industrial
scale.

12	 ComputingEdge� January 2022

SOFTWARE TECHNOLOGY

Which were the main challenges and which were
the important engineering principles in the design of
aiT: the AbsInt WCET-analysis tool? The main chal-
lenge was the complexity of several subtasks. One of
the important engineering principle was modulariza-
tion in several versions: first, an adequate separation
of analysis phases and, within individual phases, the
separation of generic parts and architecture-specific
parts to ease the instantiation for new architectures.
Value Analysis was modularly composed of several
analysis domains such that new domains could be
added if necessary. Complexity reduction required the
selection of the most efficient data structures for the
analysis domains, including decisions that information
to determine on demand instead of storing it. Sound-
ness of the overall analysis critically depends on the
abstract machine model being conservative. Valida-
tion of this property is a time-consuming process
required by the certification authorities. The core of
this process is trace validation. It uses the abstract
machine model as a predictor of traces and then
compares observed traces with predicted traces. It is
described in detail in9.

We had founded AbsInt to industrialize our WCET
technology. We had solved the problem; we had
instantiations for some processor architectures,
basically for those that Airbus and their suppliers
needed. However, we had to learn that hardly any two
potential customers employed the same architecture
configuration. The decision for a new platform was
taken without considering whether a WCET-analysis

existed for this platform. Instantiating our technology
for a new, complex platform takes a lot of effort, and
platforms were not getting simpler! In consequence,
such an instantiation is very expensive, which does
not raise the motivation of potential customers to buy
our WCET tools or order the development of a new
instance for their platform. In fact, the insight that
verification of real-time behavior was necessary was
not too widespread. There existed also some com-
petitors, who marketed their measurement-based,
unsound timing analysis and often forgot to mention
the unsoundness of their tool. They could offer their
tools at much cheaper prices. So, industrializing and
marketing a sound WCET technology, that inherently
needed to be expensive, was not a promising way to
get rich. However, our development of a sound method
that actually solved a real problem of the safety-critical
industry was considered a major success story for
the often-disputed formal-methods domain. AbsInt
became the favorite partner for the industrialization
of academic prototypes. Patrick Cousot and his team
offered their prototype of Astrée, a static analysis for
run-time errors, which in cooperation with some of the
developers has been largely extended by AbsInt. Then,
Xavier Leroy offered the result of his much acclaimed
research project CompCert: the first verified optimiz-
ing C compiler. Both Astrée and CompCert are now
AbsInt products.

The AbsInt WCET-analysis tool aiT is offered for
quite a range of architectures, e.g., a large range of
PowerPCs, several versions of the TriCore and the
ARM architectures, the LEON2 and LEON3, in combi-
nation with quite a range of compilers. For architec-
tures with bad timing predictability, the TimeWeaver
tool computes execution-time estimates. It is based
on measuring execution traces.

The users of model-based design tools appreciate
tight integrations of aiT with code generators. This
integration provides for the exploitation of model
information and the back annotation with perfor-
mance figures to the model. Such integrations have
been done for the SCADE Suite, targetlink, ASCET,
and others.

REFERENCES
1.	 P. Cousot and R. Cousot, “Abstract interpretation: A

unified lattice model for static analysis of programs by

C osts: There are several different types of
costs to be considered:

1.	 The development of the WCET-analysis tech-
nology cost roughly 20 person years.

2.	 The instantiation for a new platform may cost
several person years depending on the com-
plexity of the platform.

3.	 Most customers buy licenses because they
keep their safety-critical code in-house.

4.	 WCET-analysis service can be bought by paying
for working days and tool rent.

www.computer.org/computingedge� 13

SOFTWARE TECHNOLOGY

construction or approximation of fixpoints,” in Proc.

ACM Princ. Program. Lang., 1977, pp. 238–252.

2.	 C. Ferdinand, et al., “Reliable and precise WCET

determination for a real-life processor,” in Proc. Int.

Workshop Embedded Softw., 2001, pp. 469–485, LNCS

2211, Springer.

3.	 C. Ferdinand and R. Wilhelm, “Efficient and precise

cache behavior prediction for real-time systems,”

Real-Time Syst., vol. 17, no. 2/3, pp. 131–181, 1999.

4.	 M. Langenbach, S. Thesing, and R. Heckmann, “Pipeline

modeling for timing analysis,” in Proc. Int. Static Anal.

Symp., 2002, pp. 294–309, LNCS 2477, Springer.

5.	 S. Thesing, “Modeling a system controller for timing

analysis,” in Proc. 6th ACM Embedded Softw., 2006, pp.

292–300.

6.	 R. Wilhelm, et al., “Static timing analysis for hard

real-time systems,” in Proc. Int. Workshop Verification,

Model Checking Abstract Interpretation, 2010, pp. 3–22.

7.	 Y.-T. S. Li and S. Malik, “Performance analysis of

embedded software using implicit path enumeration,”

in Proc. 32nd ACM/IEEE Des. Autom. Conf., 1995, pp.

456–461.

8.	 S. Thesing, et al., “An abstract interpretation-based

timing validation of hard real-time avionics software,”

in Proc. Int. Conf. Dependable Syst. Netw. 2003, pp.

625–632.

9.	 R. Wilhelm, M. Pister, G. Gebhard, and D. Kästner, “Test-

ing implementation soundness of a WCET analysis

tool,” in Festschrift in Honor of Peter Marwedel. Berlin,

Germany: Springer LNCS, to be published.

REINHARD WILHELM is a professor emeritus at the Infor-

matics Department of Saarland University in Saarbrücken,

Germany. He has been the Scientific Director of the Leibniz

Center for Informatics in Schloss Dagstuhl from 1990 to

2014. He is a cofounder of the spin-off company AbsInt

Angewandte Informatik, located in The Science Park in Saar-

brücken, Germany. He is a Fellow of the ACM. Contact him at

wilhelm@cs.uni-saarland.de.

Advertising Coordinator

Debbie Sims
Email: dsims@computer.org
Phone: +1 714-816-2138 | Fax: +1 714-821-4010

Advertising Sales Contacts

Mid-Atlantic US:
Dawn Scoda
Email: dscoda@computer.org
Phone: +1 732-772-0160
Cell: +1 732-685-6068 | Fax: +1 732-772-0164

Southwest US, California:
Mike Hughes
Email: mikehughes@computer.org
Cell: +1 805-208-5882

Northeast, Europe, the Middle East and Africa:
David Schissler
Email: d.schissler@computer.org
Phone: +1 508-394-4026

Central US, Northwest US, Southeast US, Asia/Pacific:
Eric Kincaid
Email: e.kincaid@computer.org
Phone: +1 214-553-8513 | Fax: +1 888-886-8599
Cell: +1 214-673-3742

Midwest US:
Dave Jones
Email: djones@computer.org
Phone: +1 708-442-5633 Fax: +1 888-886-8599
Cell: +1 708-624-9901

Jobs Board (West Coast and Asia), Classified Line Ads

Heather Bounadies
Email: hbuonadies@computer.org
Phone: +1 623-233-6575

Jobs Board (East Coast and Europe), SE Radio Podcast

Marie Thompson
Email: marie.thompson@computer.org
Phone: +1 714-813-5094

ADVERTISER INFORMATION

14	 January 2022	 Published by the IEEE Computer Society � 2469-7087/22 © 2022 IEEE

COLUMN: VIRTUAL ROUNDTABLE

Formal Verification of
Cyberphysical Systems
James Bret Michael and Doron Drusinsky, Naval Postgraduate School

Duminda Wijesekera, George Mason University

Computer hosts a virtual roundtable with seven experts to discuss the
formal specification and verification of cyberphysical systems.

In Computer, virtual roundtables (VRTs) are virtual
panels. We ask a series of questions to a group
of experts via email to ascertain the panel-

ists’ thoughts about a topic du jour. One difference
between VRTs and face-to-face panels is that no
expert knows who the others are. That is different
from an in-person arrangement, where answers from
one participant can affect the responses of others.
In this VRT, our topic of discussion is the formal veri-
fication (FV) of cyberphysical systems (CPSs). FV is
the act of proving the correctness of algorithms with
respect to certain formal specifications, using formal
methods. Correctness may mean logical definitions
of safety, liveliness, and other objectives such as
confidentially, integrity, availability, and some version
of privacy.

FV has its roots in formal reasoning, dating back
at least to Gottfried Wilhelm Leibniz’s work on algo-
rithms, computing machines, and mathematical logic
in the 17th century.1 FV as we know it has its roots in
the 1960s and 1970s with the contributions of E.W.
Dijkstra, who famously coined the phrase, “Program
testing can be used to show the presence of bugs, but
never to show their absence.”2 Some believed FV to
be a silver bullet for attaining dependable software
and hardware. The excitement over formal methods
is evidenced by the relatively large body of published
research on the topic; a Google scholar search for the
FV term yields approximately 180,000 results.

Nevertheless, except for a few well-funded
research projects, industry was rather slow to adopt
FV. An exception to this statement is the semiconduc-
tor design community, also known as the electronic
design automation (EDA) community. This com-
munity realized that the cost and delays incurred by
labor-intensive manual testing justified a different
verification approach, one that applied FV. Moreover,
since manual testing cannot guarantee the absence
of bugs, there is an inevitable cost for containing the
impact of flaws that are undetected. A classic example
is the Intel Pentium FDIV bug, which was difficult for
testing to uncover: containment required replacing
all flawed Pentium processors on request, with Intel
taking a US$475 million charge against earnings.3,4
Fast forward to 2021, and the EDA community has
embraced FV as part of mainstream development and
verification processes, languages, and environments.
For example, formal specification is an integral part of
the SystemVerilog IEEE standard.5

Two of the moderators for this roundtable (Michael
and Drusinsky) were authors of an article that recom-
mended applying lightweight formal methods to the
interfaces between the cyber and physical parts of a
CPS.6 This recommendation, along with our discus-
sion of open questions in formal methods, drew a lot
of interest; for instance, see the exchange between
the authors and Michael Jackson.7 The feedback we
received from our counterparts in the formal methods
community, in combination with the third moderator’s
(Wijesekera’s) experiences in applying formal methods
to software-intensive systems, inspired the three of us
to organize a roundtable in which we enlisted seven

Digital Object Identifier 10.1109/MC.2021.3055883

Date of current version: 27 August 2021

This article originally
appeared in

vol. 54, no. 9, 2021

www.computer.org/computingedge� 15

experts to identify the reasons for the slow adoption
of FV by the software industry, in general, and the veri-
fication of CPSs, in particular.

The panelists contend there are several factors
that have slowed the adoption of formal methods, such
as the sheer size and complexity of software systems,
the diversity of software products, the perception that
FV is a low-return-on-investment academic exercise,
and the fact that FV tools are not part of mainstream
software development and testing environments nor
are the tools directly associated with mainstream
programming languages. The FV of CPSs is believed
to be particularly challenging because it is a hybrid
on many fronts, including hardware and software,
classical control and logical reasoning, and artificial
intelligence (AI)/machine learning (ML) algorithms and
logical reasoning.

In this VRT, the panelists responded to six ques-
tions. Their written responses may have undergone
minor edits. However, as organizers, we attempted to
keep their words as verbatim as possible. The seven
panelists are Knut Åkesson (Chalmers University),
Dimitra Giannakopoulou (NASA), Klaus Havelund (Jet
Propulsion Laboratory), Sayan Mitra (University of Illi-
nois at Urbana–Champaign), Corina Pasareanu (KBR),
Sanjit A. Seshia (University of California, Berkeley),
and Oleg Sokolsky (University of Pennsylvania). See
“Roundtable Panelists” for the participants’ biographi-
cal sketches. Note that the opinions of the experts
are their own, with no input from the editors. We hope
readers who are concerned with the dependability and
trustworthiness of CPSs will find the questions and
responses enlightening.

Computer: Unlike with EDA, in which FV is well inte-
grated into the development of chips and printed cir-
cuit boards and where engineers with expertise in the
method are in high demand, FV has had much less
acceptance as a mainstream ingredient of software

development and quality assurance. What do you think
are the reasons for that, and do you think the situation
will change with CPS projects, such as those involving
autonomous vehicles?

Knut Åkesson: A major challenge is that the closed-
loop model is described using a combination of tools,
different modeling languages, and programming lan-
guages. Significant efforts have been made to unify
how to describe physical systems coherently. For
example, the Modelica language (https://modelica.org
/modelicalanguage.html) is an essential step in this

direction. However, CPSs might also contain ML algo-
rithms for perception and might run optimization for
decision making. These are all rapidly evolving and
have their dedicated languages and tools. Thus, CPSs
inherently combine code written in various program-
ming languages, ML frameworks, optimization mod-
ules, and control logic generated from high-level mod-
eling languages. FV has its place in safety-critical
components but should be complemented by rigorous
automated test methods for situations where it is not
feasible or practical to use.

Dimitra Giannakopoulou: Software development is
more diverse and evolves faster than EDA in terms
of programming languages, paradigms, and patterns;
data structures, algorithmic approaches, and types
of applications; libraries and runtime environments;
and heterogeneity and distribution across different

A MAJOR CHALLENGE IS THAT THE
CLOSED-LOOP MODEL IS DESCRIBED
USING A COMBINATION OF TOOLS,
DIFFERENT MODELING LANGUAGES,
AND PROGRAMMING LANGUAGES.

16	 ComputingEdge� January 2022

VIRTUAL ROUNDTABLE

computers. After deployment, software applications
get updated to address vulnerabilities and to include
new features, and they may even be adaptive by design.
Correctness criteria and specifications vary widely by
application domain, and quality assurance depends on
the criticality of software. For example, is it a game on
someone’s phone, or is it software that controls a pas-
senger aircraft?

For FV to become a mainstream ingredient of
software development, it must achieve some usability
goals. First, it must be relatively easy to formulate
specifications for the target system. Second, FV must
be able to directly handle the languages in which the
software is written or the modeling languages from
which the software is synthesized. Finally, FV should
be able to scale. The diversity and complexity of
software applications means that to be successful,
FV approaches must be targeted and customized to
address specific problems within safety-critical appli-
cation domains.

The expected exponential rate of introduction of
autonomous vehicles (ground and air) puts enormous
pressure on ensuring their safe operation. There is
incentive for commercial and federal stakeholders to
collaborate on developing certification and assurance
standards for these applications. As a consequence, I
expect advances in the near future. On the one hand,
FV approaches will be developed that efficiently
address specific problems of such CPSs. On the
other hand, there will be increased incentives in CPS
projects to use programming paradigms and environ-
ments designed with FV in mind.

Klaus Havelund: Electronics designs have the char-
acteristic that once they leave the factory, they usu-
ally cannot be changed. A substantial error can cause
a unit to be recalled, with large amounts of money at
stake. The motivation is therefore high to “get it right”
before shipment. Software, on the other hand, can
often be fixed with an update at a customer’s location,
making errors less catastrophic. Even in space mis-
sions, errors can be corrected by uplinking bug fixes
from a distance of millions of miles. This relaxed view
of software errors might, however, be changing as
software, to an increasing extent, autonomously con-
trols equipment such as cars, which can cause loss of
life in case of failure.

Another, perhaps more important, reason for the
lesser acceptance of FV in the software community is
that the verification problem appears less tractable
for software systems, due to higher complexity and
the possibility of more execution paths. Theorem prov-
ers require a considerable amount of manual effort
to apply, even for smaller models, let alone real-world
software systems, and model checkers are challenged
by the large state spaces of realistically sized software
applications. This means that the application of FV
techniques requires either a big verification effort
or a big modeling effort, where a simplistic model is
created of the software and then verified. A software
engineer, not supported by management to carry out
such proofs/modeling, will see very little incentive to
do so.

Sayan Mitra: FV is being used in mainstream soft-
ware already, propelled first by major outages and
breaches at big tech firms, then by successful appli-
cations of verification technology in bug finding, and
more recently in the application of verification for gen-
erating proofs as “more extensive tests.” Static anal-
ysis tools are part of the core developer workflow at
Google and deployed on the 2-billion-line code base.8
Amazon Web Services (AWS) developers are writing
formal specifications and proofs for hypervisors, boot
loaders, and Internet of Things operating systems.9
The Infer static analysis engine is integrated with the
code base at Facebook and does continuous reason-
ing on iOS, Android, and Instagram and WhatsApp
applications. Hundreds of bugs are reported and fixed
every month.10 Bugs in CPSs and autonomous sys-
tems can compromise safety. This raises the stakes as
well as the incentives for the adoption of FV. But the
adoption of CPS verification also presents barriers
that were not present in the software ecosystem.

Corina Pasareanu: The reason is that FV for software
is much harder (for example, programs are much larger,
potentially unbounded, use many external libraries,
and contain programming language constructs that
are hard to analyze). Yes, CPS projects are often safety
critical and justify the high cost of FV. Furthermore,
the software involved in CPS projects is simpler than
general-purpose software and therefore more amena-
ble to verification.

www.computer.org/computingedge� 17

VIRTUAL ROUNDTABLE

Sanjit A. Seshia: There is a spectrum of FV methods,
from assertion-based testing and model-based testing
to static analysis and model checking and interactive

theorem proving. So, if we define FV broadly to include
this entire spectrum, I contend that FV is already
used widely in software in much the same way as it

ROUNDTABLE PANELISTS

Knut Åkesson is a professor of automation in the De-
partment of Electrical Engineering, Chalmers University
of Technology, Göteborg, Sweden. His research interests
include rigorous methods for verification and control
with applications in safety-critical autonomous systems,
the optimization and configuration of products and pro-
duction systems with high variability, and applications
of computer vision and deep machine learning. Åkesson
received a Ph.D. from Chalmers University of Technology
in 2002. Contact him at knut.akesson@chalmers.se.

Dimitra Giannakopoulou is a research computer scien-
tist at the NASA Ames Research Center, Mountain View,
California, USA, and a member of the Robust Software
Engineering Group. Her research interests include ap-
plying modular and compositional formal verification
techniques to autonomous systems and architectures.
Giannakopoulou received a Ph.D. in computer science
from Imperial College, University of London, in 1999.
Contact her at dimitra.giannakopoulou@nasa.gov.

Klaus Havelund is a senior research scientist at Jet
Propulsion Laboratory, Pasadena, California, USA,
specifically in the Laboratory for Reliable Software. His
research interests include the development of runtime
monitoring techniques, including the design of powerful
monitoring logics. He is the chair of the Formal Methods
Europe industry committee, a member of International
Federation for Information Processing 1.9/2.15 working
group, and a member of the Transactions on Founda-
tions for Mastering Change editorial board. Havelund
received a Ph.D. in computer science from the University
of Copenhagen in 1994. Contact him at klaus.havelund
@jpl.nasa.gov.

Sayan Mitra is a professor of electrical and computer
engineering at the University of Illinois at Urbana–
Champaign, Champaign, Illinois, USA. His research
interests include the formal verification and syn-
thesis of cyberphysical and autonomous systems.
Sayan received a Ph.D. in computer science from the

Massachusetts Institute of Technology. Contact him at
mitras@illinois.edu.

Corina Pasareanu is the technical professional leader
in data science for KBR, Houston, Texas, USA. She is
part of the NASA Ames Robust Software Engineering
group, performing research in software engineering and
is affiliated with the Carnegie Mellon University (CMU)
CyLab, CMU Silicon Valley, and the CMU Department
of Electrical and Computer Engineering. Pasareanu
received a Ph.D. in computer science from Kansas State
University. Contact her at corina.s.pasareanu@nasa.gov
or pcorina@andrew.cmu.edu.

Sanjit A. Seshia is a professor in the Department of Elec-
trical Engineering and Computer Sciences, University
of California, Berkeley, Berkeley, California, USA. His re-
search interests include formal methods for dependable
and secure computing, with application to cyberphysi-
cal systems, computer security, machine learning, and
robotics. Seshia received a Ph.D. in computer science
from Carnegie Mellon University. He is a Fellow of IEEE
and the Association for Computing Machinery. Contact
him at sseshia@eecs.berkeley.edu.

Oleg Sokolsky is a research professor in the Depart-
ment of Computer and Information Science, University
of Pennsylvania, Philadelphia, Pennsylvania, USA. He
is member of the university’s Research in Embedded
Computing and Integrated Systems Center and Real-
Time Systems group. His research interests include
ensuring the safety of real-time and cyberphysical
systems (CPSs), in addition to related areas of applying
formal methods to the design and verification of CPSs,
formal foundations and online monitoring for embedded
systems and CPSs, hybrid systems, the automated ex-
traction of specifications from source code, and formal
methods in software engineering, particularly embedded
software. He serves as Computer’s area editor for cyber-
physical systems. Contact him at sokolsky@seas
.upenn.edu.

18	 ComputingEdge� January 2022

VIRTUAL ROUNDTABLE

is employed in hardware. Of course, software comes
in many different flavors, and so we will find FV used
more for software in safety-critical, mission-critical,
and high-availability applications. FV is also used in
certain industrial CPS applications; for example, the
simulation-based falsification of temporal logic (TL)
properties has been successfully applied in the auto-
motive industry.11 Over the past decade, I have seen
big growth in interest from the CPS industry in apply-
ing formal methods to CPS design, although that inter-
est has yet to fully translate into a wider deployment
of tools.

Oleg Sokolsky: The main reason is that the software
verification problem is inherently much harder. Soft-
ware tends to be much less structured and much more
complex compared to hardware. Finite-state mod-
els, which are much easier to verify than infinite-state
ones, are a more natural fit for hardware than for soft-
ware. From this perspective, CPSs are likely to make
verification problems only harder. Embedded proces-
sors are becoming ever more powerful, enabling more
and more complex software on board. In addition to
software, physical environments need to be included
in the model, making the challenge even bigger. If there
is any silver lining, modern CPSs—in particular, auton-
omous vehicles—offer more room for lighter-weight
applications of FV. Runtime verification techniques,
that is, formally specified monitoring and adaptation,
as well as applications of online reachability computa-
tion, appear to be very promising in autonomous CPSs.

Computer: An often neglected issue related to FV is
the reliance of most techniques on expressively weak
and hard-to-use formal specification languages (in the
sense of creating correct specifications), such as dia-
lects of TL. How serious do you think this problem is,
and how can it be addressed?

Åkesson: For maintenance reasons, it is important to
ensure that specifications and implementations are
closely linked. Specifications have to be understand-
able by the engineer doing the implementation, and
they have to be refined during the implementation
phases. It should also be possible for the same engi-
neer to update them. In our experience working with
industrial partners, writing correct specifications is

challenging, and it is often the case that an identi-
fied violation of a specification is due to a mistake in
the formalization of the specification and not in the
implementation. While FV tools have a well-defined
specification language, it might be useful to consider
high-level, domain-specific specification languages
that integrate well with the implementation language
and to consider automatically translating from this
domain-specific language to the FV specification lan-
guage being used.

Giannakopoulou: Creating specifications is typically
an exploratory process aimed at nailing down the
intended behavior of a target system, avoiding over-
specification, underspecification, and ambiguity.
What FV requires is a lack of ambiguity and a formal
language to communicate with. In terms of ambiguity,
even a simple sentence containing a condition under
which some system behavior is expected has many
possible interpretations. Figuring out the interpre-
tations and picking the intended one is not straight-
forward. Writing a formal specification that is precise
with respect to the intended interpretation is even
harder. In my experience, nontrivial specifications
are challenging even for experts. A way to address
this problem is to build environments that assist in
the process of gradually constructing specifications
that are unambiguous and capture user intentions.
Such environments would ideally enable users to write
and explore their specifications through a variety of
approaches: natural language, diagrams, use case
scenarios, and interactive simulation. Formal speci-
fications should then be produced automatically and
through trusted algorithms. The problem of produc-
ing specifications can also be alleviated through the
support of domain-specific specification patterns.
Even in this case, however, it is crucial to provide a
user-friendly environment for exploring and under-
standing the details of such patterns.

Havelund: Two problems are mentioned here: expres-
sively weak specification languages and hard-to-use
specification languages. I think the second problem,
with hard-to-use specification languages, might be a
nonissue. Just consider the complexity of C++, which
programmers happily learn. Specification languages
are no harder to learn, and in many cases, they are

www.computer.org/computingedge� 19

VIRTUAL ROUNDTABLE

simpler than programming languages. Programmers
have no difficulty writing the programs, so they can
probably write specifications, as well. Some of the
more simplistic languages (such as linear TL) can be
hard to use for writing more complex properties, but
there are solutions to that, such as specification pat-
terns and graphical solutions, potentially translated
into the harder-to-use formalisms. The real problem, in
my view, might not be the difficulty of learning a spec-
ification language but the lack of willingness among
developers to deal with another complex language
in addition to the programming language. There is an
argument for developing specifications in the pro-
gramming language itself. Specification languages
must be highly expressive to meet practical needs. I
have developed numerous specification languages for
software monitoring, and it is usually the languages
that support an escape to a general-purpose program-
ming language (when the logic formalism falls short)
that appear most attractive to users.

Mitra: Verification tools must communicate with
developers using artifacts and interfaces that are
already part of their workflow. Requiring developers
to learn a new language or a formalism is a nonstarter.
Chong et al. discuss a four-year experience in which the
loss of expressive power (or not using TLs, for example)
was more than offset by the benefits of using the same
programming language for coding and specifications.9
This is a recurring theme at other firms adopting FV.
Using common artifacts and interfaces reduces the
“developer’s cognitive burden and allows them to view
proofs as ‘ just another test suite,’ albeit a vastly more
thorough one.”9 The integration of development and
verification workflows was also a precursor to the suc-
cess of hardware verification through description lan-
guages such as VHDL and Verilog.

One challenge for CPS verification is that existing
tools—of which there are many strong ones—rely
on mathematical models that are disconnected from
developer workflows. There are no open and stan-
dard CPS languages and development ecosystems
for plugging in verification tools. MATLAB is popular
but, unfortunately, neither open nor standardized.
The solution is to move away from model verification
tools to tools that verify CPS code written in open
languages, such as C, C++, and Rust, and testing and

verification environments that use open simulators,
including CARLA (https://carla.org/) and Gazebo (http:
//gazebosim.org/).

Second, some CPS components have to be treated
as black boxes. The code for a component may be
too complex, and it may be proprietary. The physical
models may be impossible to represent as x˙ = f(x) or
as a hybrid automaton. For such black-box compo-
nents, verification has to rely on statistical methods.
We will need to integrate verification approaches that
can combine black-box methods with model-based
techniques within the development ecosystem. One
approach in this direction is discussed in our DryVR
framework, which has been used to verify several

industrial-scale systems that combine black- and
white-box components.12,13 TLs have been fundamen-
tal in understanding the complexity of verification and
synthesis problems with respect to different specifica-
tion classes. Extrapolating those scientific advances
to a world in which developers learn TLs and start
using them as specification languages for day-to-day
development, in my view, is not realistic.

Pasareanu: Formal specification languages are hard
to understand even for an expert in formal methods.
Natural language representations, patterns, and tool
support can perhaps address the problem.

Seshia: I think we can learn a lot from hardware verifi-
cation. TL-based assertion languages are now widely
used in hardware design, and yet the average devel-
oper does not need to be an expert in logic to use
them. They have been incorporated into more acces-
sible assertion languages, integrated with user inter-
faces, and generated by tools for the automated infer-
ence of specifications. In fact, tools for specification

ONE CHALLENGE FOR CPS
VERIFICATION IS THAT EXISTING
TOOLS—OF WHICH THERE ARE
MANY STRONG ONES—RELY ON
MATHEMATICAL MODELS THAT ARE
DISCONNECTED FROM DEVELOPER
WORKFLOWS.

20	 ComputingEdge� January 2022

VIRTUAL ROUNDTABLE

mining, learning properties from execution and simu-
lation traces, are a very promising approach for easing
the specification burden. In our own work with indus-
try, we have seen that a specification mining tool can
ease the initial burden of writing TL properties, which
demonstrates to industrial users the value of formal
specifications, becoming a virtuous cycle where users
actively seek to learn to write logic properties due to
the added value it brings them.14 Specifications can
also be integrated as “blocks” into tools that industrial
users already employ; for instance, see Kapinski et al.15

Sokolsky: There are two related problems here. One is
that, indeed, formal specification languages are hard
for engineers to fully understand and use effectively.
To a large extent, this drives the need for formal meth-
ods experts and stands in the way of transferring ver-
ification technology to engineers. The other problem
is that, as specifications become more complex and
harder to grasp, they become increasingly error prone
themselves. Both issues can be partially addressed
with better specification languages and tool support.

Computer: There is a perception that human involve-
ment in the creation of formal specifications limits our
ability to apply FV to CPSs. ML-based specifications
are limited, at present. Can specifications created by
ML algorithms be trusted? In other words, who will
guard the guard (the first guard being ML-created for-
mal specifications used for FV)?

Åkesson: Writing high-quality specifications is a very
challenging task for both humans and computers. But
algorithms (AI, ML, and others) can play an important
role in assisting humans by proposing specifications
and suggesting possible extensions. I believe that the
process of formalizing specifications is as important
as the verification process. During this, assumptions
have to be expressed explicitly, and it has to be defined
what the expected behavior should be for all corner
cases. These insights are lost if ML is used to generate
specifications. Thus, I see that the primary role for ML
is in assisting humans by helping with the process of
identifying untold assumptions and corner cases.

Giannakopoulou: Specification mining is not a new
idea. In fact, several approaches have been developed

that try to bypass human involvement in the creation
of formal specifications. Naturally, ML is also involved
in this quest. After all, it is, by now, involved in every
aspect of software engineering. In my experience,
ML is extremely tricky to get right, as it relies on the
amount and quality of available training data and
may not transfer well to other domains. One avenue
that is being explored toward increasing trust is to
develop ML frameworks that explain their decisions.
In general, I believe we have quite a bit of work to do
before we can trust ML to produce correct specifica-
tions, especially if we are liable for them. On the other
hand, ML could be a valuable aid for CPS design-
ers toward discovering, formulating, and repairing
specifications.

Havelund: Specifications generated by ML techniques
will undoubtedly become increasingly important. Just
from a philosophical point of view, it is an evident trend.
It is, however, nearly impossible to predict how much
such systems can be trusted. They will, for sure, play
advisory roles and eventually safety-critical ones. The
most obvious approach to deal with such systems, in
my view, is to monitor their execution and ensure that
they behave within a more traditionally defined safety
region. Hence, the guards of the guards are monitors.
ML can also be used to propose formal specifications
to be approved by humans.

Mitra: When specification writing becomes part of the
development process, with tangible benefits, and it
is no longer seen as an isolated activity, then the cre-
ation of specifications may not be viewed as burden-
some. One study reports that AWS developers spend
considerable energy writing proof harnesses, which
are essentially assertions written in the programming
language and that guide the verification engine and
provide much better coverage.9 ML-created specifi-
cations are an intriguing idea. Obviously, generating
labeled data for any such approach will still require
curation and expertise.

Pasareanu: I believe there will always be some human
involvement and domain expertise in the creation of
formal specifications. I am not sure what you have in
mind with “ML-based specifications.” If these are spec-
ifications mined from data and/or systems, then I think

www.computer.org/computingedge� 21

VIRTUAL ROUNDTABLE

a human expert can validate them. FV tools can be
used to formally verify them.

Seshia: As I mentioned earlier, learning specifications
from data and other artifacts is a promising approach
to ease the specification burden. One way to gener-
ate trust in ML-created formal specifications is to val-
idate them against available code and models, with
human oversight. This is exactly the approach we
took in a collaboration with Toyota, where, when an
engineer felt our generated specification was incor-
rect, the validation pointed to a corner case bug in a
large Simulink model the company was analyzing.14 In
other words, mining specifications and finding corner
case bugs are two sides of the same coin. This spec-
ification mining approach is a special case of a more
general methodology for high-assurance ML termed
oracle-guided learning or oracle-guided inductive
synthesis.16,17

Sokolsky: On the one hand, we clearly need a way to
keep tabs on machine-generated specifications, to
make sure they capture our intuitive goals and that
there are no unintended aspects. On the other hand,
we must remember that human-created specifica-
tions are not perfect, either. Thus, the question is not
whether we should trust machine-generated spec-
ifications more or less than ones crafted by humans.
Whatever the source, we should be able to perform
sanity checks on a specification or, better yet, verify it
with respect to higher-level requirements.

Computer: How much of the verification of a CPS is
physics, and how much is logic and traditional rea-
soning tools? Where do you think this ratio is headed?
Similarly, how much is logical inference versus statisti-
cal inference? How much of ML algorithms can trans-
late into traditional reasoning, and what is lost in the
process?

Åkesson: Physics plays a vital role in restricting the
behavior of a closed-loop system. However, it is the
perception and decision-making code that is rapidly
increasing in complexity.

Giannakopoulou: Instead of commenting on the ratio
of physics to logic, I will share some observations. In

my experience, many novel algorithms for autono-
mous decision making (collision avoidance, for exam-
ple) are constructed using models (often probabilis-
tic) of the physical systems involved. Finding the right
level of model abstraction to combine scalability with
safety is an art. Ensuring the conformance of physical
models to the real world is key when verifying CPSs.
The need to deal with uncertainty and optimization,
which are intrinsic in autonomy, creates a natural shift
toward statistical inference. In my opinion, the major
challenge with reasoning about ML algorithms is that
their logic is not explicit, making it hard to formulate
and assess the correctness of their behavior.

Havelund: As long as there is traditional software in
CPSs, it will need to be verified and tested. Further-
more, such systems will increase in complexity, mean-
ing even more software to be verified and tested. A
big part of such future systems will therefore be tra-
ditional testing and logic-based reasoning tools to the
extent that they scale to the problem.

Mitra: The physics-to-logic ratio in CPS verification
evolves across development stages. As physical pro-
cesses become better understood and controlled,
design and verification complexity shifts to the com-
puting stack, with the goals of achieving better effi-
ciency, less energy use, and utilization. The early
adopted methods are usually the ones that are stable
and easier to interpret. My view is that the early adop-
tion of CPS verification will be dominated by the more
traditional proofs, logical inference, and absolute
guarantees, while statistical approaches will dominate
testing. For end-to-end and system-level verification,
the verification results of heterogenous components
have to be composed. There are very interesting ideas
about incorporating ML in verification, particularly for
handling black-box components we mentioned earlier,
but these approaches are still in their infancy.

Pasareanu: I think it is hard to quantify. It seems,
indeed, that we have a bit of all of them.

Seshia: Your first question goes to the crux of how
CPSs are defined. According to Edward Lee and myself,
CPSs are integrations of computation with physical
processes whose behavior is defined by both cyber

22	 ComputingEdge� January 2022

VIRTUAL ROUNDTABLE

and physical components.18 Thus, every CPS verifica-
tion problem involves reasoning about the “physics”
and reasoning about computation. Now, to achieve
scalability, we typically must take a modular approach,
where we break up the CPS verification problem into
several subproblems, some purely cyber, some purely
physical, and some cyberphysical. With respect to
your second question, I think inductive learning, also
known as ML, is central to the process of proof. The
combination of inductive and deductive reasoning
has been at the heart of many advances in FV over
the past 20 years, including counterexample-guided
abstraction refinement and techniques for invariant
synthesis, where inductive learning is combined with
deductive reasoning by using hypotheses about the
structure of proof artifacts being synthesized.16 So,
ML algorithms do fit in a natural way into “traditional”
reasoning. It remains to be seen how useful deep
learning, specifically, will be in FV.

Sokolsky: It seems hard to separate the effects of
physics and logic in CPS verification challenges. While
physics verification seems harder, or at least less
scalable than logic verification, it is the interaction
between physics and logic that makes CPS verification
so difficult. The balance between logical and statisti-
cal inference depends on the verification approach,
with statistical inference becoming ever more promi-
nent in recent years.

Computer: Should the FV of a CPS be conducted on
the interface between the cyber and physical parti-
tions instead of directly on them?

Åkesson: There is a need to do both. During early
development phases, the components and their inter-
faces are defined, and the implementation and models
might be missing or incomplete. During these phases,
the interfaces’ expectations and guarantees toward

the environment can be defined and verified. Later in
the development process, FV and other rigorous test
methods, such as falsification, should be used to ver-
ify the closed-loop behavior.

Giannakopoulou: This falls under the standard topic
of unit versus integration testing/verification. The
answer is that it should be conducted at all levels. How-
ever, given the complexity of CPSs, it is worthwhile to
invest in studying the interface between the cyber and
physical partitions first. Understanding and specifying
the intended interactions between the two provides a
solid foundation for developing systems that will inte-
grate seamlessly. Integration as an afterthought usu-
ally results in expensive redesigns and modifications
late in the software development life cycle.

Havelund: As I pointed out, I think a large part of the
verification of CPSs will still be the validation of tra-
ditional code bases. However, specifically monitoring
techniques, also referred to as runtime verification,
can be used to oversee the interface between the soft-
ware and the physical system and potentially prevent
the software from doing any harm, a subfield of run-
time verification referred to as runtime enforcement.
Here, the monitor will prevent the software from issu-
ing harmful commands to the physical system.

Mitra: Carefully defining CPS model interfaces can
help achieve a separation of concerns, for example,
farming out the physics models or components and
the software elements to different proof engines in
such a way that their results can be soundly combined
to verify the overall model. Our Koord19 language and
the CyPhyHouse20 verification framework are tailored
to address this issue in the context of distributed CPSs
written using shared memory.

Pasareanu: Perhaps on both. Compositional reason-
ing can be helpful in putting together results from sep-
arate verifications.

Seshia: Since CPSs are fundamentally about the inter-
section between cyber and physical worlds, some
verification will always need to be on the interface
between the two. For compositional analysis, some
verification may need to be on individual cyber and

INTEGRATION AS AN AFTERTHOUGHT
USUALLY RESULTS IN EXPENSIVE
REDESIGNS AND MODIFICATIONS
LATE IN THE SOFTWARE
DEVELOPMENT LIFE CYCLE.

www.computer.org/computingedge� 23

VIRTUAL ROUNDTABLE

physical “partitions.” But the overall proof will always
involve the interface. And if a counterexample is to be
demonstrated, it must be a full CPS counterexample.
Our experience working with industrial users in the
automotive sector is that, first, integration testing is
the biggest challenge, and second, people care much
more about system-level counterexamples than “unit”
counterexamples; for instance, see the work of Yama-
guchi et al.11

Sokolsky: I try to avoid being prescriptive in the
choice of verification approaches. Whatever works
should be used. I would imagine that interface-based
techniques may offer better scalability, in general, at
the expense of more significant conservatism. A lot
depends on the system design, and the verification
engineer should be prepared to apply the whole range
of available tools as needed.

Computer: Of the current impediments—technical or
otherwise—that make it challenging to formally verify
a CPS in an effective and efficient manner, which do
you think is the most pressing to address and why?

Åkesson: Scalability and ease of use are limiting the
industrial acceptance of the FV of CPSs. The limitations
of formal and rigorous verification methods signify
the importance of a modular approach, such as com-
bining ML components with correct-by-construction
approaches and software modules with manageable
complexity. A significant challenge is combining the
white-box approaches of FV with the black-box meth-
ods used in falsification to handle systems where parts
are fully known while for others, only incomplete infor-
mation is available.

Giannakopoulou: Regulatory bodies are pressed to
come up with solutions for ensuring the safety of
autonomous vehicles, which are expected to invade
our lives in massive numbers in the near future. It is
a great opportunity to exploit this pull for techniques
that ensure trust in autonomy. In many respects,
CPSs share verification challenges with traditional
large, complex distributed systems and can benefit
from advances made in those domains. However, they
place increased emphasis on AI. Within that domain,
I believe it is most pressing to identify and formulate

requirements for the correctness of adaptive and ML
algorithms.

Havelund: The main problem, in my view, is the algo-
rithmic challenge in verifying large systems. We are
currently not able to automate this process sufficiently
to make it broadly attractive. To this can be added the
problem of writing specifications. However, I do believe
that if the verification problem could be solved (highly
automated) and if specifications really captured the
details of interest (requiring expressive specifica-
tion languages), there could be enough motivation for
adopting FV. This is not to underestimate the problem
of writing specifications. There is a need to support
the formal specification and verification of programs
written in programming languages and perhaps with

specifications written in the programming language
itself, for example, much like unit tests. Some program-
ming languages are now being developed with built-in
support for FV. The guaranteed short-term-winner
approach is automated testing 24/7, in which a system
is constantly bombarded with inputs and monitored as
it executes with advanced test oracles. This requires
trustworthy simulators of the physical systems, which
can be rerun repeatedly on a normal desktop or laptop.

Mitra: We need a standardized, open development
ecosystem for CPSs and related benchmarks. Open
standards help identify problem definitions and attract
talented researchers. They reduce friction in sharing
solutions. Benchmarks and standards also help prac-
titioners share hard instances across domains, and
they give a yardstick for the community to measure
progress.

Pasareanu: CPSs are increasingly built using ML com-
ponents, such as neural networks, which are hard to

REGULATORY BODIES ARE PRESSED
TO COME UP WITH SOLUTIONS
FOR ENSURING THE SAFETY OF
AUTONOMOUS VEHICLES, WHICH ARE
EXPECTED TO INVADE OUR LIVES IN
MASSIVE NUMBERS.

24	 ComputingEdge� January 2022

VIRTUAL ROUNDTABLE

specify and verify formally. I view that as the main
challenge.

Seshia: In a sense, the CPS verification challenge is
the union of the difficulties of verifying hardware, soft-
ware, and physical systems because CPSs integrate
all of them. It is difficult to identify a single challenge
that is the “most pressing.” My top contenders include
modeling the complex environments of CPSs, devel-
oping better theories of compositional reasoning for
CPSs, verifying intelligent CPSs based on AI and ML,
and creating a large and diverse repository of bench-
marks to guide the community.

Sokolsky: A lot of challenges to FV, such as the compu-
tational complexity of verification algorithms and the
rapidly growing scale of CPSs, are fundamental and
thus cannot be really addressed, in my opinion. What
can be addressed is the verifiability of CPSs. Systems
can and should be designed in a way that makes them
easier to verify, more modular, and better structured.
To achieve that, we need better design approaches
and techniques. But even more importantly, we need
to change the mindset of designers. Most system
designers are not experts in formal methods and do
not need to be. But they need a better understanding,
if only at a rule-of-thumb level, of what makes a system
easier or harder to verify.

There is consensus among the panelists that the
software industry is, indeed, slow to adopt FV,

except for static analysis—which is arguably more of a
compiler technology than FV—and some projects run
by deep-pocket companies. The reasons include soft-
ware’s complexity, rate of change, and diverse correct-
ness criteria. A key obstacle cited by multiple experts
is the FV environment and ease of use. In contrast with
the EDA market, in which FV is a first-class member of
the development environment and tool chain, for soft-
ware developers, FV is like a distant “nerd” cousin that
speaks a different dialect and one that few first-class
members pay attention to.

The panel members agree that as difficult as it is
to successfully apply FV to software in general, it is
as difficult or more so to apply it to CPSs. Some argue
that the complexity, scale, and opaque nature of ML
algorithms make the full application of FV for CPSs

unrealistic. However, limited approaches, such as run-
time verification (especially on the interface between
the cyber and physical partitions of a CPS) can be used.
The expectation that, inevitably, some correctness
properties themselves will be machine learned only
exacerbates the trust problem. Nevertheless, despite
such mounting challenges, we recommend that the FV
research community measure up by developing tech-
niques for dealing with the difficult nature of building
dependable CPSs. As an analogy, consider the vari-
ous techniques theoretical computer scientists have
developed for coping with intractable (NP-complete)
problems, such as heuristics, Horn logic, and Boolean
satisfiability-solving algorithms. Indeed, runtime veri-
fication is one such approach.

REFERENCES
1.	 M. B. W. Tent, ed., Gottfried Wilhelm Leibniz: The

Polymath Who Brought Us Calculus, 1st ed. Boca Raton,

FL: CRC Press, 2011.

2.	 E. W. Dijkstra, “On the reliability of mechanisms,”

in Notes on Structured Programming, T. H.-Report

70-WSK-03, 2nd ed. Eindhoven, The Netherlands: ersity,

Apr. 1970, p. 7. Accessed: June 1, 2021. [Online]. Avail-

able: https://www.cs.utexas.edu/users/EWD/ewd02xx

/EWD249.PDF

3.	 A. Edelman, “The mathematics of the Pentium division

bug,” SIAM Rev., vol. 39, no. 1, pp. 54–67, 1997. doi: 10.1137

/S0036144595293959

4.	 “Intel takes $475-million earnings hit: Computers: The

charge for replacing flawed Pentium chips mars an

otherwise stellar year,” Los Angeles Times, Jan. 18,

DISCLAIMER

The views and conclusions contained herein
are those of the panelists and moderators

and should not be interpreted as necessarily rep-
resenting the official policies or endorsements,
either expressed or implied, of their employers. The
U.S. government is authorized to reproduce and
distribute reprints for government purposes, not-
withstanding any copyright annotations thereon.

www.computer.org/computingedge� 25

VIRTUAL ROUNDTABLE

1995. Available: https://www.latimes.com/archives/la

-xpm-1995-01-18-fi-21424-story.html

5.	 IEEE Standard for SystemVerilog—Unified Hardware

Design, Specification, and Verification Language,

IEEE Standard 1800-2017 (Revision of IEEE Standard

1800-2012), Feb. 22, 2018. doi: 10.1109/IEEESTD.2018

.8299595.

6.	 J. B. Michael, G. W. Dinolt, and D. Drusinsky, “Open

questions in formal methods,” Computer, vol. 53, no. 5,

pp. 81–84, 2020. doi: 10.1109/MC.2020.2978567.

7.	 “Letters: Another view on formal methods,” Computer,

vol. 53, no. 9, p. 8, 2020. doi: 10.1109/MC.2020.3001958.

8.	 C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon,

and C. Jaspa, “Lessons from building static analysis

tools at Google,” Commun. ACM, vol. 61, no. 4, pp.

58–66, 2018. doi: 10.1145/3188720.

9.	 N. Chong et al., “Code-level model checking in the

software development workflow,” in Proc. ACM/IEEE

42nd Int. Conf. Softw Eng.: Softw. Eng. Pract., 2020, pp.

11–20. doi: 10.1145/3377813.3381347.

10.	 P. W. O’Hearn, “Continuous reasoning: Scaling the

impact of formal methods,” in Proc. 33rd Annu. ACM/

IEEE Symp. Logic Comput Sci., 2018, pp. 13–25. doi: 10.

1145/3209108.3209109.

11.	 T. Yamaguchi, T. Kaga, A. Donze, and S. A. Seshia,

“Combining requirement mining, software model

checking, and simulation-based verification for

industrial automotive systems,” in Proc. IEEE Int. Conf.

on Formal Methods Computer-Aided Design, Oct. 2016,

pp. 201–204. doi: 10.1109/FMCAD.2016.7886680.

12.	 C. Fan, B. Qi, S. Mitra, and M. Viswanathan, “DryVR:

Data-driven verification and compositional reasoning

for automotive systems,” in Computer Aided Verifica-

tion (Lecture Notes in Computer Science), R. Majumdar

and V. Kunčak, Eds. Berlin: Springer, pp. 441–461. 2017.

doi: 10.1007/978-3-319-63387-9_22.

13.	 S. Mitra, Verifying Cyber-Physical Systems: A Path to

Safe Autonomy. Cambridge, MA: The MIT Press, 2021.

ISBN-13: 978-0262044806.

14.	 X. Jin, A. Donze, J. Deshmukh, and S. A. Seshi, “Mining

requirements from closed-loop control models,” IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 34,

no. 11, pp. 1704–1717, 2015. doi: 10.1109/TCAD.2015

.2421907.

15.	 J. Kapinski et al., “ST-Lib: A library for specifying

and classifying model behaviors,” SAE Tech. Paper

2016-01-0621, 2016. doi: 10.4271/2016-01-0621.

16.	 S. A. Seshia, “Combining induction, deduction, and

structure for verification and synthesis,” Proc. IEEE, vol.

103, no. 11, pp. 2036–2051, 2015. doi: 10.1109/JPROC

.2015.2471838.

17.	 S. A. Seshia, D. Sadigh, and S. S. Sastry, “Towards veri-

fied artificial intelligence,” July 2016. [Online]. Available:

https://arxiv.org/abs/1606.08514

18.	 E. A. Lee and S. A. Seshia, Introduction to Embedded

Systems: A Cyber-Physical Systems Approach, 2nd ed.

Cambridge, MA: The MIT Press, 2017.

19.	 R. Ghosh, C. Hsieh, S. Misailovic, and S. Mitra, “Koord:

A language for programming and verifying distributed

robotics application,” Proc. ACM Program. Lang., vol. 4,

pp. 1–30, 2020. doi: 10.1145/3428300.

20.	 R. Ghosh et al., “CyPhyHouse: A programming, simula-

tion, and deployment toolchain for heterogeneous

distributed coordination,” in Proc. IEEE Int. Conf.

Robotics Automat., 2020, pp. 6654–6660. doi: 10.1109

/ICRA40945.2020.9196513.

JAMES BRET MICHAEL is a professor in the Department

of Computer Science and the Department of Electrical and

Computer Engineering, Naval Postgraduate School, Mon-

terey, California, 93943, USA. Contact him at bmichael@nps

.edu.

DORON DRUSINSKY is a professor in the Department of

Computer Science, Naval Postgraduate School, Monterey,

California, 93943, USA, and the chief science officer at Aer-

endir, Mountain View, California, 94040, USA. Contact him at

ddrusins@nps.edu.

DUMINDA WIJESEKERA is a professor in the Department of

Cyber Security Engineering, George Mason University, Fair-

fax, Virginia, 22030, USA, where he is codirector of the Center

for Assured Research. Contact him at dwijesek@gmu.edu.

@s e cur it ypr ivac y
FOLLOW US

26	 January 2022	 Published by the IEEE Computer Society � 2469-7087/22 © 2022 IEEE

EDITOR: Robert Blumen, SalesForce, robert@robertblumen.com

SOFTWARE ENGINEERING RADIO

Boris Cherny on TypeScript
Nate Black

Nate Black: What is TypeScript?

Boris Cherny: TypeScript is a programming language
that compiles to JavaScript. It mostly came out of
Microsoft, with contributions from Google. Its type
system is structural, static, strong, mostly inferred,
and gradually typed. TypeScript is the most successful
among gradually typed languages and the most popu-
lar language that compiles to JavaScript.

Why are there so many languages that compile to
JavaScript?

JavaScript can run on every computer and every
phone. Because it’s so ubiquitous, Facebook, Google,
and others have built big applications (apps) on it. But
it lacks fundamental features, such as static types

that are necessary to scale a program across more
engineers and more devices Compile-to-JavaScript
languages are intended to overcome limits to
scalability.

How similar or dissimilar is TypeScript from
JavaScript?

TypeScript compiles to and interoperates well with
JavaScript. Every valid JavaScript program is also a
TypeScript program. It might not type check, but it will
compile. If you have a JavaScript file that ends with a
.js and rename it to a .ts extension, that’s a TypeScript
program.

What does it mean to scale?

It means more lines of code, more engineers, and
more devices. Big tech companies have millions of
lines of code. Code will start breaking when you make
changes to it if the consequences of changes are not

This article originally
appeared in

vol. 37, no. 2, 2020

Digital Object Identifier 10.1109/MS.2019.2958155

Date of current version: 12 February 2020

FROM THE EDITOR

In Episode 384 of “Software Engineering Radio,” Boris Cherny, author of Programming TypeScript, speaks
with Nate Black, explaining how TypeScript can scale JavaScript projects to larger teams, larger code
bases, and across devices. TypeScript is a gradually typed language, allowing you to add compile-time
verification to a JavaScript project bit by bit. TypeScript aims to be practical by catching common mis-
takes but without adding too much burden on the programmer. Other topics include: structural typing,
type refinement and programmer intuition, when to use escape hatches and how to ban them, interop-
erability with JavaScript, and using TypeScript with frameworks such as Angular, React, and React
Native. We provide summary excerpts below; to hear the full interview, visit http://www.se-radio.net or
access our archives via RSS at http://feeds.feedburner.com/se-radio.—Robert Blumen

www.computer.org/computingedge� 27

SOFTWARE ENGINEERING RADIO

totally clear. Static type has helped solve that prob-
lem; when you modify a line of code or the app pro-
gramming interface to some function or some kind
of module, you know exactly what else it will break for
certain classes of errors.

TypeScript scales across more engineers, serving
as documentation when type notations are added
to functions (for example, “Function F accepts a
number and returns a string”). It scales across more
devices; once you start scaling to services and writ-
ing multithreaded JavaScript, TypeScript enforces
well-defined protocols by letting you type both sides
of the communication, thereby increasing confidence.
For example, you can write TypeScript that runs on
both the browser and server.

How does the compilation process work when JavaS­
cript is run through the TypeScript compiler? What
does the TypeScript compiler do?

JavaScript is an interpreted language. When you
put JavaScript code into a text file, feed it into your
browser, and then run it, it must be compiled to byte
code or machine code before the user actually exe-
cutes the program. It’s the same with TypeScript, a lan-
guage that targets JavaScript so it can run on any plat-
form that supports JavaScript. TypeScript takes code
and then outputs JavaScript code, which you can then
run as you would have before.

You wrote that changing type definitions of the Type­
Script program won’t change the compiled Java­
Script output. How is that possible and what does
that mean?

TypeScript is JavaScript plus some types. The types
will never affect the output of the program, so you
can do what you want with the types. You can make
it safer or less safe by using different kinds of types.
But the generated JavaScript output will look exactly
the same. The types affect type checking done by
the TypeScript compiler before it compiles. But it can
still compile your code even if it doesn’t type check or
if the types don’t totally work. If you want to opt into
more safety, TypeScript has various safety flags, one
of which controls this behavior and will not admit code
unless the program type checks.

How can it compile the code even if it doesn’t type
check?

TypeScript looks at the value level of your program as
opposed to the type level—the JavaScript part of it,
not the TypeScript part—to compile it. The types are
used just for type checking, before it compiles.

If the type checking conveys information that it didn’t
type check correctly, how would I respond?

When you write TypeScript in an editor that supports
it, you will get errors in your text editor warning you
that you made a mistake. You can configure your

SOFTWARE
ENGINEERING RADIO

Visit www.se-radio.net to listen to these and other
insightful hour-long podcasts.

RECENT EPISODES
»» 391—Jeremy Howard from fast.ai explains deep

learning from concept to implementation. He
and host Nate Black discuss neural network
architecture and deep-learning models.

»» 390—Sam Procter, a researcher at the Software
Engineering Institute of Carnegie Mellon Uni-
versity, discusses security in software design
with host Justin Beyer.

»» 387—Host Gavin Henry speaks with Abhinav
Asthana, a founding partner and chief executive
officer of the API development tool Postman,
about API design and testing, where to start,
which types of APIs to offer, what tools you can
use, what features to expose, and which is his
favorite API to reference.

UPCOMING EPISODES
»» Host Robert Blumen talks with Jay Kreps on

event-based log architecture with Kafka.
»» Chris McCord discusses the Phoenix framework

with host Adam Conrad.
»» Pat Helland speaks with host Akshay Manchale

about data management at scale.

28 ComputingEdge January 2022

SOFTWARE ENGINEERING RADIO

project such that unless there are no errors, the code
doesn’t compile. Type errors alert you to likely mis-
takes in your program that you should probably fix,
but if you want, you can ignore them.

 What is the paradigm behind TypeScript?

 The types are there when you need them but not
when you don’t. TypeScript supports various para-
digms of programming: functional, object oriented,
and imperative. TypeScript can infer all the types for
you, or you can specify them explicitly. It works well
with all these styles of programming. The idea is that
types are fun and they’re useful, so it shouldn’t be
tedious to fix them.

 What more can you say about interoperability
between TypeScript and JavaScript?

 Modern JavaScript programs use a lot of code. Java-
Script is a very modular language, so you often have
first-party JavaScript code along with stuff from
third-party packages that might be written in Type-
Script. Your code might be a mix of JavaScript and
TypeScript. This is a use case that TypeScript had to
support when it was designed. It’s important in Java-
Script to be able to use whatever packages you want
and for it to work correctly. If these are written in
TypeScript, you also get the benefit of type checking
and autocompletion in your text editor for free.

 Can you isolate those parts of the code that have less
strictness or where you don’t have the type informa­
tion available?

 Because TypeScript is built to be practical, you might
want to interoperate with JavaScript code. A common
pattern is to start with JavaScript code and then grad-
ually migrate the code base to TypeScript. To migrate
from JavaScript to TypeScript one piece at a time, you
just rename your file type with a .ts extension. You can
still use JavaScript and opt that part of the code base
into the strong safety guarantees. Over time as you
migrate more and more of your code, you can flip on
these safety settings one by one.

 I’ve read that most runtime errors in JavaScript are
type errors. Was the goal for TypeScript to eliminate
that class of errors?

 Yes. Some mistakes are harder for a programmer
to identify than others. Mistakes might stem from
architectural issues that will take a design review to
walk through and understand. TypeScript makes it
easy to prevent the really dumb mistakes that could
have been caught but weren’t because you weren’t
using types.

 NATE BLACK is a software engineer at Sleep-

erbot, an online sports community. Contact

him at nathanael.black@gmail.com .

mult-22-03-c1 Cover-1 July 12, 2016 4:40 PM

http://www.computer.org

ju
ly

–s
ep

te
m

be
r

20
16

IEEE M
u

ltiM
ed

ia
Ju

ly–Sep
tem

b
er 2

0
1
6

❚ Q
uality M

o
d

elin
g

V
o

lu
m

e 2
3
 N

u
m

b
er 3

IEEE MultiMedia serves the community of
scholars, developers, practitioners, and students
who are interested in multiple media types and

work in fields such as image and video processing,
audio analysis, text retrieval, and data fusion.

Read It Today!
www.computer.org/multimedia

PURPOSE: The IEEE Computer Society is the world’s largest
association of computing professionals and is the leading provider
of technical information in the field.

MEMBERSHIP: Members receive the monthly magazine
Computer, discounts, and opportunities to serve (all activities
are led by volunteer members). Membership is open to all IEEE
members, affiliate society members, and others interested in the
computer field.

COMPUTER SOCIETY WEBSITE: www.computer.org

OMBUDSMAN: Direct unresolved complaints to
ombudsman@computer.org.

CHAPTERS: Regular and student chapters worldwide provide the
opportunity to interact with colleagues, hear technical experts,
and serve the local professional community.

AVAILABLE INFORMATION: To check membership status, report
an address change, or obtain more information on any of the
following, email Customer Service at help@computer.org or call
+1 714 821 8380 (international) or our toll-free number,
+1 800 272 6657 (US):

• Membership applications
• Publications catalog
• Draft standards and order forms
• Technical committee list
• Technical committee application
• Chapter start-up procedures
• Student scholarship information
• Volunteer leaders/staff directory
• IEEE senior member grade application (requires 10 years

practice and significant performance in five of those 10)

PUBLICATIONS AND ACTIVITIES
Computer: The flagship publication of the IEEE Computer Society,
Computer publishes peer-reviewed technical content that covers
all aspects of computer science, computer engineering,
technology, and applications.

Periodicals: The society publishes 12 magazines and 17 journals.
Refer to membership application or request information as noted
above.

Conference Proceedings & Books: Conference Publishing
Services publishes more than 275 titles every year.

Standards Working Groups: More than 150 groups produce IEEE
standards used throughout the world.

Technical Committees: TCs provide professional interaction in
more than 30 technical areas and directly influence computer
engineering conferences and publications.

Conferences/Education: The society holds about 200 conferences
each year and sponsors many educational activities, including
computing science accreditation.

Certifications: The society offers three software developer
credentials. For more information, visit
www.computer.org/certification.

BOARD OF GOVERNORS MEETING

1-3 February 2022

EXECUTIVE COMMITTEE

revised 16 December 2021

President: William D. Gropp
President-Elect: Nita Patel
Past President: Forrest Shull
First VP: Riccardo Mariani; Second VP: David S. Ebert
Secretary: Jyotika Athavale; Treasurer: Michela Taufer
VP, Membership & Geographic Activities: Andre Oboler
VP, Professional & Educational Activities: Hironori Washizaki
VP, Publications: David S. Ebert
VP, Standards Activities: Annette Reilly
VP, Technical & Conference Activities: Grace Lewis
2021–2022 IEEE Division VIII Director: Christina M. Schober
2022-2023 IEEE Division V Director: Cecilia Metra
2022 IEEE Division VIII Director-Elect: Leila De Floriani

BOARD OF GOVERNORS
Term Expiring 2022: Nils Aschenbruck,
Ernesto Cuadros‐Vargas, David S. Ebert, Grace Lewis,
Hironori Washizaki, Stefano Zanero
Term Expiring 2023: Jyotika Athavale, Terry Benzel,
Takako Hashimoto, Irene Pazos Viana, Annette Reilly,
Deborah Silver
Term Expiring 2024: Saurabh Bagchi, Charles (Chuck) Hansen,
Carlos E. Jimenez-Gomez, Daniel S. Katz, Shixia Liu,
Cyril Onwubiko

EXECUTIVE STAFF
Executive Director: Melissa A. Russell
Director, Governance & Associate Executive Director:
Anne Marie Kelly
Director, Conference Operations: Silvia Ceballos
Director, Finance & Accounting: Sunny Hwang
Director, Information Technology & Services: Sumit Kacker
Director, Marketing & Sales: Michelle Tubb
Director, Membership & Education: Eric Berkowitz
Director, Periodicals & Special Projects: Robin Baldwin

COMPUTER SOCIETY OFFICES
Washington, D.C.: 2001 L St., Ste. 700, Washington, D.C.
20036-4928; Phone: +1 202 371 0101; Fax: +1 202 728 9614;
Email: help@computer.org
Los Alamitos: 10662 Los Vaqueros Cir., Los Alamitos, CA 90720;
Phone: +1 714 821 8380; Email: help@computer.org

MEMBERSHIP & PUBLICATION ORDERS
Phone: +1 800 678 4333; Fax: +1 714 821 4641;
Email: help@computer.org

IEEE BOARD OF DIRECTORS
President: K.J. Ray Liu
President-Elect: TBD
Past President: Susan K. “Kathy” Land
Secretary: TBD
Treasurer: TBD
Director & President, IEEE-USA: TBD; Director & President,
Standards Association: TBD; Director & VP, Educational
Activities: TBD; Director & VP, Membership & Geographic
Activities: TBD; Director & VP, Publication Services &
Products: TBD; Director & VP, Technical Activities: TBD

30	 January 2022	 Published by the IEEE Computer Society � 2469-7087/22 © 2022 IEEE

COLUMN: FROM THE EDITORS

Toward Unseating the Unsafe
C Programming Language
Paul C. van Oorschot, Associate Editor in Chief

Reflecting on content that I taught in a recent
security course about software-based
vulnerabilities, I wondered: Am I giving too

much focus to the C programming language? C-based
examples get straight to the point, allowing compact
illustrations of the concepts underlying stack- and
heap-based buffer overruns and return-oriented pro-
gramming, aside from integer-based vulnerabilities,
related to arithmetic underflow, conversions between
signed and unsigned values, and errors due to the
compiler promotion of short-integer data types in
arithmetic expressions.1 But are these relevant for
today’s students, given the wide availability of modern
languages with strong language safety properties?
Unfortunately, the answer is still yes.

C retains a stubborn hold as the dominant
systems-level language, despite its longstanding
issues. Its pointers allow direct memory references
(that is, by explicit address), and it allows pointer
arithmetic and programmatic conversion between
data types (for example, casting integers to point-
ers) while lacking language-based enforcement
of array bounds. Programmers are responsible for
checking that memory references access addresses
consistent with the declared data structures. They
are also responsible for dynamic memory allocation
and release. In C, neither compile-time nor run-time
checks prevent a variable of one type being changed
to, or interpreted as, another type; thus, there are
no guarantees on the kinds of data that a given
variable might hold, the allowed set of values, their

representation, or the operations that may be carried
out on the data. Nonetheless, we continue to use C,
politely excusing these issues by acknowledging, with
benign terminology, that C is not strongly typed.2 Less
euphemistically, because arbitrary integers may be
repurposed as pointers, which, when dereferenced
may access any memory in the address space of a pro-
cess, C is said to lack memory safety—a handy term,3
but one for which it is hard to give a definition that
is both precise and useful toward resolving related
problems. Moreover, the problems themselves are
both well understood by experts and have been expe-
rienced by all serious C programmers. The challenges
and related unlikelihood of ever replacing all legacy C
code is one thing. However, having learned our lesson
from 45 years of use, surely we do not still use C in new
projects and in building brand new systems, do we?

As it turns out, the evidence suggests we do. In
background reading, I came across a comprehensive
survey by Hahm et al.4 aiming to identify top-candidate
operating systems (OSs) as a platform for constrained
devices in the Internet of Things (IoT). Beyond the
discussion of commercial OSs, such as QNX and
ARM’s Mbed OS, a summary table highlights 12 open
source IoT OSs, including RIOT, Contiki, FreeRTOS,
and TinyOS. Here is what caught my eye: all 12 are C
based (TinyOS is based on nesC, a C variant; RIOT is
based on C and C++). Can this really be true—in a 2016
article, the top 12 open source platform candidates
for emerging IoT devices are all still based on C? I
found this both surprising and alarming when thinking
about the future problems that this presumably locks
us into—problems already recognized more than 30
years ago in the aftermath of early computer worm
incidents. Even back then, attention was drawn to

This article originally
appeared in

vol. 19, no. 2, 2021

Digital Object Identifier 10.1109/MSEC.2020.3048766

Date of current version: 15 March 2021

www.computer.org/computingedge� 31

FROM THE EDITORS

the looseness of the C language. Problems were clear
from the language in Kernighan and Ritchie’s de facto
specification, for example, as they note in a section
about pointers and integers: “Certain other conver-
sions involving pointers are permitted, but have
implementation-dependent aspects.”5 In other words,
the expected behavior is undefined—a red-flag word
to the ears of every security expert.

Unfortunately, even if we ignore the vast quanti-
ties of legacy code written in C and consider only new
projects, finding an alternative to C is not as simple
as “Use type-safe languages like Java.” To imple-
ment OSs, systems programmers require efficient
execution, the ability to directly reference memory
addresses (for example, for hardware device drivers),
and, in the case of real-time OSs, worst-case execu-
tion time guarantees. In type-safe languages, such
as Java, programs access objects through variable
names (references) while explicit memory addresses
(pointers to the objects) remain programmatically
inaccessible. Dynamic memory management, in par-
ticular the allocation of regions of specifically sized
heap memory and the release of such memory, is no
longer a programmer’s responsibility—but, as a con-
sequence, run-time garbage collection is required,
at the cost of losing efficiency and worst-case time
guarantees.

The challenge is to find type-safe languages that
also meet the requirements of systems programming.
Java was never intended as a systems-level language
nor as an alternative to C (Microsoft’s object-oriented
C# similarly targets applications more than, for
example, OS kernels). Also, to be clear, Java has had
its own rich history of security problems6—in part
due to its global adoption making it an enormous tar-
get and, in part, due to a complex architecture with
many moving pieces, including a bytecode verifier
for its runtime virtual machine. Java has its own vast
set of security problems despite having had both an
early design focus on security as required by the initial
use case of Java applets as (untrusted) downloaded
active content7 and an early major redesign based on
the principles of fine-grained access control and least
privilege.8 Moreover, while a type-safe language pre-
vents arbitrary programmatic access to memory, this
does not by itself solve all errors that result in security
vulnerabilities (for example, the Java language itself

prevents neither integer underflows nor SQL exploits
induced by unsanitized input).

But why does the previous list of 12 candidates
for IoT OSs include no safe languages? One excuse is
that it takes quite some time, even for promising new
tools and OSs, to gain a following. Another is that the
path of least resistance for developers is to continue
using well-established tools due to advantages in
cost, familiarity, interoperability, and backwards
compatibility. How, then, do we break from the past
and move beyond the dominance of C for system-level
programming?

The answer may be OSs built on the Rust program-
ming language9 (I discuss one later, Tock; alternatively,
I could have chosen the more-recent Redleaf).10 Rust
is a systems programming language with features
resembling C++. Following its 2010 announcement as
an open source project within Mozilla, and a Rust 1.0
release on 15 May 2015, the Rust language and com-
piler have gained popularity (albeit considerably more
in opinion than actual use, perhaps due to anecdotal
reports of a steep learning curve). Notably, Rust has
attracted use by major players, including Microsoft
and Amazon Web Services. From a security perspec-
tive, major features that make Rust interesting are
its suitability as a systems programming language
supporting direct-memory references and its memory
management offering type safety (implying memory
safety) without runtime garbage collection. This side-
steps timing uncertainties that are incompatible with
the requirements of many OSs.

The Tock OS11 offers a new design as a
high-performance, security-focused OS for con-
strained platforms. It relies on the principle of minimiz-
ing the trusted computing base. A qualification on
Tock’s type safety is that a subset of the Tock kernel
must be trusted, in the following sense: Small parts
of Tock involve code that violates strict type-safety
rules. The Rust language allows this by permitting
designated code blocks to perform unsafe operations,
for example, dereferencing untyped pointers as cus-
tomary for hardware peripheral interfaces. However,
full type-safety rules remain in place for applications
running on top of Tock. Among other contributions
in Tock’s design is a mechanism for partitioning
kernel-owned heap memory among active processes.
Supported by Rust’s design, Tock avoids dynamic

32	 ComputingEdge� January 2022

FROM THE EDITORS

memory allocation (and garbage collection), supports
multiprogramming, and isolates processes from each
other (and the kernel). Tock does not rely on a hard-
ware memory-management unit, which, in traditional
CPU-based systems, separates the address spaces of
processes and maps the virtual address space of each
process onto physical memory. It does, however, rely
on some hardware features, for example, in the case of
ARM processors, their memory protection unit.

A Tock kernel built for ARM Cortex-M microcon-
trollers demonstrates a surprisingly small footprint
for the OS,11 as given by the details for Atmel’s SAM4L
Cortex-M4 [48-MHz clock, 512-kB flash for code, 64-kB
static RAM (SRAM)]. For this platform, Tock’s core ker-
nel was written in Rust, with custom hardware adapta-
tions for the SAM4L platform, and a few hundred lines
of assembly for context-switching code. The kernel
uses 8.4-kB SRAM plus 4 kB for the kernel stack, plus
87 kB of flash for kernel code. A case study in the same
article details how Tock can serve as the OS for a USB
embedded device (security key), hosting several secu-
rity applications written by independent developers,
with OS-provided process isolation.

For broader context, numerous previous initia-
tives have aimed to replace C, offering better safety
features while retaining its efficiency; others have
proposed memory-safe C dialects, such as Cyclone.12
None have gained a following sufficient to overcome
C’s dominance; incumbents enjoy natural advantages
in complex software systems. Other major languages
in use but not on the path to replace C for building OS
kernels include Apple’s Swift (itself a replacement for
Objective-C, albeit with ongoing ties to C libraries)
and Google’s Go (with attention to efficient garbage
collection and independent of C as of 2016’s Go 1.5
release).

The question that we now return to is: Will the
growth of the IoT and the requirement for constrained
OSs suitable for low-end devices result in the ongoing
proliferation of C-based OSs—delivering another 40
years of systems dominated by C? Or will security and
safety issues drive us toward tools and platforms (for
example, building on Rust) that promise greater secu-
rity? These are, I believe, important questions for not
just the security and systems software communities
but also for the population of the entire world as con-
sumers and users of cascades of IoT products.

What power do governments have to influence
these decisions—or should they even get involved?
The high-tech industry, particularly the software
industry, has always been strongly opposed to govern-
ment regulation and intervention—while the security
track record of IoT manufacturers to date suggests
that a “let us regulate ourselves” industry position has
failed badly in terms of delivering secure devices.

One potential approach would be for major gov-
ernments to use their enormous purchasing power
as consumers of IT products to influence the toolsets
and platforms that device manufacturers use and
build on as their foundations. The well-established
idea is that once manufacturers have built conformant
products for purchase by major governments, they will
then have and use them as a natural baseline for their
full product lines, for reasons related to economies
of scale. Perhaps memory-safe platforms, whether
specifically involving Rust or not, will eventually make
their way into requirements documents for major
government purchases. In any case, the challenge is to
find some way to build tomorrow’s high-tech world on
a software platform less vulnerable than C-based OSs.
I ask you to consider: What can you do to help?

REFERENCES
1.	 P. C. van Oorschot, “Software security—Exploits and

privilege escalation,” in Computer Security and the

Internet: Tools and Jewels: Springer-Verlag, 2020, ch. 6,

pp. 155–182.

2.	 L. Cardelli and P. Wegner, “On understanding types,

data abstractions, and polymorphism,” ACM Com-

put. Surv., vol. 17, no. 4, pp. 471–522, Dec. 1985. doi:

10.1145/6041.6042.

3.	 V. van der Veen, N. dutt-Sharma, L. Cavallaro, and H.

Bos, “Memory errors: The past, the present, and the

future,” in Proc. Int. Workshop Recent Adv. Intrusion

Detection, 2012, pp. 86–106. doi: 10.1007/978-3-642

-33338-5_5.

4.	 O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes,

“Operating systems for low-end devices in the Internet

of Things: A survey,” Internet Things J., vol. 5, no. 3, pp.

720–734, 2016.

5.	 B. Kernighan and D. Ritchie, The C Programming

Language, 2nd ed. Englewood Cliffs, NJ: Prentice Hall,

1988; 1st ed., 1978, p. 198.

6.	 P. Holzinger, S. Triller, A. Bartel, and E. Bodden,

www.computer.org/computingedge 33

FROM THE EDITORS

“ An in-depth study of more than ten years of Java

exploitation ,” in Proc. 2016 ACM SIGSAC Conf. Comput.

Commun. Security , pp. 779 – 790 . doi: 10.1145/2976749

.2978361 .

7. G. McGraw and E. W. Felten , Securing Java: Getting

Down to Business with Mobile Code . New York : Wiley ,

 1999 .

8. L. Gong , “ Java security architecture revisited ,”

Commun. ACM , vol. 54 , no. 11 , pp. 48 – 52 , Nov. 2011 . doi:

 10.1145/2018396.2018411 .

9. S. Klabnik and C. Nichols , The Rust Programming

Language (Covers Rust 2018) . San Francisco : No Starch

Press , Aug. 2019 . [Online]. Available: https://doc.rust

-lang.org/book/

10. V. Narayanan et al. , “ RedLeaf: Isolation and commu-

nication in a safe operating system ,” in Proc. USENIX

OSDI , 2020 , pp. 21 – 39 .

11. A. Levy et al. , “ Multiprogramming a 64 kB computer

safely and efficiently ,” in Proc. 26th Symp. Oper. Syst.

Principles , 2017 , pp. 234 – 251 . doi: 10.1145/3132747

.3132786 .

12. T. Jim , J.G. Morrisett , D. Grossman , M.W. Hicks , J.

 Cheney , and Y. Wang , “ Cyclone: A safe dialect of C ,” in

 Proc. USENIX Annu. Tech. Conf. , 2002 , pp. 275 – 288 .

PAUL C. VAN OORSCHOT, Associate Editor

in Chief

Write for the IEEE Computer
Society’s authoritative
computing publications
and conferences.

IEEE COMPUTER SOCIETY

Call for Papers

GET PUBLISHED
www.computer.org/cfp

WWW.COMPUTER.ORG/COMPUTINGEDGE

34	 January 2022	 Published by the IEEE Computer Society � 2469-7087/22 © 2022 IEEE

EDITOR: Qun Li, liqun@cs.wm.edu

DEPARTMENT:
EMERGING INTERNET TECHNOLOGIES

The Emergence of
Vehicle Computing
Sidi Lu and Weisong Shi , Wayne State University, Detroit, MI, 48202, USA

Connected and autonomous vehicles (CAVs) are poised to revolutionize the conventional
transportation industry. In this article,we first introduce the vision of vehicle computing
in the autonomous driving era and highlight that CAVs are the perfect computation
platforms, so connected devices/things with limited computation capacities may rely on
surrounding CAVs to perform complex computational tasks. Next,we depict several reasons
why vehicle computing is essential and emerging, followed by four case studies, including
in-vehicle delivery, in-vehicle meeting, in-vehicle entertainment, and in-vehicle augmented
reality, to further illustrate vehicle computing. Finally, we conclude this article by listing
several technical challenges related to vehicular communication, open APIs, computation
hardware, energy consumption, computation offloading, as well as security and privacy.

This article originally
appeared in

vol. 25, no. 3, 2021

00mic00-lu-3066076.3d (Style 7) 12-06-2021 22:1

EDITOR: Qun Li, liqun@cs.wm.edu

DEPARTMENT: EMERGING INTERNET TECHNOLOGIES

The Emergence of Vehicle Computing
Sidi Lu and Weisong Shi ,Wayne State University, Detroit, MI, 48202, USA

Connected and autonomous vehicles (CAVs) are poised to revolutionize the
conventional transportation industry. In this article, wefirst introduce the vision of
vehicle computing in the autonomous driving era and highlight that CAVs are the
perfect computation platforms, so connected devices/thingswith limited computation
capacitiesmay rely on surrounding CAVs to perform complex computational tasks.
Next, we depict several reasonswhy vehicle computing is essential and emerging,
followed by four case studies, including in-vehicle delivery, in-vehiclemeeting, in-vehicle
entertainment, and in-vehicle augmented reality, to further illustrate vehicle
computing. Finally, we conclude this article by listing several technical challenges
related to vehicular communication, open APIs, computation hardware, energy
consumption, computation offloading, aswell as security and privacy.

CONNECTED AND AUTONOMOUS
VEHICLES: FROM PRESENT TO
FUTURE

The proliferation of communication and edge
computing1 has pushed the horizon of autono-
mous driving. Although technical obstacles,

exorbitant costs, and social acceptability have still
hindered large-scale production of connected and
autonomous vehicles (CAVs), there has been an accel-
eration in the research and development (R&D) efforts
to bring the idea of CAVs to fruition. For example,
automakers spend more than 100 billion worldwide on
R&D with around 5000 patents granted each year.
Based on the recent considerable progress and disrup-
tive technologies, optimists predict that by 2030,
CAVs will be sufficiently reliable and commercially
affordable to replace human driving.

This article envisions the next paradigm of future
CAVs whose functionality will not only be limited to driv-
ing efficiently and safely in complex scenes. Instead, the
future fully CAVs are expected to be universal computing
platforms supporting daily life applications by providing
efficient onboard computation for connected infrastruc-
tures. In this article, we introduce the concept of vehicle
computing. We start from the analysis of why we need

vehicle computing. Several case studies including in-
vehicle delivery, in-vehicle meeting, in-vehicle entertain-
ment, and in-vehicle augmented reality (AR) are intro-
duced to further explain vehicle computing, followed by
technical challenges waiting to address for the arrival of
fully CAVs. We hope this article will gain attention from
the automotive communities and inspire more research
in vehicle computing.

VEHICLE COMPUTING
In this section, we give our definition and understand-
ing of vehicle computing, and then we list several rea-
sons why vehicle computing is important in the
postautonomous driving era.

What is Vehicle Computing
Vehicle computing refers to the enabling technologies
allowing computation to be performed on CAVs,
which will serve as a computing platform for multiple
CAV-related services. Different from vehicular net-
working,2 which serves as the communication enabler
for amyriad of applications related to vehicles and trans-
portation, vehicle computing focuses on the computa-
tion functionality of CAVs and highlights that CAVs are
the perfect computation platforms helping to analyze
real-time data from in-vehicle sensors, and most impor-
tantly, from the surrounding connected devices/things,
evenwhen the vehicle is in the parkingmode.

More specifically, the concept of vehicle computing
is inspired by the fact that future CAVs will be equipped

1089-7801 � 2021 IEEE
Digital Object Identifier 10.1109/MIC.2021.3066076
Date of current version 18 June 2021.

IEEE Internet Computing Published by the IEEE Computer Society May/June 202118

www.computer.org/computingedge� 35

EMERGING INTERNET TECHNOLOGIES

00mic00-lu-3066076.3d (Style 7) 12-06-2021 22:1

EDITOR: Qun Li, liqun@cs.wm.edu

DEPARTMENT: EMERGING INTERNET TECHNOLOGIES

The Emergence of Vehicle Computing
Sidi Lu and Weisong Shi ,Wayne State University, Detroit, MI, 48202, USA

Connected and autonomous vehicles (CAVs) are poised to revolutionize the
conventional transportation industry. In this article, wefirst introduce the vision of
vehicle computing in the autonomous driving era and highlight that CAVs are the
perfect computation platforms, so connected devices/thingswith limited computation
capacitiesmay rely on surrounding CAVs to perform complex computational tasks.
Next, we depict several reasonswhy vehicle computing is essential and emerging,
followed by four case studies, including in-vehicle delivery, in-vehiclemeeting, in-vehicle
entertainment, and in-vehicle augmented reality, to further illustrate vehicle
computing. Finally, we conclude this article by listing several technical challenges
related to vehicular communication, open APIs, computation hardware, energy
consumption, computation offloading, aswell as security and privacy.

CONNECTED AND AUTONOMOUS
VEHICLES: FROM PRESENT TO
FUTURE

The proliferation of communication and edge
computing1 has pushed the horizon of autono-
mous driving. Although technical obstacles,

exorbitant costs, and social acceptability have still
hindered large-scale production of connected and
autonomous vehicles (CAVs), there has been an accel-
eration in the research and development (R&D) efforts
to bring the idea of CAVs to fruition. For example,
automakers spend more than 100 billion worldwide on
R&D with around 5000 patents granted each year.
Based on the recent considerable progress and disrup-
tive technologies, optimists predict that by 2030,
CAVs will be sufficiently reliable and commercially
affordable to replace human driving.

This article envisions the next paradigm of future
CAVs whose functionality will not only be limited to driv-
ing efficiently and safely in complex scenes. Instead, the
future fully CAVs are expected to be universal computing
platforms supporting daily life applications by providing
efficient onboard computation for connected infrastruc-
tures. In this article, we introduce the concept of vehicle
computing. We start from the analysis of why we need

vehicle computing. Several case studies including in-
vehicle delivery, in-vehicle meeting, in-vehicle entertain-
ment, and in-vehicle augmented reality (AR) are intro-
duced to further explain vehicle computing, followed by
technical challenges waiting to address for the arrival of
fully CAVs. We hope this article will gain attention from
the automotive communities and inspire more research
in vehicle computing.

VEHICLE COMPUTING
In this section, we give our definition and understand-
ing of vehicle computing, and then we list several rea-
sons why vehicle computing is important in the
postautonomous driving era.

What is Vehicle Computing
Vehicle computing refers to the enabling technologies
allowing computation to be performed on CAVs,
which will serve as a computing platform for multiple
CAV-related services. Different from vehicular net-
working,2 which serves as the communication enabler
for amyriad of applications related to vehicles and trans-
portation, vehicle computing focuses on the computa-
tion functionality of CAVs and highlights that CAVs are
the perfect computation platforms helping to analyze
real-time data from in-vehicle sensors, and most impor-
tantly, from the surrounding connected devices/things,
evenwhen the vehicle is in the parkingmode.

More specifically, the concept of vehicle computing
is inspired by the fact that future CAVs will be equipped

1089-7801 � 2021 IEEE
Digital Object Identifier 10.1109/MIC.2021.3066076
Date of current version 18 June 2021.

IEEE Internet Computing Published by the IEEE Computer Society May/June 202118

00mic00-lu-3066076.3d (Style 7) 12-06-2021 22:1

with powerful computing capability; therefore, con-
nected devices/things with limited computation capaci-
ties can rely on nearby CAVs to perform complex
computational tasks and deliver related results back to
the end-users. For example, suppose a law enforcement
officer equipped with a body-worn camera is on duty.
The body-worn camera is collecting and sending video
data to the surrounding law enforcement vehicle for
latency-sensitive analytical applications, such as object
detection. A warning will be sent by the vehicle when the
officer is in a potentially dangerous situation. In this
example, the law enforcement vehicle serves as the effi-
cient computing platform based on the received data
from the connected devices/things (i.e., body-worn cam-
era) so that computing resources can be reasonably and
effectively utilized, and the computation tasks can be
completed on time.

Drawing from the definition of vehicle computing, we
further introduce the future vehicle computing paradigm
in Figure 1, which is driven by the communication of vehi-
cle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), and
potentially vehicle-to-everything (V2X). V2X not only ena-
bles CAVs to communicate with the components of the
traffic system (e.g., road-side units, cellular towers, traffic
cameras, drones, scooters, and even cyclists or pedes-
trians), but also allows CAVs to communicate with
external systems, i.e., elements of the surrounding envi-
ronment (e.g., smart home sensors, industry IoT devices,
health sensors, and edge servers).

Why DoWe Need Vehicle Computing
Push to Clouds and Edge Servers
CAVs are equipped with enormous sensors, which could
produce around one gigabyte of data per second and

generate more than 11 TB of privacy-sensitive data on a
daily basis. The quantity of data generated on CAVs is
still growing, and the speed of data transportation is
becoming the bottleneck when pushing data to clouds
or edge servers for data analysis, which poses a signifi-
cant challenge to provide latency-sensitive services.
Besides, even if data are compressed in the CAVs before
being sent out, the original sensitive data might be
exposed, and it may create a potential threat of privacy
leakage. Therefore, the bandwidth limitations, latency
bottlenecks, and privacy concerns, in turn, calls for vehi-
cle computing, a new computing paradigm to put the
computing at the proximity of data. Previous work also
demonstrated the potential benefits (such as the signifi-
cant response time and energy reduction) by moving
computing from the cloud to the data source.3

Pull From IoT Devices
Nearly all types of electrical deviceswill become compo-
nents of IoT and play the role of both data producers
and consumers, such as body-worn cameras, scooters,
and even Internet-connected bicycles. According to
Cisco, the number of IoT worldwide devices will be
around 500 billion by 2030. Such huge amounts of IoT
devices will definitely produce enormous data, which
hinders the execution of deep learning algorithms on
the resource-constrained IoT devices. However, simply
relying on traditional cloud computing cannot guaran-
tee efficient data processing to handle all these gener-
ated data. In this context, we infer that IoT devices with
limited computation capabilities will leverage the sur-
rounding CAVs equipped with strong computing power
to perform data processing on time, and we envision
that vehicle computing will have big impact on automo-
tive and IoT communities.

CASE STUDY
In this section, we introduce several promising case
studies where vehicle computing could shine to fur-
ther illustrate our vision of future CAVs.

In-Vehicle Delivery
We opine that the widespread of CAVs will be a key
component of smart homes to assist people’s daily
life. For example, CAVs can provide a new, convenient,
and secure in-vehicle delivery service when the cus-
tomer are away from home. Today, Amazon, the
world’s largest online retailer, is taking the obvious
next step by cooperating with mainstream auto-
makers and launching early in-vehicle delivery serv-
ices. Once the delivery driver reaches the vehicle
parked in a publicly accessible place, the driver will

FIGURE 1. Vehicle computing paradigm.

May/June 2021 IEEE Internet Computing 19

EMERGING INTERNET TECHNOLOGIES

36	 ComputingEdge� January 2022

EMERGING INTERNET TECHNOLOGIES

00mic00-lu-3066076.3d (Style 7) 12-06-2021 22:1

send a request to remotely unlock the vehicle for
delivery. After placing packages in cargo area or
cabin, the driver will send a remote command to
lock the vehicle again, and the customer will
receive a final notification. Following this way, cus-
tomers can receive packages safely even when
they are not home.

In-Vehicle Meeting
In addition, since a fully CAV could achieve safe and reli-
able navigation by itself, there is no driver needed to
focus on driving anymore. In this context, future CAVs
are expected to provide other intelligent services such
as providing efficient and smooth onlinemeeting experi-
ences in vehicles. Specifically, as the rapid development
of wireless and sensor technologies enables secure and
interoperable communications among vehicles, clouds,
and devices/things (such as passengers’ personal com-
munication devices), we envision that the future CAVs
are able to support in-vehicle meetings allowing people
to share information and data without being physically
present at home or office. Besides, people will be able to
seamlessly attend the same meeting at home, in the
vehicle, and in the office without being bothered by the
repeated logout and login process, which really
improveswork efficiency and savesworking time.

In-Vehicle Entertainment
Similarly, future CAVs have the potential to transform
the way people travel by providing audio and video
entertainment to enhance people’s ride experience.
MarketsandMarkets predicts that the in-vehicle enter-
tainment market is estimated to reach USD 30.47 billion
by 2022. Besides, starting in 2023, millions of Ford and
Lincoln vehicles will be powered by Google’s Android
operating system to provide drivers with embedded
Google applications and services. This evolution indi-
cates that in-vehicle entertainment is on the rise. We
envision in the era of fully autonomous driving that the
passengers can select a variety of extended reality (XR)
gaming via an interface and fully immerse themselves in
the gaming experience. These XR games can provide
real-time physical vehicle feedback, such as the driver’s
accelerating, stopping, and steering; therefore, each
game experience is unique. Besides, thanks to V2V com-
munication, passengers of different CAVs can play in-
vehicle games together on the road, which will further
increase the diversity of in-vehicle entertainment.

In-Vehicle AR
Moreover, we envision that AR technologies will be
able to turn CAVs’ windshields into movie screens,

which will make the dreary journey be more interest-
ing and secure by delivering passengers full-color
graphics about their environment with a wide-viewing
angle. Today, Civil Maps, a software provider for 3D
maps, has revealed an AR experience for passengers,
which can show passengers how a CAV equipped with
AR displays navigates in the complex driving environ-
ment. Besides, Alibaba has invested $18 million in Way-
Ray, a head-up display (HUD) company that released
NAVION, the first holographic AR vehicle navigation
system that can display travel details without wearing
an AR helmet or glasses. When fully CAVs will come
out, we opine that AR-enabled HUDs will be replaced
by AR-enabled windshields, which can respond to
voice commands and hand gestures.

TECHNICAL CHALLENGES
We have described four potential applications of vehi-
cle computing in the previous section. To realize the
vision of vehicle computing, we argue that the sys-
tems, algorithms, and network community need to
work together. In this section, we will further summa-
rize technical challenges in detail.

Vehicular Communication
It is estimated that by 2025, there will be 470 million
CAVs on highways worldwide, generating 280 peta-
bytes of data. Besides, when the CAV is driving in the
urban area at a speed of 40 kilometers per hour, the
execution time of each real-time task should be less
than 100 milliseconds. However, performing efficient
computation based on such a big amount of data is
challenging as it requires ultrareliable and low-latency
communications (URLLC) to accommodate multiple
services.

The recent proliferation in communication mecha-
nisms, such as dedicated short range communication
(DSRC), long-term evolution (LTE), cellular-vehicle-to-
everything (C-V2X), and WiFi, has enabled CAVs to
obtain information from other vehicles, clouds, and
connected devices/things.4 Particularly, with decades
of development history, DSRC has been widely
deployed, but it has issues like small coverage and low
throughput. In contrast, WiFi and LTE provide more
bandwidth but perform poorly in the mobile environ-
ment. With the recently developed access technology,
C-V2X could tackle communication issues due to high
mobility and vehicular density scenarios. However, C-
V2X is not affordable and widely deployed compared
with DSRC. Therefore, the development of communi-
cation mechanisms still has a long way to go.

20 IEEE Internet Computing May/June 2021

EMERGING INTERNET TECHNOLOGIES

www.computer.org/computingedge� 37

EMERGING INTERNET TECHNOLOGIES

00mic00-lu-3066076.3d (Style 7) 12-06-2021 22:1

send a request to remotely unlock the vehicle for
delivery. After placing packages in cargo area or
cabin, the driver will send a remote command to
lock the vehicle again, and the customer will
receive a final notification. Following this way, cus-
tomers can receive packages safely even when
they are not home.

In-Vehicle Meeting
In addition, since a fully CAV could achieve safe and reli-
able navigation by itself, there is no driver needed to
focus on driving anymore. In this context, future CAVs
are expected to provide other intelligent services such
as providing efficient and smooth onlinemeeting experi-
ences in vehicles. Specifically, as the rapid development
of wireless and sensor technologies enables secure and
interoperable communications among vehicles, clouds,
and devices/things (such as passengers’ personal com-
munication devices), we envision that the future CAVs
are able to support in-vehicle meetings allowing people
to share information and data without being physically
present at home or office. Besides, people will be able to
seamlessly attend the same meeting at home, in the
vehicle, and in the office without being bothered by the
repeated logout and login process, which really
improveswork efficiency and savesworking time.

In-Vehicle Entertainment
Similarly, future CAVs have the potential to transform
the way people travel by providing audio and video
entertainment to enhance people’s ride experience.
MarketsandMarkets predicts that the in-vehicle enter-
tainment market is estimated to reach USD 30.47 billion
by 2022. Besides, starting in 2023, millions of Ford and
Lincoln vehicles will be powered by Google’s Android
operating system to provide drivers with embedded
Google applications and services. This evolution indi-
cates that in-vehicle entertainment is on the rise. We
envision in the era of fully autonomous driving that the
passengers can select a variety of extended reality (XR)
gaming via an interface and fully immerse themselves in
the gaming experience. These XR games can provide
real-time physical vehicle feedback, such as the driver’s
accelerating, stopping, and steering; therefore, each
game experience is unique. Besides, thanks to V2V com-
munication, passengers of different CAVs can play in-
vehicle games together on the road, which will further
increase the diversity of in-vehicle entertainment.

In-Vehicle AR
Moreover, we envision that AR technologies will be
able to turn CAVs’ windshields into movie screens,

which will make the dreary journey be more interest-
ing and secure by delivering passengers full-color
graphics about their environment with a wide-viewing
angle. Today, Civil Maps, a software provider for 3D
maps, has revealed an AR experience for passengers,
which can show passengers how a CAV equipped with
AR displays navigates in the complex driving environ-
ment. Besides, Alibaba has invested $18 million in Way-
Ray, a head-up display (HUD) company that released
NAVION, the first holographic AR vehicle navigation
system that can display travel details without wearing
an AR helmet or glasses. When fully CAVs will come
out, we opine that AR-enabled HUDs will be replaced
by AR-enabled windshields, which can respond to
voice commands and hand gestures.

TECHNICAL CHALLENGES
We have described four potential applications of vehi-
cle computing in the previous section. To realize the
vision of vehicle computing, we argue that the sys-
tems, algorithms, and network community need to
work together. In this section, we will further summa-
rize technical challenges in detail.

Vehicular Communication
It is estimated that by 2025, there will be 470 million
CAVs on highways worldwide, generating 280 peta-
bytes of data. Besides, when the CAV is driving in the
urban area at a speed of 40 kilometers per hour, the
execution time of each real-time task should be less
than 100 milliseconds. However, performing efficient
computation based on such a big amount of data is
challenging as it requires ultrareliable and low-latency
communications (URLLC) to accommodate multiple
services.

The recent proliferation in communication mecha-
nisms, such as dedicated short range communication
(DSRC), long-term evolution (LTE), cellular-vehicle-to-
everything (C-V2X), and WiFi, has enabled CAVs to
obtain information from other vehicles, clouds, and
connected devices/things.4 Particularly, with decades
of development history, DSRC has been widely
deployed, but it has issues like small coverage and low
throughput. In contrast, WiFi and LTE provide more
bandwidth but perform poorly in the mobile environ-
ment. With the recently developed access technology,
C-V2X could tackle communication issues due to high
mobility and vehicular density scenarios. However, C-
V2X is not affordable and widely deployed compared
with DSRC. Therefore, the development of communi-
cation mechanisms still has a long way to go.

20 IEEE Internet Computing May/June 2021

EMERGING INTERNET TECHNOLOGIES

00mic00-lu-3066076.3d (Style 7) 12-06-2021 22:1

Open APIs
Machine learning-based applications are vastly utilized
by CAVs. Unfortunately, there are very limited public
computing platforms that support vehicular data ana-
lytic and processing. Except for Baidu’s Apollo, many
companies, such as Ford and General Motors, are work-
ing on their proprietary platforms. Moreover, although
Apollo is open-source, it is neither scalable nor suitable
for future CAVs with plenty of third-party services.

In contrast to the proprietary platform, the open-
source platforms that offer free APIs and real-field vehi-
cle data to the researchers and developers are needed,
as the openAPIs allow communities to deploy and evalu-
ate applications in the real environment. Recently, Black-
Berry and AWS are joining forces to develop BlackBerry
IVY, a scalable, cloud-connected software platform that
will allow automakers to improve operations of CAVs
with new BlackBerry QNX and AWS technology. Besides,
researchers proposed Open Vehicular Data Analytics
Platform (OpenVDAP),5 which is a full-stack hardware/
software platformproviding a public edge-aware applica-
tion library.More open APIs are needed for CAVs to push
the development of the third-party services.

Computation Hardware
Nowadays, representative automotive-grade computa-
tion hardware of CAVs is being designed based on
graphic processor unit (GPU), field programmable gate
arrays (FPGA), digital signal processor (DSP), and appli-
cation-specific integrated circuit (ASIC) with improved
processing speed and energy efficiency, such as NVI-
DIA DRIVE AGX and Texas Instruments’ TDA.

However, to design a hardware system for vehicle
computing scenarios, there are several open problems
waiting to be addressed. First, it is important to figure
out the maximum speed that the hardware can
achieve with limited processing power. Second, how
to efficiently manage heterogeneous computation
resources and dynamically schedule applications has
deserved researchers’ attention. Besides, it is also
essential to evaluate how suitable a hardware system
is for a specific application scenario. Moreover, a level
4 CAV may cost up to 300,000 dollars, in which the
sensors and computing platform cost almost two-
thirds of the total price. Therefore, it is also necessary
to design a reasonably priced hardware system.

Energy Consumption
With enormous sensors and complex algorithms imple-
mented on CAVs, energy consumption has become a big
problem for CAVs. Take the NVIDIA Drive PX Pegasus as
an example, it consumes 320 INT8 TOPS of AI computing

power with a budget of 500 watts. Moreover, if a repli-
cated system is installed to ensure the reliability of auton-
omous driving, the total power consumption may be as
high as nearly 2000W.

Besides, take the electric vehicle (EV) as an exam-
ple, suppose that in the United States, the total mile-
age of each EV is composed of 55% of city mileage
and 45% of highway mileage, and each EV travels on
cities and highways at a speed of 31 mph and 56 mph,
respectively. In this case, the annual energy consump-
tion of EVs nationwide for computation is around 180
terawatt-hours.6 It is reported that Google data cen-
ters now use around 12 terawatt-hours of electricity
per year,7 so we infer that the national energy con-
sumption of EVs is approximately equal to the total
energy consumption of 15 representative technology
companies’ data centers each year.

Therefore, how to deal with a large amount of energy
consumption is an important issue. Moreover, since
most of the energy is consumed by the electric motor of
the vehicle, it is necessary to jointly design the battery,
energy management system, and computing system to
realize energy-efficient autonomous driving.

Computation Offloading
Although future CAVs will be endowed with server-
level computing power to process sensing data, it
becomes evident that safe and reliable autonomous
driving requires effective V2X computations to trans-
mit critical information. Accordingly, vehicles and con-
nected devices/things usually work together to
process the sensing data, extend their sensing capa-
bilities, and coordinate their decisions.

Nonetheless, collaborative computing between
CAVs and connected devices/things is not always fea-
sible due to the latency and reliability constraints.
Considering the heterogeneity of the computing capa-
bilities and the interdependency of computing tasks,
researchers have formulated optimization problems
for task scheduling. Lots of works has focused on task
offloading algorithms to optimize the computation off-
loading. For example, a resource allocation method is
proposed to optimize the performance of task offload-
ing when the computation requirement is unknown.8

Similarly, Tran et al.9 propose a task offloading model
to optimize the cost of the computation. However, all
the work is based on simulations, and the evaluation
in the real-world application scenarios is still missing.

Security and Privacy
The security of CAVs has evolved from the hardware
damage of conventional vehicles to comprehensive

May/June 2021 IEEE Internet Computing 21

EMERGING INTERNET TECHNOLOGIES

38	 ComputingEdge� January 2022

EMERGING INTERNET TECHNOLOGIES

00mic00-lu-3066076.3d (Style 7) 12-06-2021 22:1

security with multidomain knowledge.10 Here, we
introduce several security problems strongly related
to CAVs including the mainstream attacking methods.

Sensing Security
The security of sensors is of paramount importance.
Generally, jamming attacks and spoofing attacks are
two main attacks for various sensors. For instance, a
spoofing attack generates interference signals, which
can cause the vehicle to capture fake obstacles.
Hence, effective protection mechanisms for sensing
security are desired.

Data Security
Data security denotes preventing data leakage from
the perspectives of transmission and storage. How to
protect real-time and historical data is waiting for
more advanced solutions.

Communication Security
Communication security includes the security of inter-
nal communication (such as CAN, LIN, and FlexRay) and
external communication that has been studied in
VANETswith V2X communications. Although cryptogra-
phy is a frequently used solution, the usage of cryptogra-
phy is limited due to the high computational cost.

Control Security
With vehicles’ electronification, drivers could control
their vehicles (e.g., open the door) through apps or
voice. However, this also leads to new attack surfaces
with various attack methods, including jamming
attacks, replay attacks, etc.

Privacy
CAVs rely heavily on data from the surrounding envi-
ronment and generate personalized driving data,
which usually contains private information. For exam-
ple, an attacker can obtain the location information
directly from the captured GPS data. Therefore, more
data desensitization methods are needed to protect
the privacy of drivers and passengers.

CONCLUSION
In this article, we first present the vision for vehicle com-
puting in the connected and autonomous driving era.
Then, we depict several reasons why vehicle computing
is important and emerging, followed by several case
studies to further illustrate our vision. Finally, we con-
clude the article by listing several technical challenges.

REFERENCES
1. W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge

computing: Vision and challenges,” IEEE Internet Things

J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

2. G. Karagiannis et al., “Vehicular networking: A survey

and tutorial on requirements, architectures, challenges,

standards and solutions,” IEEE Commun. Surv. Tut., vol.

13, no. 4, pp. 584–616, Oct–Dec. 2011.

3. S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform

and applications,” in Proc. 3rd IEEE Workshop Hot Top.

Web Syst. Technol, 2015, pp. 73–78.

4. K. Z. Ghafoor, M. Guizani, L. Kong, H. S. Maghdid, and K.

F. Jasim, “Enabling efficient coexistence of DSRC and

C-V2X in vehicular networks,” IEEE Wirel. Commun., vol.

27, no. 2, pp. 134–140, Apr. 2020.

5. Q. Zhang et al., “OpenVDAP: An open vehicular data

analytics platform for CAVs,” in Proc. IEEE 38th Int.

Conf. Distrib. Comput. Syst., 2018, pp. 1310–1320.

6. Teraki, “Autonomous cars’ big problem: The energy

consumption of edge processing reduces a car’s

mileage with up to 30%,”May 2019, [Online]. Available:

https://medium.com/@teraki/energy-consumption-

required-by-edge-computing-reduces-a-autonomous-

cars-mileage-with-up-to-30-46b6764ea1b7

7. R. Bryce, “HowGoogle powers its ‘monopoly’with enough

electricity for entire countries,”Oct. 2020, [Online].

Available: https://www.forbes.com/sites/robertbryce/

2020/10/21/googles-dominance-is-fueled-by-zambia-size-

amounts-of-electricity/?sh=19fc3bd168c9

8. N. Eshraghi and B. Liang, “Joint offloading decision and

resource allocation with uncertain task computing

requirement,” in Proc. IEEE Conf. Comput. Commun,

2019, pp. 1414–1422.

9. T. X. Tran, K. Chan, and D. Pompili, “COSTA: Cost-aware

service caching and task offloading assignment in

mobile-edge computing,” in Proc. 16th Annu. IEEE Int.

Conf. Sens., Commun., Netw., 2019, pp. 1–9.

10. L. Liu et al., “Computing systems for autonomous

driving: State-of-the-art and challenges,” IEEE

Internet Things J., to be published, doi: 10.1109/

JIOT.2020.3043716.

SIDI LU is with the Department of Computer Science, Wayne

State University, Detroit, MI, USA. She is the corresponding

author of this article. Contact her at: lu.sidi@wayne.edu.

WEISONG SHI is with the Department of Computer Science,

Wayne State University, Detroit, MI, USA. Contact him at: wei-

song@wayne.edu.

22 IEEE Internet Computing May/June 2021

EMERGING INTERNET TECHNOLOGIES

In this article, we first present the vision for vehicle
computing in the connected and autonomous driv-
ing era. Then, we depict several reasons why vehicle
computing is important and emerging, followed by
several case studies to further illustrate our vision.
Finally, we conclude the article by listing several
technical challenges.

Do you have a great idea for new programs that will positively impact
diversity, equity, and inclusion throughout the computing community?

The IEEE Computer Society Diversity &
Inclusion Committee seeks proposals for
projects, programs, and events that further
its mission. New programs that deliver
education, outreach, and support, including,
but not limited to, mentoring programs
at conferences, panel discussions, and
webinars, are welcomed.

Help propel the Computer Society's D&I
programs—submit a proposal today!

https://bit.ly/CS-Diversity-CFP

Drive Diversity
& Inclusion in
Computing

Supporting projects
and programs that
positively impact
diversity, equity, and
inclusion throughout
the computing
community.

Donations to the
IEEE Computer
Society D&I Fund
are welcome!

I E E E C O M P U T E R S O C I E T Y D & I F U N D

40	 January 2022	 Published by the IEEE Computer Society � 2469-7087/22 © 2022 IEEE

EDITOR: Ron Vetter, University of North Carolina Wilmington; vetterr@uncw.edu

DEPARTMENT: SPOTLIGHT ON TRANSACTIONS

Secure V2V and V2I Technologies
for the Next-Generation
Intelligent Transportation Systems
Sudip Mittal, University of North Carolina Wilmington

This installment of Computer’s series highlighting the work published in IEEE Computer
Society journals comes from IEEE Transactions on Services Computing.

Ve h i c l e - t o - v e h i c l e
(V2V) and vehicle-to-
infrastructure (V2I) tech-

nologies are transforming the
digital landscape. The automotive
industry is shifting into a new digi-
tal age, where connected vehicles
and smart cars are starting to col-
laborate among themselves with
less reliance on human drivers.
This communication is especially
useful when considering their ben-
efits toward smart cities. Smart
vehicles can exchange informa-
tion with each other, physical
infrastructure like roadside units,
and even potentially pedestrians.
These use cases present bountiful
opportunities for cities to address
a number of issues, from traffic
management to even the prevention of potential col-
lisions. Despite the benefits, V2V and V2I communica-
tion technologies also present a broad attack surface
for cybercriminals. Some examples include stealing
private data, remotely hijacking a vehicle, and coordi-
nating roadside infrastructure attacks.

M. Gupta et al.1 present an approach to securing
V2V and V2I communication by utilizing cloudlets to
ensure the confidentiality, integrity, and authentication

of messages across a system. In addition, they discuss
an attribute-based access control model for V2V and
V2I called the attribute-based intelligent transporta-
tion system (AB-ITS). The proposed cloudlet architec-
ture is depicted in Figure 1. Trusted edge infrastruc-
tures produced by city administrators will operate as
intermediaries between vehicles and entities inside the
city’s geographic range by relaying secured messages.
At the edge, messages are validated by a set of pre-
determined security policies before being forwarded
across the interconnected network. Figure 2 illustrates
a conceptual AB-ITS model. The attributes developed
in the AB-ITS are supported by the cloudlets. A source

Digital Object Identifier 10.1109/MC.2020.3042227

Date of current version: 11 February 2021

This article originally
appeared in

vol. 54, no. 2, 2021

Cloud
Infrastructure

Location B Location A Location C

Edge
Infrastructures

Enro
llm

en
t a

nd

Cer
tifi

ca
te

s

En
ro

llm
en

t a
nd

C
er

ti
fic

at
es

En
ro

llm
en

t a
nd

C
er

ti
fic

at
es

FIGURE 1. The proposed trusted cloudlet architecture. (Taken from Gupta et al.1)

www.computer.org/computingedge� 41

initiates operations on cloudlets
and can be a set of vehicles, a trans-
portation infrastructure, or admin-
istrative users. Trusted cloudlets
(TCs) enroll devices into a system
through the use of a traditional
public key infrastructure scheme.
Target vehicles (VT) and source
vehicles must be a part of the same
TC to communicate. Authorization
policies and attributes define oper-
ations for the overall secure func-
tioning of the ecosystem. Policies
and attributes are also dynamic in
nature and can shift to fit changing
circumstances or communication
preferences in a city.

A proof-of-concept implemen-
tation of the AB-ITS was simulated
on the Amazon Web Services
Internet of Things platform. The
authors modeled situations such
as ice-on-road and compromised
rogue vehicles. The performance of
the model can be measured by the
execution time of attribute-based
security policies against the number of vehicles asso-
ciated with a cloudlet. The authors found that the total
trip time was comparable to that for a peer-to-peer ITS
despite variations due to network traffic and latency. In
a large city, more cloudlets and infrastructure devices
can be installed to reduce the crowding of vehicles
within one cloudlet, improving the execution time.

REFERENCE
1.	 M. Gupta, J. Benson, F. Patwa, and R. Sandhu, “Secure

V2V and V2I communication in intelligent transporta-

tion using cloudlets.” IEEE Trans. Services Comput., vol.

13, no. 14, pp. 1–13, Sept. 22, 2020. doi: 10.1109/TSC.2020

.3025993.

SUDIP MITTAL is an assistant professor in the Department

of Computer Science at the University of North Carolina

Wilmington, Wilmington, North Carolina, 28403, USA. Con-

tact him at mittals@uncw.edu.

THE AUTOMOTIVE INDUSTRY IS
SHIFTING INTO A NEW DIGITAL AGE,
WHERE CONNECTED VEHICLES
AND SMART CARS ARE STARTING TO
COLLABORATE AMONG THEMSELVES
WITH LESS RELIANCE ON HUMAN
DRIVERS.

ATT POL

SEA
TCS

EVT
VT

Authorization
Function

Authorization
Function

OP OP

System-Wide
A�ributes and Policies

Many to Many

Policy Association

A�ribute Association

FIGURE 2. An AB-ITS communication model. ATT: attributes; POL: policies; S: source;

TC: trusted cloudlets; VT: target vehicles; OP: operations; SEA: source entity attribute

relations; EVT: vehicle to trusted cloudlet relations. (Taken from Gupta et al.1)

42	 January 2022	 Published by the IEEE Computer Society � 2469-7087/22 © 2022 IEEE

EDITORS: Beatriz Sousa Santos, bss@ua.pt
Ginger Alford, alfordg@smu.edu

DEPARTMENT: EDUCATION

Teaching Clustering Algorithms
With EduClust: Experience Report
and Future Directions
Johannes Fuchs, University of Konstanz

Petra Isenberg and Anastasia Bezerianos, Université Paris-Saclay, CNRS, Inria, LRI

Matthias Miller and Daniel A. Keim, University of Konstanz

We share our experiences teaching university students about clustering algorithms
using EduClust, an online visualization we developed. EduClust supports professors
in preparing teaching material and students in visually and interactively exploring
cluster steps and the effects of changing clustering parameters. We used
EduClust for two years in our computer science lectures on clustering algorithms
and share our experience integrating the online application in a data science
curriculum. We also point to opportunities for future development.

We are currently seeing an immense
increase in online learning platforms
and sharing of teaching material.1 We

implemented EduClust (see Figure 2) to reduce the
considerable effort in creating high-quality teaching
material and to encourage learning in and outside
the classroom. EduClust is an easily accessible online
visualization application, which supports dynamic
teaching and learning of clustering algorithms.2
Simple two-dimensional data representations like
scatterplots are used to show clustering behavior. We
added animations to communicate changes between
algorithmic steps. Different algorithms can be applied
to various datasets and can be steered by changing
input parameters or distance metrics. Additionally,
further details about the algorithms are provided in
a separate panel showing pseudocode, algorithmic
complexity, and hyperparameters.

For two years, we used EduClust in our teaching
routine. Based on our experiences with the software,

we provide the interested reader with some guidance
on preparing and organizing teaching material (e.g.,
slides and assignments) together with ideas about
how to include the software in classroom settings (e.g.,
hands-on sessions with students). Given the positive
feedback from our students using the software, we
want to motivate similar development and research in
this area.

TEACHING SCENARIOS
WITH EduClust

EduClust is accessible online (educlust.dbvis.de/)
and comes with nine different clustering implemen-
tations and an initial pool of datasets. Teachers and
students can start right away using the software.
In our data mining lecture at the University of Kon-
stanz, we teach several different clustering algo-
rithms. Our learning goals are based on Krathwohl's
revised version of Bloom's educational objectives.3
They comprise simple cognitive processes like
remembering for which clustering algorithms exist
and understanding the different categories the algo-
rithms fall into, as well as the single steps of the algo-
rithmic behavior. We want students to be able to

This article originally
appeared in

vol. 40, no. 2, 2020

Digital Object Identifier 10.1109/MCG.2020.2970560

Date of current version 28 February 2020.

www.computer.org/computingedge� 43

EDUCATION

apply the clustering algorithms to
data in a meaningful way and ana-
lyze the influence of input param-
eters or distance measures on
the clustering result. Ultimately
we want students to evaluate
(see Figure 1) the performance of
clustering algorithms in certain
situations and create scenarios,
in which algorithms fail or outper-
form others. With EduClust, we
were able to teach even complex
cognitive processes and reduce
the preparation time of the lec-
turer to a minimum.

Preparing Slides
The preparation of slides to show
clustering steps can be a tedious
task. To visually show changes
over time, multiple intermediate
steps of the algorithmic behav-
ior need to be drawn out and dis-
played, ideally with animation.

With EduClust, one can use an export mechanism
for individual clustering animations and the details
about the algorithm provided in the information
space. Lecturers just have to decide which algo-
rithms, hyperparameters, and datasets they want
to include in the slide deck. They run the software
once and export the displayed animations in graphics
interchange format to use in their slides. For details
about the algorithmic behavior, complexity, or input

parameters, EduClust provides ample text that can be
copied on slides as well.

During the Lecture
To profit from EduClust during the lecture, we found
it useful to split the session into three parts. First, a
theoretical introduction to a new algorithm; next, a
hands-on session; and finally a group discussion of
advantages and disadvantages of different algorithms.

FIGURE 1. Application overview: Algorithms and datasets can be selected in the Selection Menu (top), parameters and anima-

tions can be adjusted in the Navigation Area and Parameter Settings (left), detailed text descriptions are displayed in the Infor-

mation Space (right), and the clustering behavior is visualized in the Cluster View (center).

FIGURE 2. Four of the nine clustering algorithms and their visualization supported

in EduClust: (a) k-means clustering centers shown as circles. Shapes in this artificial

dataset are not separated well. (b) In Single Linkage, a dendrogram from the hierar-

chical clustering (not shown here) was used to determine the effective horizontal

cut to differentiate each shape. (c) DBSCAN algorithm uses an -distance, which

is represented using blurry circles. (d) Visualization shows the spanning tree of the

OPTICS algorithm.

44	 ComputingEdge� January 2022

EDUCATION

In our lectures, we always introduce new clustering
algorithms showing slides with text information and
pseudocode first, followed by a moderated animation
generated by EduClust (see Figure 3). Students can
see the algorithm in action, understand the individual
clustering steps, and relate to the previously shown
text descriptions. This first introduction is meant
to support the cognitive processes remember and
understand.

In the second part of the lecture, students use
EduClust on their own to apply the algorithms to differ-
ent datasets and analyze their peculiarity. Students,
thus, experience the influence of changing input
parameters and cluster characteristics. The duration

of these individual hands-on sessions depends on the
complexity of the algorithm.

In the third part, we put clustering algorithms into
context with each other (see Figure 1). The lecturer
starts a discussion by bringing up a dataset with spe-
cific characteristics. Students then discuss whether
or not clustering algorithms are capable of separating
data points into clusters. The lecturer and students
use EduClust to try algorithms with various input
parameters and discuss their advantages and disad-
vantages. Thereby, students evaluate the usefulness
of algorithms and understand their individual applica-
tion areas.

We found that this lecture structure covers nearly
all cognitive processes to support student learning.
However, we recommend to accompany the session
with an assignment sheet to also support create as
the another cognitive process.

Preparing an Assignment
Our assignments are designed to generate a deep
engagement with specific clustering processes. We
ask questions that require students to apply algo-
rithms, analyze the consequences when changing
input parameters, or evaluate different clustering
techniques given a certain dataset. To further increase
the learning rate, we also include questions, in which
students have to create datasets being suitable for the
one algorithm but not for the others. In such scenarios,
students have to understand details of the algorithms
to come to a solution. Trial and error usually fails due to
the complexity of the problem space with many differ-
ent variables, e. g., input parameters, clustering algo-
rithms, or distance metrics.

Student Assessment
EduClust supports the export and import of data files
in the json format. This feature can facilitate the cor-
rection of submissions. When students have to create
datasets for their assignment, they can export them
and email their result to the lecturer. The lecturer
can use EduClust to import the dataset and check for
correctness.

Summary of Benefits
Although not exhaustive, EduClust covers the most
prominent clustering algorithms and provides a visual

FIGURE 3. Our instructional material consists of three

parts: first, introduction slides with pseudocode; second, a

live demonstration of the clustering behavior (animations

exported with EduClust); third, an evaluation of the clustering

results using datasets with different characteristics (in-class

exploration with EduClust).

www.computer.org/computingedge� 45

EDUCATION

categorization based on their clustering behavior. Lec-
turers can do live demonstrations of the clustering
behavior of individual algorithms and use EduClust
to prepare teaching material. EduClust offers data-
sets covering various cluster characteristics, which
can be used together with all implemented clustering
algorithms. The influence and importance of choos-
ing input parameters wisely can be shown by running
the same algorithm on the same dataset with varying
input parameters. During the lecture, multiple cluster-
ing algorithms can be compared using the same data-
set, revealing the benefits of each clustering algo-
rithm. Both the description of algorithmic steps (in
text), and a sequence of images showing these steps
on a dataset, can be exported and added to traditional
teaching material.

Students can apply clustering algorithms without
implementation effort to various datasets and rerun
the same algorithm multiple times using different
input parameters. While running the algorithm, the
underlying pseudocode is displayed in the informa-
tion space. The selection of different algorithms and
datasets help students to evaluate the performance
of the respective algorithms. Finally, students can cre-
ate individual datasets to be clustered with all imple-
mented algorithms.

FUTURE RESEARCH DIRECTIONS
Qualitative evaluations showed that students are will-
ing to use EduClust in their learning routine.2 Cur-
rently, EduClust is limited to nine clustering algo-
rithms, but we will extend it to include cluster quality
measures and additional algorithms like DENCLUE.

Given the positive feedback from our students, we
also see a lot of potential for applying what we learned
to different categories of algorithms. A promising
starting point could be decision trees. In addition, we
would like to use EduClust as a motivation to establish
a new research direction called teachable AI. While
explainable AI gets a lot of research attention, respec-
tive applications focus on understanding the algorith-
mic behavior of individual architectures. We would like
to argue for further research toward experiencing the
entire inner workings of multiple algorithms together
with the consequences of changing parameters and
the possibility to evaluate different approaches on
the same dataset, along the lines of explAIner4 but

with a focus on teaching ML algorithms from a profes-
sor and a student perspective.

REFERENCES
1.	 I. E. Allen and J. Seaman, Changing Course: Ten Years

of Tracking Online Education in the United States.

Babson Park, MA, USA: Babson Survey Research

Group, 2013.

2.	 J. Fuchs, P. Isenberg, A. Bezerianos, M. Miller, and D.

Keim, “Educlust-a visualization application for teaching

clustering algorithms,” in Proc. Eurographics—Educ.

Papers, 2019. [Online]. Available: https://dx.doi.org/10

.2312/eged.20191023

3.	 D. R. Krathwohl, “A revision of bloom’s taxonomy:

An overview,” Theory Into Practice, vol. 41, no. 4, pp.

212–218, 2002.

4.	 T. Spinner, U. Schlegel, H. Schäfer, and M. El-Assady,

“Explainer: A visual analytics framework for interac-

tive and explainable machine learning,” IEEE Trans.

Vis. Comput. Graphics, vol. 26, no. 1, pp. 1064–1074,

Jan. 2020.

JOHANNES FUCHS is a Research Scientist and Lecturer

with the University of Konstanz, Konstanz, Germany. Con-

tact him at fuchs@dbvis.inf.uni-konstanz.de.

PETRA ISENBERG is a Research Scientist with Inria, Roc-

quencourt, France in the Aviz team. Contact her at petra

.isenberg@inria.fr.

ANASTASIA BEZERIANOS is an Associate Professor with

University Paris-Saclay, Essonne, France, and part of the Inria

ILDA team. Contact her at anastasia.bezerianos@lri.fr.

MATTHIAS MILLER is a Research Associate and is currently

working toward the Ph.D. degree with the University of Kon-

stanz, Konstanz, Germany. Contact him at miller@dbvis.inf

.uni-konstanz.de.

DANIEL A. KEIM is a Full Professor and the Head of the

Information Visualization and Data Analysis Research Group,

University of Konstanz, Konstanz, Germany. Contact him at

keim@uni-konstanz.de.

Contact department editors Beatriz Sousa Santos at bss

@ua.pt and Ginger Alford at alfordg@smu.edu.

Submit your paper today!
Visit www.computer.org/oj to learn more.

Get Published in the New IEEE Open
Journal of the Computer Society

Submit a paper today to the
premier new open access
journal in computing
and information technology.

Your research will benefit from

the IEEE marketing launch and

5 million unique monthly users

of the IEEE Xplore® Digital Library.

Plus, this journal is fully open

and compliant with funder

mandates, including Plan S.

IEEE
Computer
Society Has
You Covered!
WORLD-CLASS CONFERENCES — Stay
ahead of the curve by attending one of our
210 globally recognized conferences.

DIGITAL LIBRARY — Easily access over 800k
articles covering world-class peer-reviewed
content in the IEEE Computer Society
Digital Library.

CALLS FOR PAPERS — Discover
opportunities to write and present your
ground-breaking accomplishments.

EDUCATION — Strengthen your resume
with the IEEE Computer Society Course
Catalog and its range of offerings.

ADVANCE YOUR CAREER — Search the
new positions posted in the IEEE Computer
Society Jobs Board.

NETWORK — Make connections that count
by participating in local Region, Section,
and Chapter activities.

Explore all of the member benefi ts
at www.computer.org today!

Software and Cybersecurity ■ Big Data: Privacy Versus Accessibility ■ Resiliency in Cloud Computing

November/December 2018
Vol. 16, No. 6

CYBERSECURITY AND
PRIVACY ISSUES IN BRAZIL

IEEE SEC
U

RIT
Y &

 PRIVA
C

Y
A

I ETH
IC

S
V

O
LU

M
E 16

N
U

M
BER 3

M
AY/JU

N
E 2018

W
W
W
.CO

M
PU

TER.O
RG

/SEC
U
RIT

Y

E-Currency and Fairness ■ Ransomware Defense ■ A National Cybersecurity Policy

May/June 2018
Vol. 16, No. 3

IEEE SEC
U

RIT
Y &

 PRIVA
C

Y
PRIVA

C
Y A

N
D

 A
U

TO
M

ATED
 A

IRPO
RT SC

REEN
IN

G

V
O

LU
M

E 17
N

U
M

BER 2
M

A
RC

H
/A

PRIL 2019
W
W
W
.CO

M
PU

TER.O
RG

/SEC
U
RIT

Y

March/April 2019
Vol. 17, No. 2

IEEE SEC
U

RIT
Y &

 PRIVA
C

Y
D

IG
ITA

L FO
REN

SIC
S, PA

RT 2
V

O
LU

M
E 17

N
U

M
BER 1

JA
N

U
A

RY/FEBRU
A

RY 2019
W
W
W
.CO

M
PU

TER.O
RG

/SEC
U
RIT

Y

Blockchain Technologies ■ The Fuzzing Revival ■ Cybersecurity for the Public Interest

January/February 2019
Vol. 17, No. 1

Resiliency in Cloud Computing

November/December 2018
Vol. 16, No. 6

Join the IEEE Computer Society
for subscription discounts today!
www.computer.org/product/magazines/security-and-privacy

IEEE Security & Privacy is a bimonthly magazine
communicating advances in security, privacy,
and dependability in a way that is useful to a
broad section of the professional community.

The magazine provides articles with both a
practical and research bent by the top thinkers in
the fi eld of security and privacy, along with case
studies, surveys, tutorials, columns, and in-depth
interviews. Topics include:

• Internet, software, hardware, and systems security
• Legal and ethical issues and privacy concerns
• Privacy-enhancing technologies
• Data analytics for security and privacy
• Usable security
• Integrated security design methods
• Security of critical infrastructures
• Pedagogical and curricular issues in security education
• Security issues in wireless and mobile networks
• Real-world cryptography
• Emerging technologies, operational resilience,

and edge computing
• Cybercrime and forensics, and much more

www.computer.org/security

Join the IEEE Computer Society
for subscription discounts today!
www.computer.org/product/journals/cal

IEEE Computer Architecture Letters is a forum for fast
publication of new, high-quality ideas in the form of
short, critically refereed technical papers. Submissions
are accepted on a continuing basis and letters will be
published shortly after acceptance in IEEE Xplore and in
the Computer Society Digital Library.

Submissions are welcomed on any topic in computer
architecture, especially:

• Microprocessor and multiprocessor systems
• Microarchitecture and ILP processors
• Workload characterization
• Performance evaluation and simulation techniques
• Interactions with compilers and operating systems
• Interconnection network architectures
• Memory and cache systems
• Power and thermal issues at the architectural level
• I/O architectures and techniques
• Independent validation of previously published results
• Analysis of unsuccessful techniques
• Domain-specifi c processor architecture

(embedded, graphics, network)
• High-availability architectures
• Reconfi gurable computer architectures

www.computer.org/cal

50 January 2022 Published by the IEEE Computer Society 2469-7087/22 © 2022 IEEE

Conference Calendar

IEEE Computer Society conferences are valuable forums for learning on broad and dynamically shi� ing top-

ics from within the computing profession. With over 200 conferences featuring leading experts and thought

leaders, we have an event that is right for you. Questions? Contact conferences@computer.org.

FEBRUARY
7 February

• FOCS (IEEE Symposium on

Foundations of Computer Sci-

ence), Denver, USA

12 February

• CGO (Int’l Symposium on Code

Generation and Optimization),

Seoul, South Korea

• HPCA (IEEE Int’l Symposium

on High-Performance Com-

puter Architecture), Seoul,

South Korea

26 February

• VLSID (Int’ l Conf. on VLSI

Design and Int ’ l Conf. on

Embedded Systems), virtual

MARCH
12 March

• ICSA (IEEE Int’l Conf. on So� -

ware Architecture), Honolulu,

USA

• VR (IEEE Conf. on Virtual Real-

ity and 3D User Interfaces),

Christchurch, New Zealand

15 March

• CSASE (Int’l Conf. on Com-

puter Science and Software

Eng.), Duhok, Iraq

• SANER (IEEE Int’l Conf. on So� -

ware Analysis, Evolution, and

Reengineering), Honolulu, USA

21 March

• PerCom (IEEE Int’l Conf. on

Per vasive Computing and

Communications), Pisa, Italy

30 March

• WONS (Wireless On-Demand

Network Systems and Ser-

vices Conf.), Oppdal, Norway

APRIL
4 April

• ICST (IEEE Int’l Conf. on Soft-

ware Testing, Verifi cation and

Validation), virtual

11 April

• Pacifi cVis (IEEE Pacifi c Visual-

ization Symposium), Tsukuba,

Japan

25 April

• VTS (IEEE VLSI Test Sympo-

sium), San Diego, USA

MAY
4 May

• ICCPS (ACM/IEEE Int’l Conf.

on Cyber-Physical Systems),

Milano, Italy

• RTAS (IEEE Real-Time and

Embedded Technology and

Applications Symposium),

Milano, Italy

9 May

• ICDE (IEEE Int’l Conf. on Data

Eng.), virtual

15 May

• FCCM (IEEE Int ’ l S ympo -

sium on Field-Programmable

Custom Computing Machines),

New York, USA

16 May

• ICFEC (IEEE Int’l Conf. on Fog

and Edge Computing), Mes-

sina, Italy

17 May

• ISORC (Int’l Symposium On

Real-Time Distributed Com-

puting), Västerås, Sweden

18 May

• ISCV (Int’ l Conf. on Intelli-

gent Systems and Computer

Vision), Fez, Morocco

• ISMVL (IEEE Int’l Symposium

on Multiple-Valued Logic), Dal-

las, USA

19 May

• SELSE (IEEE Workshop on Sil-

icon Errors in Logic – System

E� ects), virtual

21 May

• ICSE (IEEE/ACM Int’l Conf. on

So� ware Eng.), Pi� sburgh, USA

22 May

• SP (IEEE Symposium on Secu-

rity and Privacy), San Fran-

cisco, USA

23 May

• ETS (IEEE European Test Sym-

posium), Barcelona, Spain

25 May

• SERA (IEEE/ACIS Int’l Conf. on

So� ware Eng., Management and

Applications), Las Vegas, USA

https://focs2021.cs.colorado.edu/
https://icsa-conferences.org/2022/
https://conf.researchr.org/home/cgo-2022
https://hpca-conf.org/2022/
https://vlsid.org/
https://ieeevr.org/2022/
https://csase.uod.ac/
https://saner2022.uom.gr/
http://www.percom.org/
http://www.percom.org/
http://2022.wons-conference.org/
http://pvis.org/
https://tttc-vts.org/public_html/new/2022/
http://iccps.acm.org/2022/
https://icst2022.vrain.upv.es/
http://2022.rtas.org/
https://icde2022.ieeecomputer.my/
https://www.fccm.org/
https://www.fccm.org/
https://isorc2022.github.io/
https://ismvl22.smu.edu/
https://conf.researchr.org/home/icse-2022
http://www.ieee-security.org/TC/SP2022/
http://acisinternational.org/conferences/sera-2022/
http://iscvconf.com/2022/
https://icfec2022.eecis.udel.edu/
https://selse.org/
https://ets2022.upc.edu/en

30 May

• DCOSS (Int’l Conf. on Distrib-

uted Computing in Sensor Sys-

tems), Los Angeles, USA

• IPDPS (IEEE Int’l Parallel & Dis-

tributed Processing Sympo-

sium), Lyon, France

JUNE
6 June

• EuroS&P (IEEE European Sym-

posium on Security and Pri-

vacy), Genoa, Italy

• MDM (IEEE Int ’ l Conf. on

Mobile Data Management),

Paphos, Cyprus

11 June

• ISCA (ACM/IEEE Int’l Sympo-

sium on Computer Architec-

ture), New York, USA

14 June

• WoWMoM (IEEE Int’l Sympo-

sium on a World of Wireless,

Mobile and Multimedia Net-

works), Belfast, UK

19 June

• CVPR (IEEE/CVF Conf. on Com-

puter Vision and Pa� ern Rec-

ognition), New Orleans, USA

25 June

• CSCLOUD (IEEE Int’ l Conf.

on Cyber Security and Cloud

Computing), Xi’an, China

26 June

• ICIS (IEEE/ACIS Int’l Conf. on

Computer and Information

Science), Zhuhai, China

27 June

• COMPSAC (IEEE Computers,

Software, and Applications

Conf.), Torino, Italy

• DSN (IEEE/IFIP Int’l Conf. on

Dependable Systems and Net-

works), Baltimore, USA

• HOST (IEEE Int’l Symposium

on Hardware Oriented Secu-

rity and Trust), McLean, Vir-

ginia, USA

JULY
1 July

• ICALT (IEEE Int’ l Conf. on

Advanced Learning Technolo-

gies), Bucharest, Romania

6 July

• ISVLSI (IEEE Computer Society

Symposium on VLSI), Nicosia,

Cyprus

10 July

• ICDCS (IEEE Int’l Conf. on Dis-

tributed Computing Systems),

Bologna, Italy

11 July

• ICME (IEEE Int’l Conf. on Mul-

timedia and Expo), Taipei,

Taiwan

21 July

• CBMS (IEEE Int’l Symposium

on Computer-Based Medical

Systems), Shenzhen, China

AUGUST
1 August

• ICCP (Int’l Conf. on Compu-

tational Photography), Pasa-

dena, USA

2 August

• MIPR (IEEE Int’l Conf. on Multi-

media Information Processing

and Retrieval), virtual

4 August

• BCD (IEEE/ACIS Int’l Conf. on

Big Data, Cloud Computing,

and Data Science Eng.), Dan-

ang, Vietnam

7 August

• CSF (IEEE Computer Secu-

rity Foundations Symposium),

Haifa, Israel

9 August

• IRI (IEEE Int’l Conf. on Informa-

tion Reuse and Integration for

Data Science), virtual

15 August

• RE (IEEE Int’l Requirements Eng.

Conf.), Melbourne, Australia

SEPTEMBER
6 September

• CLUSTER (IEEE Int’l Conf. on

Cluster Computing), Heidel-

berg, Germany

12 September

• ARITH (IEEE Symposium on

Computer Arithmetic), virtual

Learn more
about IEEE
Computer Society
conferences

computer.org/conferences

ce1con(all).indd 73 12/6/21 4:55 PM

https://dcoss.org/
http://www.ipdps.org/
http://www.ieee-security.org/TC/EuroSP2022/
https://mdm2022.cs.ucy.ac.cy/
https://iscaconf.org/isca2022/
https://computing.ulster.ac.uk/WoWMoM2022/index.html
https://cvpr2022.thecvf.com/
http://www.cloud-conf.net/cscloud/2022/cscloud/index.html
http://acisinternational.org/conferences/icis-2022/
https://ieeecompsac.computer.org/2022/
https://ieeecompsac.computer.org/2022/
https://dsn2022.github.io/
http://www.hostsymposium.org/index.php
https://tc.computer.org/tclt/icalt-2022/
http://www.eng.ucy.ac.cy/theocharides/isvlsi22/
https://www.icdcs.org/
http://2022.ieeeicme.org/index.html
http://2022.cbms-conference.org/
http://www.ieee-mipr.org/
https://iccp2022.iccp-conference.org/
http://acisinternational.org/conferences/bcd-2022/
https://www.ieee-security.org/TC/CSF2022/
https://homepages.uc.edu/~niunn/IRI22/
https://conf.researchr.org/home/RE-2022
https://clustercomp.org/2022/
https://arith2022.arithsymposium.org/
http://www.computer.org/conferences/

Evolving Career
Opportunities
Need Your Skills
Explore new options—upload your resume today

I E E E C O M P U T E R S O C I E T Y J O B S B O A R D

Changes in the marketplace shift demands for vital skills
and talent. The IEEE Computer Society Jobs Board is a
valuable resource tool to keep job seekers up to date on
the dynamic career opportunities offered by employers.

Take advantage of these special resources for job seekers:

No matter what your career level, the IEEE Computer
Society Jobs Board keeps you connected to

workplace trends and exciting career prospects.

JOB ALERTS

CAREER
ADVICE

WEBINARSTEMPLATES

RESUMES VIEWED
BY TOP EMPLOYERS

www.computer.org/jobs

