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Magazine Roundup

The IEEE Computer Society’s lineup of 12 peer-reviewed technical magazines covers cutting-edge topics rang-

ing from software design and computer graphics to Internet computing and security, from scientific appli-

cations and machine intelligence to visualization and microchip design. Here are highlights from recent issues.

Explainable 
Recommendations and 
Calibrated Trust: Two 
Systematic User Errors

The increased adoption of col-

laborative human-artificial intel-

ligence decision-making tools 

triggered a need to explain rec-

ommendations for safe and effec-

tive collaboration. The authors of 

this article from the October 2021 

issue of Computer explore how 

users interact with explanations 

and why trust-calibration errors 

occur, taking clinical decision-sup-

port systems as a case study.

Performance Portability in 
the Exascale Computing 
Project: Exploration Through 
a Panel Series

Performance portability is a criti-

cal issue for the Exascale Comput-

ing Project (ECP) because of non-

trivial architectural differences 

between machines available today 

and those expected at exascale. 

Many ECP project teams are work-

ing toward performance portability 

and would expect to benefit from 

sharing lessons learned, identify-

ing gaps, and discovering opportu-

nities for partnerships. To facilitate 

this communication, the IDEAS-

ECP project partnered with the 

three focus areas of ECP (applica-

tion development, software tech-

nology, and hardware and integra-

tion) and Department of Energy 

computing facilities to lead a series 

of panel discussions on perfor-

mance portability. The panels were 

organized around broadly common 

themes of algorithmic and data 

locality challenges. In this article 

from the September/October 2021 

issue of Computing in Science & 

Engineering, the authors describe 

the panel series, its objectives, 

and perspectives from the various 

areas of the project.

Theoretical Computer Science 
in Italy: The Early Years

In this article from the July–Sep-

tember 2021 issue of IEEE Annals 

of the History of Computing, the 

authors provide an overview of the 

early developments of theoreti-

cal computer science research in 

Italy in the 1960s and early 70s. The 

community of researchers work-

ing in this domain were organizing 

to gain an identity among the more 

traditional disciplines and to obtain 

a recognition for the “new science” 

that was taking its first steps. This 

led in Italy to the creation of the 

Group of Researchers in Theoret-

ical Informatics, in parallel to the 

institution of the European Asso-

ciation for Theoretical Computer 

Science at the European level. 

A Visual Analytics 
Approach for Structural 
Differences Among Graphs 
via Deep Learning

Representing and analyzing struc-

tural differences among graphs 

present insight into difference-

related patterns such as dynamic 

evolutions of graphs. Conventional 

solutions leverage representa-

tion learning techniques to encode 

structural information but lack an 

intuitive way of studying structural 

semantics of graphs. In this article 

from the September/October 2021 

issue of IEEE Computer Graphics 

and Applications, the authors pro-

pose a representation-and-analysis 

scheme for structural differences 
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among graphs. They propose a 

deep learning-based embedding 

technique to encode multiple 

graphs while preserving semantics 

of structural differences. 

Fuzzy Graph and Collective 
Multiagent Reinforcement 
Learning for Traffic  
Signals Control

Multiagent systems provide proper 

modeling in real-world applica-

tions such as intelligent transpor-

tation systems. The interaction 

between the agents can be repre-

sented by the graph theory. In this 

article from the July/August 2021 

issue of IEEE Intelligent Systems, a 

fuzzy graph is used for urban traf-

fic network modeling. A network 

composed of several intersections 

is considered a multiagent system 

composed of multiple interacting 

agents. The interaction between 

the agents can be represented by 

a fuzzy graph in which each ver-

tex shows an agent in the network. 

The network is divided into cor-

related agent’s sets. In each set, 

collective learning composed of 

Q-learning and function approx-

imation method is used to learn 

the optimal control policy. The 

total average energy of the sets 

of correlated agents as fuzzy sub-

graphs is computed, and the rela-

tionship between these values and 

the effectiveness of the collective 

learning is studied. 

Autonomics at the Edge: 
Resource Orchestration for 
Edge Native Applications

With the increasing availability of 

edge computing resources, there 

is a need to develop edge orches-

tration and resource management 

techniques to support application 

resilience and performance. Sim-

ilar to the use of containers and 

microservices for cloud environ-

ments, it is important to understand 

the key attributes that characterize 

edge native applications. As edge 

devices increase in their autonomy 

and intelligence, orchestration tech-

niques are needed to respond to 

changes in device properties, avail-

ability, security credentials, migra-

tion, and network connectivity pro-

tocols. Implementing autonomics 

techniques for edge computing can 

increase the resilience of the inter-

action between devices and appli-

cations, reducing execution time 

and cost. Read more in this article 

from the July/August 2021 issue of 

IEEE Internet Computing.

Quantum Codesign

Codesign has been an integral 

part of computer architecture 

since the very first systems were 

brought online. From the early 

days of the field until now, end-

user applications inevitably shape 

the design and capabilities of 

subsequent generations of hard-

ware. Likewise, the characteris-

tics and capabilities of new com-

putational hardware and systems 

often impact the algorithms and 

software that run on them. Quan-

tum computing (QC) is similarly 

reliant on codesign approaches, 

particularly now in its resource 

constrained early days. This arti-

cle from the September/October 

2021 issue of IEEE Micro discusses 

what codesign means in a QC set-

ting, gives examples of its value to 

QC, and proposes key attributes 

of QC codesign approaches going 

forward.

Class-Balanced Text to 
Image Synthesis With 
Attentive Generative 
Adversarial Network

Although the text-to-image syn-

thesis task has shown significant 

progress, generating high-quality 

images remains a challenge. In this 

article from the July–September 

2021 issue of IEEE MultiMedia, the 

authors first propose an attention-

driven, cycle-refinement genera-

tive adversarial network, AGAN-v1, 



6	 ComputingEdge�   January 2022

MAGAZINE ROUNDUP

to bridge the domain gap between 

visual contents and semantic con-

cepts by constructing spatial con-

figurations of objects. Second, an 

advanced class-balanced gener-

ative adversarial network, AGAN-

v2, is proposed to address the 

problem of long-tailed data distri-

bution. Importantly, it is the first 

method to solve this problem in 

the text-to-image synthesis task. 

Hybrid Body Craft:  
Toward Culturally and 
Socially Inclusive Design for 
On-Skin Interfaces

Sensor device miniaturization and 

breakthroughs in novel materi-

als have enabled technology to 

progress directly onto the skin 

surface. However, unlike all other 

media, the human body is a com-

plex and meaning-laden surface 

that encompasses a wearer’s indi-

vidual, social, and political identi-

ties. Yet, research in on-skin inter-

faces has focused on engineering 

aspects, with a scant focus on the 

cultural and social dimensions of 

device design. Hybrid Body Craft 

presents a design approach for 

bridging the cultural aspects of 

body crafts with emerging on-skin 

interfaces. The authors of this arti-

cle from the July–September 2021 

issue of IEEE Pervasive Computing 

present a series of more socially 

and culturally inclusive on-skin 

interface designs that incorpo-

rate various emerging materials 

and technologies into body craft 

customs. 

Demystifying Android’s 
Scoped Storage Defense

Android recently introduced the 

scoped storage defense to better 

protect application use of shared 

external storage. This article from 

the September/October 2021 issue 

of IEEE Security & Privacy exam-

ines the evolution of Android 

external storage defenses leading 

to scoped storage and assesses 

the impact of the scoped storage 

defense for limiting opportunities 

for exploitation.

What Do We Know  
About Time Pressure in 
Software Development?

Time pressure means that time 

experienced by an individual is 

scarce in relation to the task 

demands at hand. In this article 

from the September/October 2021 

issue of IEEE Software, the authors 

summarize findings and provide 

practitioner takeaways based on 

a systematic review of existing 

literature.

Healthcare Insurance  
Frauds: Taxonomy and 
Blockchain-Based Detection 
Framework (Block-HI)

Medical health insurance fraud 

has been a major concern for the 

healthcare industry and govern-

mental institutions. In the United 

States, health insurance compa-

nies record a loss of tens of bil-

lions yearly due to healthcare 

fraud. Some types of fraud are at 

the risk of the patient’s health. 

This is because the system that 

performs the manual processing 

of medical insurance claims fre-

quently misses the endorsement 

of some stakeholders (such as 

the patient, pharmaceutical com-

panies, wholesale dealers, and 

medical equipment suppliers) in a 

claim’s validation process. Block-

chain is a peer-to-peer distributed 

system that can enable the vali-

dation of healthcare claims in a 

secure, immutable, and transpar-

ent manner. The authors of this 

article from the July/August 2021 

issue of IT Professional present 

a taxonomy of healthcare insur-

ance claims frauds and propose 

a blockchain-based healthcare 

insurance claims fraud detection 

framework. 

Join the IEEE 
Computer 
Society
computer.org/join
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Editor’s Note

Embedded Systems Software

Software in embedded sys-

tems is often time- and 

safety-critical, so dependability is 

essential. For cyberphysical sys-

tems such as autonomous vehi-

cles, it’s important to be able to 

verify the software’s security and 

reliability. Two articles in this issue 

of ComputingEdge explore ways to 

improve verification of software in 

embedded systems.

IT Professional ’s “Determin-

ing Reliable and Precise Execu-

tion Time Bounds of Real-Time 

Software” stresses the impor-

tance of robust timing verifica-

tion for embedded control system 

software in transportation, med-

icine, and manufacturing. Com-

puter’s “Formal Verification of 

Cyberphysical Systems” brings 

together seven experts to dis-

cuss a promising verification 

approach for embedded systems 

software.

The programming language 

used in software development 

can either help or hurt the qual-

ity of the software. “Boris Cherny 

on TypeScript,” from IEEE Soft-

ware, presents an interview about 

a scalable programming language 

aimed at catching mistakes. In 

“Toward Unseating the Unsafe C 

Programming Language,” from 

IEEE Security & Privacy, the author 

makes the case for using mod-

ern languages with built-in safety 

properties. 

Tomorrow’s self-driving cars 

will be more connected than 

ever. The authors of IEEE Internet 

Computing’s “The Emergence 

of Vehicle Computing” describe 

their vision of autonomous vehi-

cles that communicate with one 

another and with the environ-

ment. Computer’s “Secure V2V 

and V2I Technologies for the Next-

Generation Intelligent Trans-

portation Systems” highlights 

a model for securing smart car 

communication.

This ComputingEdge issue 

closes with new ideas in educa-

tion. The authors of “Teaching 

Clustering Algorithms With Edu-

Clust: Experience Report and 

Future Directions,” from IEEE Com-

puter Graphics and Applications, 

recount using an online visualiza-

tion application to teach cluster-

ing algorithms. 
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DEPARTMENT: SOFTWARE TECHNOLOGY

Determining Reliable and  
Precise Execution Time Bounds 
of Real-Time Software
Reinhard Wilhelm, Saarland University and AbsInt Angewandte Informatik

TIME-CRITICAL  
EMBEDDED SYSTEMS

Embedded-control systems in transportation, med-
ical instruments, and manufacturing are often time 
critical, that is, they have to finish execution within 
their period or they have to respond to sensor input 
within a given deadline. Both period and deadline are 
dictated by the physics of the system. Examples for 
sensor-actuator control are the airbag and the auto-
matic brake control in cars. Clearly, if the airbag con-
troller fails to inflate the airbag in time, the driver will 
hit the steering wheel. Flight control and guidance, 
collision-avoidance, or ground proximity warning sys-
tems in airplanes are examples from the aviation 
domain. Deadlines in airplanes are often in the order of 
milliseconds, while crankshaft-synchronous tasks in 
cars often have periods on the order of microseconds.

A rigid verification of time-critical soft-
ware should include a static timing verification. 
Measurement-based methods cannot guarantee to 
hit the worst case and to determine its execution time 
(WCET) because the number of cases to consider is 
too large to allow exhaustive methods. Certification 
rules and practice of the European Union Aviation 
Safety Agency (EASA) requires the use of static tim-
ing analysis in the certification of time-critical plane 
components.

PROBLEM
The general setting for WCET analysis is that a set of 
hard real-time tasks is to be executed on a given hard-
ware platform. Hard real-time tasks have associated 

deadlines within which they have to finish their exe-
cution. The deadlines may be given by periods. Timing 
Verification has to verify that these timing constraints 
are satisfied.

Traditionally, Timing Verification is split into a 
WCET analysis, which determines upper bounds on the 
execution times of all tasks, and a schedulability anal-
ysis, which takes these upper bounds and attempts to 
verify that the given set of tasks when executed on the 
given platform will all respect their deadlines.

The introduction of performance-enhancing archi-
tectural components and features, such as caches, 
pipelines, and speculation, made the execution time 
of instructions dependent on the architectural state 
in which they are executed, essentially the occupancy 
of resources. The execution times of instructions now 
vary largely. For example, an instruction accessing 
memory may last a few cycles but also up to several 
hundred cycles. The variability of execution times 
grew with several architectural parameters, e.g., the 
cache-miss penalty and the costs for pipeline stalls 
and for control-flow mis-predictions. For these archi-
tectures the determination of WCETs became difficult. 
We started research into the WCET-analysis problem 
in the middle of the 90s.

The introduction of multicore execution plat-
forms into the embedded real-time domain made the 
problem still more difficult. These platforms typically 
have shared resources, and the interference on these 
shared resources complicates the determination of 
upper execution-time bounds for tasks executed on 
such a platform.

A few words about terminology: From the begin-
ning, we aimed at sound WCET-analysis methods. The 
results of a sound WCET analysis are conservative, 
i.e., they will never be exceeded by an execution. We 

Digital Object Identifier 10.1109/MITP.2020.2972138 

Date of current version 21 May 2020.

This article originally  
appeared in 

 

vol. 22, no. 3, 2020
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consider being conservative as a Boolean property. 
Often, conservative is used as a metric, being more 
conservative meaning being less accurate. For an 
unsound, e.g., measurement-based method, it does 
not make sense to speak about being more or less 
conservative. Such a method may under-estimate or 
over-estimate the real WCET. So, being “more conser-
vative” may mean moving toward the real WCET from 
below, or it may mean moving further away from the 
real WCET by increasing over-estimation. Besides 
soundness, the second, quite important property is 
accuracy of the results of a WCET analysis. For a sound 
WCET analysis method, accuracy corresponds to the 
degree of over-estimation.

The execution of a program can be seen as one 
particular walk through its call- and control-flow 
graphs: branches in the graph taken, depending on 
input values. There may be many such walks. How-
ever, there are even more different paths through the 
architecture, depending on the execution state of the 
architecture, essentially the occupancy of resources. 
A memory access may hit or miss the cache, resulting 
in at least two different paths; in the cache-miss case, 
there may be again at least two different continua-
tions, depending on whether the bus is occupied or 
not. WCET-analysis can be seen as the search for a lon-
gest path in the state space spanned by the potential 
paths through the program and by the potential paths 
through the architectural platform.

WCET analysis is based on the assumption that the 
analyzed programs terminate, that is, all recursions 
and iterations are bounded. We are not confronted 

with the undecidability of the halting problem. Our 
tool might discover that it cannot determine bounds 
on recursion or iteration in a program and will ask 
the user for annotations. All WCET bounds are then 
valid with respect to the given annotations. This state 
space is thus finite but too large to be exhaustively 
explored. The implementation of the technology is a 
permanent fight with the complexity of the task. Safe 
over-approximation is used in several places (Figure 1). 
In particular, an abstraction of the execution platform 
is employed by the WCET analysis.

PROBLEMS TO BE SOLVED
At the core of the WCET-analysis problem was the 
notion of a Timing Accident: We understand it to be 
any architectural effect that lets an instruction exe-
cute longer than its fastest execution time. Examples 
for such timing accidents are cache misses, pipeline 
stalls, bus-access conflicts, and branch mispredic-
tions. Each such timing accident has to be paid for, 
in terms of execution-time cycles, by an associated 

A ccuracy: For a sound tool, i.e., one that 
never under-estimates the WCET, accuracy 

is defined as the degree of over-estimation. Over-
estimation is the difference between the upper 
bound computed by the tool and the worst ever 
observed execution time. 15–25% over-estimation 
was reported for Airbus code in.8

FIGURE 1. Upper bound of all execution times is computed instead of the real WCET.
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Timing Penalty. The size of a timing penalty can be 
constant but may also depend on the execution state. 
We consider the property that a particular instruction 
will not cause a particular timing accident as a safety 
property. The occurrence of a timing accident thus vio-
lates a corresponding safety property.

These fundamental notions led us to our approach.

›› Use an appropriate method for the verification 
of safety properties to prove that for indi-
vidual instructions in the program, some of the 
potential timing accidents will never happen. 
Reduce the worst-case execution-time bound 
for an instruction, which a sound WCET analysis 
would have to assume, by the penalties for the 
excluded timing accidents.

›› Abstract interpretation1 is a powerful method 
to prove safety properties. Use it to compute 
certain invariants at each program point, namely 
an upper approximation of the set of execution 
states that are possible when execution reaches 
this program point.

›› Derive safety properties, that certain timing 
accidents will never happen, from these invari-
ants. This method for the microarchitectural 

analysis was the central innovation that made 
our WCET analysis work and scale.

Given this understanding, our task was to design 
abstract domains for the analysis of the behavior of 
several relevant architectural components and com-
bine them in a sound way.

This meant we had to define

›› domains of abstract states with a partial order 
representing which domain elements contained 
better information than other elements;

›› corresponding to this partial order, a join func-
tion, used to combine incoming abstract domain 
elements at control-flow merge points;

›› abstract effects for each instruction, describing 
the update of abstract states corresponding to 
this instruction.

I cannot stress enough that this systematic design 
of the instances of our timing-analysis technology for 
different architectures was essential for our success. 
It opened a way to use a generic approach, which was 
essential for the instantiation of the technology for 
new architectures. Our competition in this research 
field typically presented a page of pseudo-C code and 
a claim that this would be a solution to, say, cache 
analysis. It was next to impossible to give correctness 
arguments for this claim.

I will explain our timing-analysis approach along 
Figure 2. Timing analysis has to be performed on the 
binary-executable level because the actually executed 
program is what matters for execution time. Compiler 
optimizations, memory, and register allocation may 
have a huge impact on timing. Fully linked binary 
executables have to be decoded, and the control flow 
of the program has to be reconstructed. These are 
nontrivial, compiler-dependent tasks. Jump tables 
and the nonexistence of function-return instructions 
are the most complex issues.

A number of static analyses are performed on 
the resulting control-flow graph. The first one, called 
Value Analysis, propagates information about stati-
cally known values in program variable and registers. 
It essentially is an Interval Analysis computing inter-
vals for these variables and registers at each program 
point. These intervals enclose all potential values 

Legend:
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FIGURE 2. Tool architecture.
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the variables or registers may have when execution 
reaches this program point. This information is abso-
lutely needed for data-cache analysis. Without it, one 
would rarely know where a data access would go in 
memory. Value Analysis often also determines loop 
bounds. Such bounds are needed to arrive at bounded 
execution times. The user is asked to supply loop 
bounds in case they cannot be statically determined. 
Control-Flow Analysis also exploits results of Value 
Analysis to get rid of infeasible control-flow paths. 
Such infeasible paths may dilute the accuracy by con-
tributing execution times that are, in fact, not possible. 
The control-flow graph is annotated with the results of 
these three static analyses.

At the heart of our timing-analysis technique is 
the Microarchitectural Analysis. It performs what I 
have sketched above; namely, it computes invariants 
at all program points that describe all states of plat-
form components that are possible when execution 
reaches this program point, and it finds out which tim-
ing accidents cannot happen. The results are upper 
bounds for the execution time of all basic blocks. 
Details about the analyses of caches, pipelines, and 
system controllers can be found in3–5. The overall 
approach is described in.6

The control flow is translated into an integer linear 
program (ILP) roughly according to what Li and Malik 
have proposed.7 Additional information about the con-
trol flow can often be encoded into the ILP to increase 
accuracy. This information may originate from user 
annotations. The solution of this ILP gives a longest 
path through program and architecture and an associ-
ated execution-time bound.

BREAKTHROUGH
We were lucky to receive consecutive research grants 
from DFG, our National Science Foundation, and the 
European Union. The Daedalus project, funded by 
the EU, brought us together with an extremely valu-
able partner, Airbus, who was searching for a solu-
tion for their WCET-analysis problem. They knew that 
their previously used measurement-based method, 
also used in certification, did not work any longer 
for the execution platform selected for the Airbus 
A380, namely the Motorola MPC755. The Airbus peo-
ple kept us focused on the real problems, including 
the analysis of peripheries and system controllers: 

architectural components that WCET researchers had 
never considered.

They provided us with benchmark software, a set 
of 12 denatured tasks, each consisting of several mil-
lion instructions, as they were flying them in the A340. 
The tool we developed until 2001 was able to analyze 
the benchmark provided by Airbus in decent time and 
with quite precise results. The upper bounds it com-
puted made the Airbus people quite happy because 
they were roughly in the middle between the worst 
observed execution times and the upper bound deter-
mined by Airbus with a measurement-based method 
using safety margins. More precisely, our analysis 
results were overestimating the worst observed exe-
cution times by roughly 15%. This breakthrough was 
reported in2. This article received the EMSOFT 2019 
Test-of-Time Award.

As a result of our successful development, Airbus 
offered our tools to the certification authorities for the 
certification of several Airbus plane generations, start-
ing with the Airbus A380. The European Union Aviation 
Safety Agency (EASA) has accepted the AbsInt WCET 
analysis tool as validated tool for several time-critical 
subsystems of these plane types. We were less suc-
cessful with Airbus’ competitor, who partly certifies 
their planes themselves, as it recently turned out, and 
with the certification authority in charge, who does 
not seem to require the use of a sound verification 
technology for real-time requirements.

ABSINT AND THE 
INDUSTRIALIZATION OF  
WCET TECHNOLOGY

We had essentially solved the WCET-analysis prob-
lem for single-core architectures in a sequence of 
Ph.D. theses in my group. The only import was the 
Implicit Path Enumeration Technique (IPET) of Li and 
Malik.7 However, there is more to it when a practi-
cally usable tool is required. WCET analysis consists 
of many phases. A practically usable WCET-analysis 
method requires strong solutions to all the subprob-
lems and their adequate interaction. Otherwise, either 
the effort is too high, or the accuracy is too low.

The people at AbsInt did an excellent engineering 
job to come up with WCET-Analysis tools and later, 
also, other tools that were usable on an industrial 
scale.



12	 ComputingEdge�  January 2022

SOFTWARE TECHNOLOGY

Which were the main challenges and which were 
the important engineering principles in the design of 
aiT: the AbsInt WCET-analysis tool? The main chal-
lenge was the complexity of several subtasks. One of 
the important engineering principle was modulariza-
tion in several versions: first, an adequate separation 
of analysis phases and, within individual phases, the 
separation of generic parts and architecture-specific 
parts to ease the instantiation for new architectures. 
Value Analysis was modularly composed of several 
analysis domains such that new domains could be 
added if necessary. Complexity reduction required the 
selection of the most efficient data structures for the 
analysis domains, including decisions that information 
to determine on demand instead of storing it. Sound-
ness of the overall analysis critically depends on the 
abstract machine model being conservative. Valida-
tion of this property is a time-consuming process 
required by the certification authorities. The core of 
this process is trace validation. It uses the abstract 
machine model as a predictor of traces and then 
compares observed traces with predicted traces. It is 
described in detail in9.

We had founded AbsInt to industrialize our WCET 
technology. We had solved the problem; we had 
instantiations for some processor architectures, 
basically for those that Airbus and their suppliers 
needed. However, we had to learn that hardly any two 
potential customers employed the same architecture 
configuration. The decision for a new platform was 
taken without considering whether a WCET-analysis 

existed for this platform. Instantiating our technology 
for a new, complex platform takes a lot of effort, and 
platforms were not getting simpler! In consequence, 
such an instantiation is very expensive, which does 
not raise the motivation of potential customers to buy 
our WCET tools or order the development of a new 
instance for their platform. In fact, the insight that 
verification of real-time behavior was necessary was 
not too widespread. There existed also some com-
petitors, who marketed their measurement-based, 
unsound timing analysis and often forgot to mention 
the unsoundness of their tool. They could offer their 
tools at much cheaper prices. So, industrializing and 
marketing a sound WCET technology, that inherently 
needed to be expensive, was not a promising way to 
get rich. However, our development of a sound method 
that actually solved a real problem of the safety-critical 
industry was considered a major success story for 
the often-disputed formal-methods domain. AbsInt 
became the favorite partner for the industrialization 
of academic prototypes. Patrick Cousot and his team 
offered their prototype of Astrée, a static analysis for 
run-time errors, which in cooperation with some of the 
developers has been largely extended by AbsInt. Then, 
Xavier Leroy offered the result of his much acclaimed 
research project CompCert: the first verified optimiz-
ing C compiler. Both Astrée and CompCert are now 
AbsInt products.

The AbsInt WCET-analysis tool aiT is offered for 
quite a range of architectures, e.g., a large range of 
PowerPCs, several versions of the TriCore and the 
ARM architectures, the LEON2 and LEON3, in combi-
nation with quite a range of compilers. For architec-
tures with bad timing predictability, the TimeWeaver 
tool computes execution-time estimates. It is based 
on measuring execution traces.

The users of model-based design tools appreciate 
tight integrations of aiT with code generators. This 
integration provides for the exploitation of model 
information and the back annotation with perfor-
mance figures to the model. Such integrations have 
been done for the SCADE Suite, targetlink, ASCET, 
and others. 

REFERENCES
1.	 P. Cousot and R. Cousot, “Abstract interpretation: A 
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C osts: There are several different types of 
costs to be considered:

1.	 The development of the WCET-analysis tech-
nology cost roughly 20 person years.

2.	 The instantiation for a new platform may cost 
several person years depending on the com-
plexity of the platform.

3.	 Most customers buy licenses because they 
keep their safety-critical code in-house.

4.	 WCET-analysis service can be bought by paying 
for working days and tool rent.
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COLUMN: VIRTUAL ROUNDTABLE

Formal Verification of 
Cyberphysical Systems
James Bret Michael and Doron Drusinsky, Naval Postgraduate School

Duminda Wijesekera, George Mason University

Computer hosts a virtual roundtable with seven experts to discuss the 
formal specification and verification of cyberphysical systems.

In Computer, virtual roundtables (VRTs) are virtual 
panels. We ask a series of questions to a group 
of experts via email to ascertain the panel-

ists’ thoughts about a topic du jour. One difference 
between VRTs and face-to-face panels is that no 
expert knows who the others are. That is different 
from an in-person arrangement, where answers from 
one participant can affect the responses of others. 
In this VRT, our topic of discussion is the formal veri-
fication (FV) of cyberphysical systems (CPSs). FV is 
the act of proving the correctness of algorithms with 
respect to certain formal specifications, using formal 
methods. Correctness may mean logical definitions 
of safety, liveliness, and other objectives such as 
confidentially, integrity, availability, and some version 
of privacy.

FV has its roots in formal reasoning, dating back 
at least to Gottfried Wilhelm Leibniz’s work on algo-
rithms, computing machines, and mathematical logic 
in the 17th century.1 FV as we know it has its roots in 
the 1960s and 1970s with the contributions of E.W. 
Dijkstra, who famously coined the phrase, “Program 
testing can be used to show the presence of bugs, but 
never to show their absence.”2 Some believed FV to 
be a silver bullet for attaining dependable software 
and hardware. The excitement over formal methods 
is evidenced by the relatively large body of published 
research on the topic; a Google scholar search for the 
FV term yields approximately 180,000 results.

Nevertheless, except for a few well-funded 
research projects, industry was rather slow to adopt 
FV. An exception to this statement is the semiconduc-
tor design community, also known as the electronic 
design automation (EDA) community. This com-
munity realized that the cost and delays incurred by 
labor-intensive manual testing justified a different 
verification approach, one that applied FV. Moreover, 
since manual testing cannot guarantee the absence 
of bugs, there is an inevitable cost for containing the 
impact of flaws that are undetected. A classic example 
is the Intel Pentium FDIV bug, which was difficult for 
testing to uncover: containment required replacing 
all flawed Pentium processors on request, with Intel 
taking a US$475 million charge against earnings.3,4 
Fast forward to 2021, and the EDA community has 
embraced FV as part of mainstream development and 
verification processes, languages, and environments. 
For example, formal specification is an integral part of 
the SystemVerilog IEEE standard.5

Two of the moderators for this roundtable (Michael 
and Drusinsky) were authors of an article that recom-
mended applying lightweight formal methods to the 
interfaces between the cyber and physical parts of a 
CPS.6 This recommendation, along with our discus-
sion of open questions in formal methods, drew a lot 
of interest; for instance, see the exchange between 
the authors and Michael Jackson.7 The feedback we 
received from our counterparts in the formal methods 
community, in combination with the third moderator’s 
(Wijesekera’s) experiences in applying formal methods 
to software-intensive systems, inspired the three of us 
to organize a roundtable in which we enlisted seven 
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experts to identify the reasons for the slow adoption 
of FV by the software industry, in general, and the veri-
fication of CPSs, in particular.

The panelists contend there are several factors 
that have slowed the adoption of formal methods, such 
as the sheer size and complexity of software systems, 
the diversity of software products, the perception that 
FV is a low-return-on-investment academic exercise, 
and the fact that FV tools are not part of mainstream 
software development and testing environments nor 
are the tools directly associated with mainstream 
programming languages. The FV of CPSs is believed 
to be particularly challenging because it is a hybrid 
on many fronts, including hardware and software, 
classical control and logical reasoning, and artificial 
intelligence (AI)/machine learning (ML) algorithms and 
logical reasoning.

In this VRT, the panelists responded to six ques-
tions. Their written responses may have undergone 
minor edits. However, as organizers, we attempted to 
keep their words as verbatim as possible. The seven 
panelists are Knut Åkesson (Chalmers University), 
Dimitra Giannakopoulou (NASA), Klaus Havelund (Jet 
Propulsion Laboratory), Sayan Mitra (University of Illi-
nois at Urbana–Champaign), Corina Pasareanu (KBR), 
Sanjit A. Seshia (University of California, Berkeley), 
and Oleg Sokolsky (University of Pennsylvania). See 
“Roundtable Panelists” for the participants’ biographi-
cal sketches. Note that the opinions of the experts 
are their own, with no input from the editors. We hope 
readers who are concerned with the dependability and 
trustworthiness of CPSs will find the questions and 
responses enlightening.

Computer: Unlike with EDA, in which FV is well inte-
grated into the development of chips and printed cir-
cuit boards and where engineers with expertise in the 
method are in high demand, FV has had much less 
acceptance as a mainstream ingredient of software 

development and quality assurance. What do you think 
are the reasons for that, and do you think the situation 
will change with CPS projects, such as those involving 
autonomous vehicles?

Knut Åkesson: A major challenge is that the closed- 
loop model is described using a combination of tools, 
different modeling languages, and programming lan-
guages. Significant efforts have been made to unify 
how to describe physical systems coherently. For 
example, the Modelica language (https://modelica.org 
/modelicalanguage.html) is an essential step in this 

direction. However, CPSs might also contain ML algo-
rithms for perception and might run optimization for 
decision making. These are all rapidly evolving and 
have their dedicated languages and tools. Thus, CPSs 
inherently combine code written in various program-
ming languages, ML frameworks, optimization mod-
ules, and control logic generated from high-level mod-
eling languages. FV has its place in safety-critical 
components but should be complemented by rigorous 
automated test methods for situations where it is not 
feasible or practical to use.

Dimitra Giannakopoulou: Software development is 
more diverse and evolves faster than EDA in terms 
of programming languages, paradigms, and patterns; 
data structures, algorithmic approaches, and types 
of applications; libraries and runtime environments; 
and heterogeneity and distribution across different 

A MAJOR CHALLENGE IS THAT THE 
CLOSED-LOOP MODEL IS DESCRIBED 
USING A COMBINATION OF TOOLS, 
DIFFERENT MODELING LANGUAGES, 
AND PROGRAMMING LANGUAGES.
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computers. After deployment, software applications 
get updated to address vulnerabilities and to include 
new features, and they may even be adaptive by design. 
Correctness criteria and specifications vary widely by 
application domain, and quality assurance depends on 
the criticality of software. For example, is it a game on 
someone’s phone, or is it software that controls a pas-
senger aircraft?

For FV to become a mainstream ingredient of 
software development, it must achieve some usability 
goals. First, it must be relatively easy to formulate 
specifications for the target system. Second, FV must 
be able to directly handle the languages in which the 
software is written or the modeling languages from 
which the software is synthesized. Finally, FV should 
be able to scale. The diversity and complexity of 
software applications means that to be successful, 
FV approaches must be targeted and customized to 
address specific problems within safety-critical appli-
cation domains.

The expected exponential rate of introduction of 
autonomous vehicles (ground and air) puts enormous 
pressure on ensuring their safe operation. There is 
incentive for commercial and federal stakeholders to 
collaborate on developing certification and assurance 
standards for these applications. As a consequence, I 
expect advances in the near future. On the one hand, 
FV approaches will be developed that efficiently 
address specific problems of such CPSs. On the 
other hand, there will be increased incentives in CPS 
projects to use programming paradigms and environ-
ments designed with FV in mind.

Klaus Havelund: Electronics designs have the char-
acteristic that once they leave the factory, they usu-
ally cannot be changed. A substantial error can cause 
a unit to be recalled, with large amounts of money at 
stake. The motivation is therefore high to “get it right” 
before shipment. Software, on the other hand, can 
often be fixed with an update at a customer’s location, 
making errors less catastrophic. Even in space mis-
sions, errors can be corrected by uplinking bug fixes 
from a distance of millions of miles. This relaxed view 
of software errors might, however, be changing as 
software, to an increasing extent, autonomously con-
trols equipment such as cars, which can cause loss of 
life in case of failure.

Another, perhaps more important, reason for the 
lesser acceptance of FV in the software community is 
that the verification problem appears less tractable 
for software systems, due to higher complexity and 
the possibility of more execution paths. Theorem prov-
ers require a considerable amount of manual effort 
to apply, even for smaller models, let alone real-world 
software systems, and model checkers are challenged 
by the large state spaces of realistically sized software 
applications. This means that the application of FV 
techniques requires either a big verification effort 
or a big modeling effort, where a simplistic model is 
created of the software and then verified. A software 
engineer, not supported by management to carry out 
such proofs/modeling, will see very little incentive to 
do so.

Sayan Mitra: FV is being used in mainstream soft-
ware already, propelled first by major outages and 
breaches at big tech firms, then by successful appli-
cations of verification technology in bug finding, and 
more recently in the application of verification for gen-
erating proofs as “more extensive tests.” Static anal-
ysis tools are part of the core developer workflow at 
Google and deployed on the 2-billion-line code base.8 
Amazon Web Services (AWS) developers are writing 
formal specifications and proofs for hypervisors, boot 
loaders, and Internet of Things operating systems.9 
The Infer static analysis engine is integrated with the 
code base at Facebook and does continuous reason-
ing on iOS, Android, and Instagram and WhatsApp 
applications. Hundreds of bugs are reported and fixed 
every month.10 Bugs in CPSs and autonomous sys-
tems can compromise safety. This raises the stakes as 
well as the incentives for the adoption of FV. But the 
adoption of CPS verification also presents barriers 
that were not present in the software ecosystem.

Corina Pasareanu: The reason is that FV for software 
is much harder (for example, programs are much larger, 
potentially unbounded, use many external libraries, 
and contain programming language constructs that 
are hard to analyze). Yes, CPS projects are often safety 
critical and justify the high cost of FV. Furthermore, 
the software involved in CPS projects is simpler than 
general-purpose software and therefore more amena-
ble to verification.
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Sanjit A. Seshia: There is a spectrum of FV methods, 
from assertion-based testing and model-based testing 
to static analysis and model checking and interactive 

theorem proving. So, if we define FV broadly to include 
this entire spectrum, I contend that FV is already 
used widely in software in much the same way as it 
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is employed in hardware. Of course, software comes 
in many different flavors, and so we will find FV used 
more for software in safety-critical, mission-critical, 
and high-availability applications. FV is also used in 
certain industrial CPS applications; for example, the 
simulation-based falsification of temporal logic (TL) 
properties has been successfully applied in the auto-
motive industry.11 Over the past decade, I have seen 
big growth in interest from the CPS industry in apply-
ing formal methods to CPS design, although that inter-
est has yet to fully translate into a wider deployment 
of tools.

Oleg Sokolsky: The main reason is that the software 
verification problem is inherently much harder. Soft-
ware tends to be much less structured and much more 
complex compared to hardware. Finite-state mod-
els, which are much easier to verify than infinite-state 
ones, are a more natural fit for hardware than for soft-
ware. From this perspective, CPSs are likely to make 
verification problems only harder. Embedded proces-
sors are becoming ever more powerful, enabling more 
and more complex software on board. In addition to 
software, physical environments need to be included 
in the model, making the challenge even bigger. If there 
is any silver lining, modern CPSs—in particular, auton-
omous vehicles—offer more room for lighter-weight 
applications of FV. Runtime verification techniques, 
that is, formally specified monitoring and adaptation, 
as well as applications of online reachability computa-
tion, appear to be very promising in autonomous CPSs.

Computer: An often neglected issue related to FV is 
the reliance of most techniques on expressively weak 
and hard-to-use formal specification languages (in the 
sense of creating correct specifications), such as dia-
lects of TL. How serious do you think this problem is, 
and how can it be addressed?

Åkesson: For maintenance reasons, it is important to 
ensure that specifications and implementations are 
closely linked. Specifications have to be understand-
able by the engineer doing the implementation, and 
they have to be refined during the implementation 
phases. It should also be possible for the same engi-
neer to update them. In our experience working with 
industrial partners, writing correct specifications is 

challenging, and it is often the case that an identi-
fied violation of a specification is due to a mistake in 
the formalization of the specification and not in the 
implementation. While FV tools have a well-defined 
specification language, it might be useful to consider 
high-level, domain-specific specification languages 
that integrate well with the implementation language 
and to consider automatically translating from this 
domain-specific language to the FV specification lan-
guage being used.

Giannakopoulou: Creating specifications is typically 
an exploratory process aimed at nailing down the 
intended behavior of a target system, avoiding over-
specification, underspecification, and ambiguity. 
What FV requires is a lack of ambiguity and a formal 
language to communicate with. In terms of ambiguity, 
even a simple sentence containing a condition under 
which some system behavior is expected has many 
possible interpretations. Figuring out the interpre-
tations and picking the intended one is not straight-
forward. Writing a formal specification that is precise 
with respect to the intended interpretation is even 
harder. In my experience, nontrivial specifications 
are challenging even for experts. A way to address 
this problem is to build environments that assist in 
the process of gradually constructing specifications 
that are unambiguous and capture user intentions. 
Such environments would ideally enable users to write 
and explore their specifications through a variety of 
approaches: natural language, diagrams, use case 
scenarios, and interactive simulation. Formal speci-
fications should then be produced automatically and 
through trusted algorithms. The problem of produc-
ing specifications can also be alleviated through the 
support of domain-specific specification patterns. 
Even in this case, however, it is crucial to provide a 
user-friendly environment for exploring and under-
standing the details of such patterns.

Havelund: Two problems are mentioned here: expres-
sively weak specification languages and hard-to-use 
specification languages. I think the second problem, 
with hard-to-use specification languages, might be a 
nonissue. Just consider the complexity of C++, which 
programmers happily learn. Specification languages 
are no harder to learn, and in many cases, they are 
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simpler than programming languages. Programmers 
have no difficulty writing the programs, so they can 
probably write specifications, as well. Some of the 
more simplistic languages (such as linear TL) can be 
hard to use for writing more complex properties, but 
there are solutions to that, such as specification pat-
terns and graphical solutions, potentially translated 
into the harder-to-use formalisms. The real problem, in 
my view, might not be the difficulty of learning a spec-
ification language but the lack of willingness among 
developers to deal with another complex language 
in addition to the programming language. There is an 
argument for developing specifications in the pro-
gramming language itself. Specification languages 
must be highly expressive to meet practical needs. I 
have developed numerous specification languages for 
software monitoring, and it is usually the languages 
that support an escape to a general-purpose program-
ming language (when the logic formalism falls short) 
that appear most attractive to users.

Mitra: Verification tools must communicate with 
developers using artifacts and interfaces that are 
already part of their workflow. Requiring developers 
to learn a new language or a formalism is a nonstarter. 
Chong et al. discuss a four-year experience in which the 
loss of expressive power (or not using TLs, for example) 
was more than offset by the benefits of using the same 
programming language for coding and specifications.9 
This is a recurring theme at other firms adopting FV. 
Using common artifacts and interfaces reduces the 
“developer’s cognitive burden and allows them to view 
proofs as ‘ just another test suite,’ albeit a vastly more 
thorough one.”9 The integration of development and 
verification workflows was also a precursor to the suc-
cess of hardware verification through description lan-
guages such as VHDL and Verilog.

One challenge for CPS verification is that existing 
tools—of which there are many strong ones—rely 
on mathematical models that are disconnected from 
developer workflows. There are no open and stan-
dard CPS languages and development ecosystems 
for plugging in verification tools. MATLAB is popular 
but, unfortunately, neither open nor standardized. 
The solution is to move away from model verification 
tools to tools that verify CPS code written in open 
languages, such as C, C++, and Rust, and testing and 

verification environments that use open simulators, 
including CARLA (https://carla.org/) and Gazebo (http: 
//gazebosim.org/).

Second, some CPS components have to be treated 
as black boxes. The code for a component may be 
too complex, and it may be proprietary. The physical 
models may be impossible to represent as x˙ = f(x) or 
as a hybrid automaton. For such black-box compo-
nents, verification has to rely on statistical methods. 
We will need to integrate verification approaches that 
can combine black-box methods with model-based 
techniques within the development ecosystem. One 
approach in this direction is discussed in our DryVR 
framework, which has been used to verify several 

industrial-scale systems that combine black- and 
white-box components.12,13 TLs have been fundamen-
tal in understanding the complexity of verification and 
synthesis problems with respect to different specifica-
tion classes. Extrapolating those scientific advances 
to a world in which developers learn TLs and start 
using them as specification languages for day-to-day 
development, in my view, is not realistic.

Pasareanu: Formal specification languages are hard 
to understand even for an expert in formal methods. 
Natural language representations, patterns, and tool 
support can perhaps address the problem.

Seshia: I think we can learn a lot from hardware verifi-
cation. TL-based assertion languages are now widely 
used in hardware design, and yet the average devel-
oper does not need to be an expert in logic to use 
them. They have been incorporated into more acces-
sible assertion languages, integrated with user inter-
faces, and generated by tools for the automated infer-
ence of specifications. In fact, tools for specification 

ONE CHALLENGE FOR CPS 
VERIFICATION IS THAT EXISTING 
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WORKFLOWS.
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mining, learning properties from execution and simu-
lation traces, are a very promising approach for easing 
the specification burden. In our own work with indus-
try, we have seen that a specification mining tool can 
ease the initial burden of writing TL properties, which 
demonstrates to industrial users the value of formal 
specifications, becoming a virtuous cycle where users 
actively seek to learn to write logic properties due to 
the added value it brings them.14 Specifications can 
also be integrated as “blocks” into tools that industrial 
users already employ; for instance, see Kapinski et al.15

Sokolsky: There are two related problems here. One is 
that, indeed, formal specification languages are hard 
for engineers to fully understand and use effectively. 
To a large extent, this drives the need for formal meth-
ods experts and stands in the way of transferring ver-
ification technology to engineers. The other problem 
is that, as specifications become more complex and 
harder to grasp, they become increasingly error prone 
themselves. Both issues can be partially addressed 
with better specification languages and tool support.

Computer: There is a perception that human involve-
ment in the creation of formal specifications limits our 
ability to apply FV to CPSs. ML-based specifications 
are limited, at present. Can specifications created by 
ML algorithms be trusted? In other words, who will 
guard the guard (the first guard being ML-created for-
mal specifications used for FV)?

Åkesson: Writing high-quality specifications is a very 
challenging task for both humans and computers. But 
algorithms (AI, ML, and others) can play an important 
role in assisting humans by proposing specifications 
and suggesting possible extensions. I believe that the 
process of formalizing specifications is as important 
as the verification process. During this, assumptions 
have to be expressed explicitly, and it has to be defined 
what the expected behavior should be for all corner 
cases. These insights are lost if ML is used to generate 
specifications. Thus, I see that the primary role for ML 
is in assisting humans by helping with the process of 
identifying untold assumptions and corner cases.

Giannakopoulou: Specification mining is not a new 
idea. In fact, several approaches have been developed 

that try to bypass human involvement in the creation 
of formal specifications. Naturally, ML is also involved 
in this quest. After all, it is, by now, involved in every 
aspect of software engineering. In my experience, 
ML is extremely tricky to get right, as it relies on the 
amount and quality of available training data and 
may not transfer well to other domains. One avenue 
that is being explored toward increasing trust is to 
develop ML frameworks that explain their decisions. 
In general, I believe we have quite a bit of work to do 
before we can trust ML to produce correct specifica-
tions, especially if we are liable for them. On the other 
hand, ML could be a valuable aid for CPS design-
ers toward discovering, formulating, and repairing 
specifications.

Havelund: Specifications generated by ML techniques 
will undoubtedly become increasingly important. Just 
from a philosophical point of view, it is an evident trend. 
It is, however, nearly impossible to predict how much 
such systems can be trusted. They will, for sure, play 
advisory roles and eventually safety-critical ones. The 
most obvious approach to deal with such systems, in 
my view, is to monitor their execution and ensure that 
they behave within a more traditionally defined safety 
region. Hence, the guards of the guards are monitors. 
ML can also be used to propose formal specifications 
to be approved by humans.

Mitra: When specification writing becomes part of the 
development process, with tangible benefits, and it 
is no longer seen as an isolated activity, then the cre-
ation of specifications may not be viewed as burden-
some. One study reports that AWS developers spend 
considerable energy writing proof harnesses, which 
are essentially assertions written in the programming 
language and that guide the verification engine and 
provide much better coverage.9 ML-created specifi-
cations are an intriguing idea. Obviously, generating 
labeled data for any such approach will still require 
curation and expertise.

Pasareanu: I believe there will always be some human 
involvement and domain expertise in the creation of 
formal specifications. I am not sure what you have in 
mind with “ML-based specifications.” If these are spec-
ifications mined from data and/or systems, then I think 



www.computer.org/computingedge� 21

VIRTUAL ROUNDTABLE

a human expert can validate them. FV tools can be 
used to formally verify them.

Seshia: As I mentioned earlier, learning specifications 
from data and other artifacts is a promising approach 
to ease the specification burden. One way to gener-
ate trust in ML-created formal specifications is to val-
idate them against available code and models, with 
human oversight. This is exactly the approach we 
took in a collaboration with Toyota, where, when an 
engineer felt our generated specification was incor-
rect, the validation pointed to a corner case bug in a 
large Simulink model the company was analyzing.14 In 
other words, mining specifications and finding corner 
case bugs are two sides of the same coin. This spec-
ification mining approach is a special case of a more 
general methodology for high-assurance ML termed 
oracle-guided learning or oracle-guided inductive 
synthesis.16,17

Sokolsky: On the one hand, we clearly need a way to 
keep tabs on machine-generated specifications, to 
make sure they capture our intuitive goals and that 
there are no unintended aspects. On the other hand, 
we must remember that human-created specifica-
tions are not perfect, either. Thus, the question is not 
whether we should trust machine-generated spec-
ifications more or less than ones crafted by humans. 
Whatever the source, we should be able to perform 
sanity checks on a specification or, better yet, verify it 
with respect to higher-level requirements.

Computer: How much of the verification of a CPS is 
physics, and how much is logic and traditional rea-
soning tools? Where do you think this ratio is headed? 
Similarly, how much is logical inference versus statisti-
cal inference? How much of ML algorithms can trans-
late into traditional reasoning, and what is lost in the 
process?

Åkesson: Physics plays a vital role in restricting the 
behavior of a closed-loop system. However, it is the 
perception and decision-making code that is rapidly 
increasing in complexity.

Giannakopoulou: Instead of commenting on the ratio 
of physics to logic, I will share some observations. In 

my experience, many novel algorithms for autono-
mous decision making (collision avoidance, for exam-
ple) are constructed using models (often probabilis-
tic) of the physical systems involved. Finding the right 
level of model abstraction to combine scalability with 
safety is an art. Ensuring the conformance of physical 
models to the real world is key when verifying CPSs. 
The need to deal with uncertainty and optimization, 
which are intrinsic in autonomy, creates a natural shift 
toward statistical inference. In my opinion, the major 
challenge with reasoning about ML algorithms is that 
their logic is not explicit, making it hard to formulate 
and assess the correctness of their behavior.

Havelund: As long as there is traditional software in 
CPSs, it will need to be verified and tested. Further-
more, such systems will increase in complexity, mean-
ing even more software to be verified and tested. A 
big part of such future systems will therefore be tra-
ditional testing and logic-based reasoning tools to the 
extent that they scale to the problem.

Mitra: The physics-to-logic ratio in CPS verification 
evolves across development stages. As physical pro-
cesses become better understood and controlled, 
design and verification complexity shifts to the com-
puting stack, with the goals of achieving better effi-
ciency, less energy use, and utilization. The early 
adopted methods are usually the ones that are stable 
and easier to interpret. My view is that the early adop-
tion of CPS verification will be dominated by the more 
traditional proofs, logical inference, and absolute 
guarantees, while statistical approaches will dominate 
testing. For end-to-end and system-level verification, 
the verification results of heterogenous components 
have to be composed. There are very interesting ideas 
about incorporating ML in verification, particularly for 
handling black-box components we mentioned earlier, 
but these approaches are still in their infancy.

Pasareanu: I think it is hard to quantify. It seems, 
indeed, that we have a bit of all of them.

Seshia: Your first question goes to the crux of how 
CPSs are defined. According to Edward Lee and myself, 
CPSs are integrations of computation with physical 
processes whose behavior is defined by both cyber 
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and physical components.18 Thus, every CPS verifica-
tion problem involves reasoning about the “physics” 
and reasoning about computation. Now, to achieve 
scalability, we typically must take a modular approach, 
where we break up the CPS verification problem into 
several subproblems, some purely cyber, some purely 
physical, and some cyberphysical. With respect to 
your second question, I think inductive learning, also 
known as ML, is central to the process of proof. The 
combination of inductive and deductive reasoning 
has been at the heart of many advances in FV over 
the past 20 years, including counterexample-guided 
abstraction refinement and techniques for invariant 
synthesis, where inductive learning is combined with 
deductive reasoning by using hypotheses about the 
structure of proof artifacts being synthesized.16 So, 
ML algorithms do fit in a natural way into “traditional” 
reasoning. It remains to be seen how useful deep 
learning, specifically, will be in FV.

Sokolsky: It seems hard to separate the effects of 
physics and logic in CPS verification challenges. While 
physics verification seems harder, or at least less 
scalable than logic verification, it is the interaction 
between physics and logic that makes CPS verification 
so difficult. The balance between logical and statisti-
cal inference depends on the verification approach, 
with statistical inference becoming ever more promi-
nent in recent years.

Computer: Should the FV of a CPS be conducted on 
the interface between the cyber and physical parti-
tions instead of directly on them?

Åkesson: There is a need to do both. During early 
development phases, the components and their inter-
faces are defined, and the implementation and models 
might be missing or incomplete. During these phases, 
the interfaces’ expectations and guarantees toward 

the environment can be defined and verified. Later in 
the development process, FV and other rigorous test 
methods, such as falsification, should be used to ver-
ify the closed-loop behavior.

Giannakopoulou: This falls under the standard topic 
of unit versus integration testing/verification. The 
answer is that it should be conducted at all levels. How-
ever, given the complexity of CPSs, it is worthwhile to 
invest in studying the interface between the cyber and 
physical partitions first. Understanding and specifying 
the intended interactions between the two provides a 
solid foundation for developing systems that will inte-
grate seamlessly. Integration as an afterthought usu-
ally results in expensive redesigns and modifications 
late in the software development life cycle.

Havelund: As I pointed out, I think a large part of the 
verification of CPSs will still be the validation of tra-
ditional code bases. However, specifically monitoring 
techniques, also referred to as runtime verification, 
can be used to oversee the interface between the soft-
ware and the physical system and potentially prevent 
the software from doing any harm, a subfield of run-
time verification referred to as runtime enforcement. 
Here, the monitor will prevent the software from issu-
ing harmful commands to the physical system.

Mitra: Carefully defining CPS model interfaces can 
help achieve a separation of concerns, for example, 
farming out the physics models or components and 
the software elements to different proof engines in 
such a way that their results can be soundly combined 
to verify the overall model. Our Koord19 language and 
the CyPhyHouse20 verification framework are tailored 
to address this issue in the context of distributed CPSs 
written using shared memory.

Pasareanu: Perhaps on both. Compositional reason-
ing can be helpful in putting together results from sep-
arate verifications.

Seshia: Since CPSs are fundamentally about the inter-
section between cyber and physical worlds, some 
verification will always need to be on the interface 
between the two. For compositional analysis, some 
verification may need to be on individual cyber and 
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physical “partitions.” But the overall proof will always 
involve the interface. And if a counterexample is to be 
demonstrated, it must be a full CPS counterexample. 
Our experience working with industrial users in the 
automotive sector is that, first, integration testing is 
the biggest challenge, and second, people care much 
more about system-level counterexamples than “unit” 
counterexamples; for instance, see the work of Yama-
guchi et al.11

Sokolsky: I try to avoid being prescriptive in the 
choice of verification approaches. Whatever works 
should be used. I would imagine that interface-based 
techniques may offer better scalability, in general, at 
the expense of more significant conservatism. A lot 
depends on the system design, and the verification 
engineer should be prepared to apply the whole range 
of available tools as needed.

Computer: Of the current impediments—technical or 
otherwise—that make it challenging to formally verify 
a CPS in an effective and efficient manner, which do 
you think is the most pressing to address and why?

Åkesson: Scalability and ease of use are limiting the 
industrial acceptance of the FV of CPSs. The limitations 
of formal and rigorous verification methods signify 
the importance of a modular approach, such as com-
bining ML components with correct-by-construction 
approaches and software modules with manageable 
complexity. A significant challenge is combining the 
white-box approaches of FV with the black-box meth-
ods used in falsification to handle systems where parts 
are fully known while for others, only incomplete infor-
mation is available.

Giannakopoulou: Regulatory bodies are pressed to 
come up with solutions for ensuring the safety of 
autonomous vehicles, which are expected to invade 
our lives in massive numbers in the near future. It is 
a great opportunity to exploit this pull for techniques 
that ensure trust in autonomy. In many respects, 
CPSs share verification challenges with traditional 
large, complex distributed systems and can benefit 
from advances made in those domains. However, they 
place increased emphasis on AI. Within that domain, 
I believe it is most pressing to identify and formulate 

requirements for the correctness of adaptive and ML 
algorithms.

Havelund: The main problem, in my view, is the algo-
rithmic challenge in verifying large systems. We are 
currently not able to automate this process sufficiently 
to make it broadly attractive. To this can be added the 
problem of writing specifications. However, I do believe 
that if the verification problem could be solved (highly 
automated) and if specifications really captured the 
details of interest (requiring expressive specifica-
tion languages), there could be enough motivation for 
adopting FV. This is not to underestimate the problem 
of writing specifications. There is a need to support 
the formal specification and verification of programs 
written in programming languages and perhaps with 

specifications written in the programming language 
itself, for example, much like unit tests. Some program-
ming languages are now being developed with built-in 
support for FV. The guaranteed short-term-winner 
approach is automated testing 24/7, in which a system 
is constantly bombarded with inputs and monitored as 
it executes with advanced test oracles. This requires 
trustworthy simulators of the physical systems, which 
can be rerun repeatedly on a normal desktop or laptop.

Mitra: We need a standardized, open development 
ecosystem for CPSs and related benchmarks. Open 
standards help identify problem definitions and attract 
talented researchers. They reduce friction in sharing 
solutions. Benchmarks and standards also help prac-
titioners share hard instances across domains, and 
they give a yardstick for the community to measure 
progress.

Pasareanu: CPSs are increasingly built using ML com-
ponents, such as neural networks, which are hard to 
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specify and verify formally. I view that as the main 
challenge.

Seshia: In a sense, the CPS verification challenge is 
the union of the difficulties of verifying hardware, soft-
ware, and physical systems because CPSs integrate 
all of them. It is difficult to identify a single challenge 
that is the “most pressing.” My top contenders include 
modeling the complex environments of CPSs, devel-
oping better theories of compositional reasoning for 
CPSs, verifying intelligent CPSs based on AI and ML, 
and creating a large and diverse repository of bench-
marks to guide the community.

Sokolsky: A lot of challenges to FV, such as the compu-
tational complexity of verification algorithms and the 
rapidly growing scale of CPSs, are fundamental and 
thus cannot be really addressed, in my opinion. What 
can be addressed is the verifiability of CPSs. Systems 
can and should be designed in a way that makes them 
easier to verify, more modular, and better structured. 
To achieve that, we need better design approaches 
and techniques. But even more importantly, we need 
to change the mindset of designers. Most system 
designers are not experts in formal methods and do 
not need to be. But they need a better understanding, 
if only at a rule-of-thumb level, of what makes a system 
easier or harder to verify.

There is consensus among the panelists that the 
software industry is, indeed, slow to adopt FV, 

except for static analysis—which is arguably more of a 
compiler technology than FV—and some projects run 
by deep-pocket companies. The reasons include soft-
ware’s complexity, rate of change, and diverse correct-
ness criteria. A key obstacle cited by multiple experts 
is the FV environment and ease of use. In contrast with 
the EDA market, in which FV is a first-class member of 
the development environment and tool chain, for soft-
ware developers, FV is like a distant “nerd” cousin that 
speaks a different dialect and one that few first-class 
members pay attention to.

The panel members agree that as difficult as it is 
to successfully apply FV to software in general, it is 
as difficult or more so to apply it to CPSs. Some argue 
that the complexity, scale, and opaque nature of ML 
algorithms make the full application of FV for CPSs 

unrealistic. However, limited approaches, such as run-
time verification (especially on the interface between 
the cyber and physical partitions of a CPS) can be used. 
The expectation that, inevitably, some correctness 
properties themselves will be machine learned only 
exacerbates the trust problem. Nevertheless, despite 
such mounting challenges, we recommend that the FV 
research community measure up by developing tech-
niques for dealing with the difficult nature of building 
dependable CPSs. As an analogy, consider the vari-
ous techniques theoretical computer scientists have 
developed for coping with intractable (NP-complete) 
problems, such as heuristics, Horn logic, and Boolean 
satisfiability-solving algorithms. Indeed, runtime veri-
fication is one such approach. 
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Boris Cherny on TypeScript
Nate Black

Nate Black: What is TypeScript?

Boris Cherny: TypeScript is a programming language 
that compiles to JavaScript. It mostly came out of 
Microsoft, with contributions from Google. Its type 
system is structural, static, strong, mostly inferred, 
and gradually typed. TypeScript is the most successful 
among gradually typed languages and the most popu-
lar language that compiles to JavaScript.

Why are there so many languages that compile to 
JavaScript?

JavaScript can run on every computer and every 
phone. Because it’s so ubiquitous, Facebook, Google, 
and others have built big applications (apps) on it. But 
it lacks fundamental features, such as static types 

that are necessary to scale a program across more 
engineers and more devices Compile-to-JavaScript 
languages are intended to overcome limits to 
scalability.

How similar or dissimilar is TypeScript from 
JavaScript?

TypeScript compiles to and interoperates well with 
JavaScript. Every valid JavaScript program is also a 
TypeScript program. It might not type check, but it will 
compile. If you have a JavaScript file that ends with a 
.js and rename it to a .ts extension, that’s a TypeScript 
program.

What does it mean to scale?

It means more lines of code, more engineers, and 
more devices. Big tech companies have millions of 
lines of code. Code will start breaking when you make 
changes to it if the consequences of changes are not 
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In Episode 384 of “Software Engineering Radio,” Boris Cherny, author of Programming TypeScript, speaks 
with Nate Black, explaining how TypeScript can scale JavaScript projects to larger teams, larger code 
bases, and across devices. TypeScript is a gradually typed language, allowing you to add compile-time 
verification to a JavaScript project bit by bit. TypeScript aims to be practical by catching common mis-
takes but without adding too much burden on the programmer. Other topics include: structural typing, 
type refinement and programmer intuition, when to use escape hatches and how to ban them, interop-
erability with JavaScript, and using TypeScript with frameworks such as Angular, React, and React 
Native. We provide summary excerpts below; to hear the full interview, visit http://www.se-radio.net or 
access our archives via RSS at http://feeds.feedburner.com/se-radio.—Robert Blumen
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totally clear. Static type has helped solve that prob-
lem; when you modify a line of code or the app pro-
gramming interface to some function or some kind 
of module, you know exactly what else it will break for 
certain classes of errors.

TypeScript scales across more engineers, serving 
as documentation when type notations are added 
to functions (for example, “Function F accepts a 
number and returns a string”). It scales across more 
devices; once you start scaling to services and writ-
ing multithreaded JavaScript, TypeScript enforces 
well-defined protocols by letting you type both sides 
of the communication, thereby increasing confidence. 
For example, you can write TypeScript that runs on 
both the browser and server.

How does the compilation process work when JavaS­
cript is run through the TypeScript compiler? What 
does the TypeScript compiler do?

JavaScript is an interpreted language. When you 
put JavaScript code into a text file, feed it into your 
browser, and then run it, it must be compiled to byte 
code or machine code before the user actually exe-
cutes the program. It’s the same with TypeScript, a lan-
guage that targets JavaScript so it can run on any plat-
form that supports JavaScript. TypeScript takes code 
and then outputs JavaScript code, which you can then 
run as you would have before.

You wrote that changing type definitions of the Type­
Script program won’t change the compiled Java­
Script output. How is that possible and what does 
that mean?

TypeScript is JavaScript plus some types. The types 
will never affect the output of the program, so you 
can do what you want with the types. You can make 
it safer or less safe by using different kinds of types. 
But the generated JavaScript output will look exactly 
the same. The types affect type checking done by 
the TypeScript compiler before it compiles. But it can 
still compile your code even if it doesn’t type check or 
if the types don’t totally work. If you want to opt into 
more safety, TypeScript has various safety flags, one 
of which controls this behavior and will not admit code 
unless the program type checks.

How can it compile the code even if it doesn’t type 
check?

TypeScript looks at the value level of your program as 
opposed to the type level—the JavaScript part of it, 
not the TypeScript part—to compile it. The types are 
used just for type checking, before it compiles.

If the type checking conveys information that it didn’t 
type check correctly, how would I respond?

When you write TypeScript in an editor that supports 
it, you will get errors in your text editor warning you 
that you made a mistake. You can configure your 

SOFTWARE 
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project such that unless there are no errors, the code 
doesn’t compile. Type errors alert you to likely mis-
takes in your program that you should probably fix, 
but if you want, you can ignore them. 

  What is the paradigm behind TypeScript? 

  The types are there when you need them but not 
when you don’t. TypeScript supports various para-
digms of programming: functional, object oriented, 
and imperative. TypeScript can infer all the types for 
you, or you can specify them explicitly. It works well 
with all these styles of programming. The idea is that 
types are fun and they’re useful, so it shouldn’t be 
tedious to fix them. 

  What more can you say about interoperability 
between TypeScript and JavaScript? 

  Modern JavaScript programs use a lot of code. Java-
Script is a very modular language, so you often have 
first-party JavaScript code along with stuff from 
third-party packages that might be written in Type-
Script. Your code might be a mix of JavaScript and 
TypeScript. This is a use case that TypeScript had to 
support when it was designed. It’s important in Java-
Script to be able to use whatever packages you want 
and for it to work correctly. If these are written in 
TypeScript, you also get the benefit of type checking 
and autocompletion in your text editor for free. 

  Can you isolate those parts of the code that have less 
strictness or where you don’t have the type informa­
tion available? 

  Because TypeScript is built to be practical, you might 
want to interoperate with JavaScript code. A common 
pattern is to start with JavaScript code and then grad-
ually migrate the code base to TypeScript. To migrate 
from JavaScript to TypeScript one piece at a time, you 
just rename your file type with a .ts extension. You can 
still use JavaScript and opt that part of the code base 
into the strong safety guarantees. Over time as you 
migrate more and more of your code, you can flip on 
these safety settings one by one. 

  I’ve read that most runtime errors in JavaScript are 
type errors. Was the goal for TypeScript to eliminate 
that class of errors? 

  Yes. Some mistakes are harder for a programmer 
to identify than others. Mistakes might stem from 
architectural issues that will take a design review to 
walk through and understand. TypeScript makes it 
easy to prevent the really dumb mistakes that could 
have been caught but weren’t because you weren’t 
using types.  

  NATE BLACK  is a software engineer at Sleep-

erbot, an online sports community. Contact 

him at  nathanael.black@gmail.com . 
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Toward Unseating the Unsafe  
C Programming Language
Paul C. van Oorschot, Associate Editor in Chief

Reflecting on content that I taught in a recent 
security course about software-based 
vulnerabilities, I wondered: Am I giving too 

much focus to the C programming language? C-based 
examples get straight to the point, allowing compact 
illustrations of the concepts underlying stack- and 
heap-based buffer overruns and return-oriented pro-
gramming, aside from integer-based vulnerabilities, 
related to arithmetic underflow, conversions between 
signed and unsigned values, and errors due to the 
compiler promotion of short-integer data types in 
arithmetic expressions.1 But are these relevant for 
today’s students, given the wide availability of modern 
languages with strong language safety properties? 
Unfortunately, the answer is still yes.

C retains a stubborn hold as the dominant 
systems-level language, despite its longstanding 
issues. Its pointers allow direct memory references 
(that is, by explicit address), and it allows pointer 
arithmetic and programmatic conversion between 
data types (for example, casting integers to point-
ers) while lacking language-based enforcement 
of array bounds. Programmers are responsible for 
checking that memory references access addresses 
consistent with the declared data structures. They 
are also responsible for dynamic memory allocation 
and release. In C, neither compile-time nor run-time 
checks prevent a variable of one type being changed 
to, or interpreted as, another type; thus, there are 
no guarantees on the kinds of data that a given 
variable might hold, the allowed set of values, their 

representation, or the operations that may be carried 
out on the data. Nonetheless, we continue to use C, 
politely excusing these issues by acknowledging, with 
benign terminology, that C is not strongly typed.2 Less 
euphemistically, because arbitrary integers may be 
repurposed as pointers, which, when dereferenced 
may access any memory in the address space of a pro-
cess, C is said to lack memory safety—a handy term,3 
but one for which it is hard to give a definition that 
is both precise and useful toward resolving related 
problems. Moreover, the problems themselves are 
both well understood by experts and have been expe-
rienced by all serious C programmers. The challenges 
and related unlikelihood of ever replacing all legacy C 
code is one thing. However, having learned our lesson 
from 45 years of use, surely we do not still use C in new 
projects and in building brand new systems, do we?

As it turns out, the evidence suggests we do. In 
background reading, I came across a comprehensive 
survey by Hahm et al.4 aiming to identify top-candidate 
operating systems (OSs) as a platform for constrained 
devices in the Internet of Things (IoT). Beyond the 
discussion of commercial OSs, such as QNX and 
ARM’s Mbed OS, a summary table highlights 12 open 
source IoT OSs, including RIOT, Contiki, FreeRTOS, 
and TinyOS. Here is what caught my eye: all 12 are C 
based (TinyOS is based on nesC, a C variant; RIOT is 
based on C and C++). Can this really be true—in a 2016 
article, the top 12 open source platform candidates 
for emerging IoT devices are all still based on C? I 
found this both surprising and alarming when thinking 
about the future problems that this presumably locks 
us into—problems already recognized more than 30 
years ago in the aftermath of early computer worm 
incidents. Even back then, attention was drawn to 
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the looseness of the C language. Problems were clear 
from the language in Kernighan and Ritchie’s de facto 
specification, for example, as they note in a section 
about pointers and integers: “Certain other conver-
sions involving pointers are permitted, but have 
implementation-dependent aspects.”5 In other words, 
the expected behavior is undefined—a red-flag word 
to the ears of every security expert.

Unfortunately, even if we ignore the vast quanti-
ties of legacy code written in C and consider only new 
projects, finding an alternative to C is not as simple 
as “Use type-safe languages like Java.” To imple-
ment OSs, systems programmers require efficient 
execution, the ability to directly reference memory 
addresses (for example, for hardware device drivers), 
and, in the case of real-time OSs, worst-case execu-
tion time guarantees. In type-safe languages, such 
as Java, programs access objects through variable 
names (references) while explicit memory addresses 
(pointers to the objects) remain programmatically 
inaccessible. Dynamic memory management, in par-
ticular the allocation of regions of specifically sized 
heap memory and the release of such memory, is no 
longer a programmer’s responsibility—but, as a con-
sequence, run-time garbage collection is required, 
at the cost of losing efficiency and worst-case time 
guarantees.

The challenge is to find type-safe languages that 
also meet the requirements of systems programming. 
Java was never intended as a systems-level language 
nor as an alternative to C (Microsoft’s object-oriented 
C# similarly targets applications more than, for 
example, OS kernels). Also, to be clear, Java has had 
its own rich history of security problems6—in part 
due to its global adoption making it an enormous tar-
get and, in part, due to a complex architecture with 
many moving pieces, including a bytecode verifier 
for its runtime virtual machine. Java has its own vast 
set of security problems despite having had both an 
early design focus on security as required by the initial 
use case of Java applets as (untrusted) downloaded 
active content7 and an early major redesign based on 
the principles of fine-grained access control and least 
privilege.8 Moreover, while a type-safe language pre-
vents arbitrary programmatic access to memory, this 
does not by itself solve all errors that result in security 
vulnerabilities (for example, the Java language itself 

prevents neither integer underflows nor SQL exploits 
induced by unsanitized input).

But why does the previous list of 12 candidates 
for IoT OSs include no safe languages? One excuse is 
that it takes quite some time, even for promising new 
tools and OSs, to gain a following. Another is that the 
path of least resistance for developers is to continue 
using well-established tools due to advantages in 
cost, familiarity, interoperability, and backwards 
compatibility. How, then, do we break from the past 
and move beyond the dominance of C for system-level 
programming?

The answer may be OSs built on the Rust program-
ming language9 (I discuss one later, Tock; alternatively, 
I could have chosen the more-recent Redleaf).10 Rust 
is a systems programming language with features 
resembling C++. Following its 2010 announcement as 
an open source project within Mozilla, and a Rust 1.0 
release on 15 May 2015, the Rust language and com-
piler have gained popularity (albeit considerably more 
in opinion than actual use, perhaps due to anecdotal 
reports of a steep learning curve). Notably, Rust has 
attracted use by major players, including Microsoft 
and Amazon Web Services. From a security perspec-
tive, major features that make Rust interesting are 
its suitability as a systems programming language 
supporting direct-memory references and its memory 
management offering type safety (implying memory 
safety) without runtime garbage collection. This side-
steps timing uncertainties that are incompatible with 
the requirements of many OSs.

The Tock OS11 offers a new design as a 
high-performance, security-focused OS for con-
strained platforms. It relies on the principle of minimiz-
ing the trusted computing base. A qualification on 
Tock’s type safety is that a subset of the Tock kernel 
must be trusted, in the following sense: Small parts 
of Tock involve code that violates strict type-safety 
rules. The Rust language allows this by permitting 
designated code blocks to perform unsafe operations, 
for example, dereferencing untyped pointers as cus-
tomary for hardware peripheral interfaces. However, 
full type-safety rules remain in place for applications 
running on top of Tock. Among other contributions 
in Tock’s design is a mechanism for partitioning 
kernel-owned heap memory among active processes. 
Supported by Rust’s design, Tock avoids dynamic 
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memory allocation (and garbage collection), supports 
multiprogramming, and isolates processes from each 
other (and the kernel). Tock does not rely on a hard-
ware memory-management unit, which, in traditional 
CPU-based systems, separates the address spaces of 
processes and maps the virtual address space of each 
process onto physical memory. It does, however, rely 
on some hardware features, for example, in the case of 
ARM processors, their memory protection unit.

A Tock kernel built for ARM Cortex-M microcon-
trollers demonstrates a surprisingly small footprint 
for the OS,11 as given by the details for Atmel’s SAM4L 
Cortex-M4 [48-MHz clock, 512-kB flash for code, 64-kB 
static RAM (SRAM)]. For this platform, Tock’s core ker-
nel was written in Rust, with custom hardware adapta-
tions for the SAM4L platform, and a few hundred lines 
of assembly for context-switching code. The kernel 
uses 8.4-kB SRAM plus 4 kB for the kernel stack, plus 
87 kB of flash for kernel code. A case study in the same 
article details how Tock can serve as the OS for a USB 
embedded device (security key), hosting several secu-
rity applications written by independent developers, 
with OS-provided process isolation.

For broader context, numerous previous initia-
tives have aimed to replace C, offering better safety 
features while retaining its efficiency; others have 
proposed memory-safe C dialects, such as Cyclone.12 
None have gained a following sufficient to overcome 
C’s dominance; incumbents enjoy natural advantages 
in complex software systems. Other major languages 
in use but not on the path to replace C for building OS 
kernels include Apple’s Swift (itself a replacement for 
Objective-C, albeit with ongoing ties to C libraries) 
and Google’s Go (with attention to efficient garbage 
collection and independent of C as of 2016’s Go 1.5 
release).

The question that we now return to is: Will the 
growth of the IoT and the requirement for constrained 
OSs suitable for low-end devices result in the ongoing 
proliferation of C-based OSs—delivering another 40 
years of systems dominated by C? Or will security and 
safety issues drive us toward tools and platforms (for 
example, building on Rust) that promise greater secu-
rity? These are, I believe, important questions for not 
just the security and systems software communities 
but also for the population of the entire world as con-
sumers and users of cascades of IoT products.

What power do governments have to influence 
these decisions—or should they even get involved? 
The high-tech industry, particularly the software 
industry, has always been strongly opposed to govern-
ment regulation and intervention—while the security 
track record of IoT manufacturers to date suggests 
that a “let us regulate ourselves” industry position has 
failed badly in terms of delivering secure devices.

One potential approach would be for major gov-
ernments to use their enormous purchasing power 
as consumers of IT products to influence the toolsets 
and platforms that device manufacturers use and 
build on as their foundations. The well-established 
idea is that once manufacturers have built conformant 
products for purchase by major governments, they will 
then have and use them as a natural baseline for their 
full product lines, for reasons related to economies 
of scale. Perhaps memory-safe platforms, whether 
specifically involving Rust or not, will eventually make 
their way into requirements documents for major 
government purchases. In any case, the challenge is to 
find some way to build tomorrow’s high-tech world on 
a software platform less vulnerable than C-based OSs. 
I ask you to consider: What can you do to help? 
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The Emergence of  
Vehicle Computing
Sidi Lu  and Weisong Shi , Wayne State University, Detroit, MI, 48202, USA

Connected and autonomous vehicles (CAVs) are poised to revolutionize the conventional 
transportation industry. In this article,we first introduce the vision of vehicle computing 
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CONNECTED AND AUTONOMOUS
VEHICLES: FROM PRESENT TO
FUTURE

The proliferation of communication and edge
computing1 has pushed the horizon of autono-
mous driving. Although technical obstacles,

exorbitant costs, and social acceptability have still
hindered large-scale production of connected and
autonomous vehicles (CAVs), there has been an accel-
eration in the research and development (R&D) efforts
to bring the idea of CAVs to fruition. For example,
automakers spend more than 100 billion worldwide on
R&D with around 5000 patents granted each year.
Based on the recent considerable progress and disrup-
tive technologies, optimists predict that by 2030,
CAVs will be sufficiently reliable and commercially
affordable to replace human driving.

This article envisions the next paradigm of future
CAVs whose functionality will not only be limited to driv-
ing efficiently and safely in complex scenes. Instead, the
future fully CAVs are expected to be universal computing
platforms supporting daily life applications by providing
efficient onboard computation for connected infrastruc-
tures. In this article, we introduce the concept of vehicle
computing. We start from the analysis of why we need

vehicle computing. Several case studies including in-
vehicle delivery, in-vehicle meeting, in-vehicle entertain-
ment, and in-vehicle augmented reality (AR) are intro-
duced to further explain vehicle computing, followed by
technical challenges waiting to address for the arrival of
fully CAVs. We hope this article will gain attention from
the automotive communities and inspire more research
in vehicle computing.

VEHICLE COMPUTING
In this section, we give our definition and understand-
ing of vehicle computing, and then we list several rea-
sons why vehicle computing is important in the
postautonomous driving era.

What is Vehicle Computing
Vehicle computing refers to the enabling technologies
allowing computation to be performed on CAVs,
which will serve as a computing platform for multiple
CAV-related services. Different from vehicular net-
working,2 which serves as the communication enabler
for amyriad of applications related to vehicles and trans-
portation, vehicle computing focuses on the computa-
tion functionality of CAVs and highlights that CAVs are
the perfect computation platforms helping to analyze
real-time data from in-vehicle sensors, and most impor-
tantly, from the surrounding connected devices/things,
evenwhen the vehicle is in the parkingmode.

More specifically, the concept of vehicle computing
is inspired by the fact that future CAVs will be equipped
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with powerful computing capability; therefore, con-
nected devices/things with limited computation capaci-
ties can rely on nearby CAVs to perform complex
computational tasks and deliver related results back to
the end-users. For example, suppose a law enforcement
officer equipped with a body-worn camera is on duty.
The body-worn camera is collecting and sending video
data to the surrounding law enforcement vehicle for
latency-sensitive analytical applications, such as object
detection. A warning will be sent by the vehicle when the
officer is in a potentially dangerous situation. In this
example, the law enforcement vehicle serves as the effi-
cient computing platform based on the received data
from the connected devices/things (i.e., body-worn cam-
era) so that computing resources can be reasonably and
effectively utilized, and the computation tasks can be
completed on time.

Drawing from the definition of vehicle computing, we
further introduce the future vehicle computing paradigm
in Figure 1, which is driven by the communication of vehi-
cle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), and
potentially vehicle-to-everything (V2X). V2X not only ena-
bles CAVs to communicate with the components of the
traffic system (e.g., road-side units, cellular towers, traffic
cameras, drones, scooters, and even cyclists or pedes-
trians), but also allows CAVs to communicate with
external systems, i.e., elements of the surrounding envi-
ronment (e.g., smart home sensors, industry IoT devices,
health sensors, and edge servers).

Why DoWe Need Vehicle Computing
Push to Clouds and Edge Servers
CAVs are equipped with enormous sensors, which could
produce around one gigabyte of data per second and

generate more than 11 TB of privacy-sensitive data on a
daily basis. The quantity of data generated on CAVs is
still growing, and the speed of data transportation is
becoming the bottleneck when pushing data to clouds
or edge servers for data analysis, which poses a signifi-
cant challenge to provide latency-sensitive services.
Besides, even if data are compressed in the CAVs before
being sent out, the original sensitive data might be
exposed, and it may create a potential threat of privacy
leakage. Therefore, the bandwidth limitations, latency
bottlenecks, and privacy concerns, in turn, calls for vehi-
cle computing, a new computing paradigm to put the
computing at the proximity of data. Previous work also
demonstrated the potential benefits (such as the signifi-
cant response time and energy reduction) by moving
computing from the cloud to the data source.3

Pull From IoT Devices
Nearly all types of electrical deviceswill become compo-
nents of IoT and play the role of both data producers
and consumers, such as body-worn cameras, scooters,
and even Internet-connected bicycles. According to
Cisco, the number of IoT worldwide devices will be
around 500 billion by 2030. Such huge amounts of IoT
devices will definitely produce enormous data, which
hinders the execution of deep learning algorithms on
the resource-constrained IoT devices. However, simply
relying on traditional cloud computing cannot guaran-
tee efficient data processing to handle all these gener-
ated data. In this context, we infer that IoT devices with
limited computation capabilities will leverage the sur-
rounding CAVs equipped with strong computing power
to perform data processing on time, and we envision
that vehicle computing will have big impact on automo-
tive and IoT communities.

CASE STUDY
In this section, we introduce several promising case
studies where vehicle computing could shine to fur-
ther illustrate our vision of future CAVs.

In-Vehicle Delivery
We opine that the widespread of CAVs will be a key
component of smart homes to assist people’s daily
life. For example, CAVs can provide a new, convenient,
and secure in-vehicle delivery service when the cus-
tomer are away from home. Today, Amazon, the
world’s largest online retailer, is taking the obvious
next step by cooperating with mainstream auto-
makers and launching early in-vehicle delivery serv-
ices. Once the delivery driver reaches the vehicle
parked in a publicly accessible place, the driver will

FIGURE 1. Vehicle computing paradigm.
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send a request to remotely unlock the vehicle for
delivery. After placing packages in cargo area or
cabin, the driver will send a remote command to
lock the vehicle again, and the customer will
receive a final notification. Following this way, cus-
tomers can receive packages safely even when
they are not home.

In-Vehicle Meeting
In addition, since a fully CAV could achieve safe and reli-
able navigation by itself, there is no driver needed to
focus on driving anymore. In this context, future CAVs
are expected to provide other intelligent services such
as providing efficient and smooth onlinemeeting experi-
ences in vehicles. Specifically, as the rapid development
of wireless and sensor technologies enables secure and
interoperable communications among vehicles, clouds,
and devices/things (such as passengers’ personal com-
munication devices), we envision that the future CAVs
are able to support in-vehicle meetings allowing people
to share information and data without being physically
present at home or office. Besides, people will be able to
seamlessly attend the same meeting at home, in the
vehicle, and in the office without being bothered by the
repeated logout and login process, which really
improveswork efficiency and savesworking time.

In-Vehicle Entertainment
Similarly, future CAVs have the potential to transform
the way people travel by providing audio and video
entertainment to enhance people’s ride experience.
MarketsandMarkets predicts that the in-vehicle enter-
tainment market is estimated to reach USD 30.47 billion
by 2022. Besides, starting in 2023, millions of Ford and
Lincoln vehicles will be powered by Google’s Android
operating system to provide drivers with embedded
Google applications and services. This evolution indi-
cates that in-vehicle entertainment is on the rise. We
envision in the era of fully autonomous driving that the
passengers can select a variety of extended reality (XR)
gaming via an interface and fully immerse themselves in
the gaming experience. These XR games can provide
real-time physical vehicle feedback, such as the driver’s
accelerating, stopping, and steering; therefore, each
game experience is unique. Besides, thanks to V2V com-
munication, passengers of different CAVs can play in-
vehicle games together on the road, which will further
increase the diversity of in-vehicle entertainment.

In-Vehicle AR
Moreover, we envision that AR technologies will be
able to turn CAVs’ windshields into movie screens,

which will make the dreary journey be more interest-
ing and secure by delivering passengers full-color
graphics about their environment with a wide-viewing
angle. Today, Civil Maps, a software provider for 3D
maps, has revealed an AR experience for passengers,
which can show passengers how a CAV equipped with
AR displays navigates in the complex driving environ-
ment. Besides, Alibaba has invested $18 million in Way-
Ray, a head-up display (HUD) company that released
NAVION, the first holographic AR vehicle navigation
system that can display travel details without wearing
an AR helmet or glasses. When fully CAVs will come
out, we opine that AR-enabled HUDs will be replaced
by AR-enabled windshields, which can respond to
voice commands and hand gestures.

TECHNICAL CHALLENGES
We have described four potential applications of vehi-
cle computing in the previous section. To realize the
vision of vehicle computing, we argue that the sys-
tems, algorithms, and network community need to
work together. In this section, we will further summa-
rize technical challenges in detail.

Vehicular Communication
It is estimated that by 2025, there will be 470 million
CAVs on highways worldwide, generating 280 peta-
bytes of data. Besides, when the CAV is driving in the
urban area at a speed of 40 kilometers per hour, the
execution time of each real-time task should be less
than 100 milliseconds. However, performing efficient
computation based on such a big amount of data is
challenging as it requires ultrareliable and low-latency
communications (URLLC) to accommodate multiple
services.

The recent proliferation in communication mecha-
nisms, such as dedicated short range communication
(DSRC), long-term evolution (LTE), cellular-vehicle-to-
everything (C-V2X), and WiFi, has enabled CAVs to
obtain information from other vehicles, clouds, and
connected devices/things.4 Particularly, with decades
of development history, DSRC has been widely
deployed, but it has issues like small coverage and low
throughput. In contrast, WiFi and LTE provide more
bandwidth but perform poorly in the mobile environ-
ment. With the recently developed access technology,
C-V2X could tackle communication issues due to high
mobility and vehicular density scenarios. However, C-
V2X is not affordable and widely deployed compared
with DSRC. Therefore, the development of communi-
cation mechanisms still has a long way to go.
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everything (C-V2X), and WiFi, has enabled CAVs to
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Open APIs
Machine learning-based applications are vastly utilized
by CAVs. Unfortunately, there are very limited public
computing platforms that support vehicular data ana-
lytic and processing. Except for Baidu’s Apollo, many
companies, such as Ford and General Motors, are work-
ing on their proprietary platforms. Moreover, although
Apollo is open-source, it is neither scalable nor suitable
for future CAVs with plenty of third-party services.

In contrast to the proprietary platform, the open-
source platforms that offer free APIs and real-field vehi-
cle data to the researchers and developers are needed,
as the openAPIs allow communities to deploy and evalu-
ate applications in the real environment. Recently, Black-
Berry and AWS are joining forces to develop BlackBerry
IVY, a scalable, cloud-connected software platform that
will allow automakers to improve operations of CAVs
with new BlackBerry QNX and AWS technology. Besides,
researchers proposed Open Vehicular Data Analytics
Platform (OpenVDAP),5 which is a full-stack hardware/
software platformproviding a public edge-aware applica-
tion library.More open APIs are needed for CAVs to push
the development of the third-party services.

Computation Hardware
Nowadays, representative automotive-grade computa-
tion hardware of CAVs is being designed based on
graphic processor unit (GPU), field programmable gate
arrays (FPGA), digital signal processor (DSP), and appli-
cation-specific integrated circuit (ASIC) with improved
processing speed and energy efficiency, such as NVI-
DIA DRIVE AGX and Texas Instruments’ TDA.

However, to design a hardware system for vehicle
computing scenarios, there are several open problems
waiting to be addressed. First, it is important to figure
out the maximum speed that the hardware can
achieve with limited processing power. Second, how
to efficiently manage heterogeneous computation
resources and dynamically schedule applications has
deserved researchers’ attention. Besides, it is also
essential to evaluate how suitable a hardware system
is for a specific application scenario. Moreover, a level
4 CAV may cost up to 300,000 dollars, in which the
sensors and computing platform cost almost two-
thirds of the total price. Therefore, it is also necessary
to design a reasonably priced hardware system.

Energy Consumption
With enormous sensors and complex algorithms imple-
mented on CAVs, energy consumption has become a big
problem for CAVs. Take the NVIDIA Drive PX Pegasus as
an example, it consumes 320 INT8 TOPS of AI computing

power with a budget of 500 watts. Moreover, if a repli-
cated system is installed to ensure the reliability of auton-
omous driving, the total power consumption may be as
high as nearly 2000W.

Besides, take the electric vehicle (EV) as an exam-
ple, suppose that in the United States, the total mile-
age of each EV is composed of 55% of city mileage
and 45% of highway mileage, and each EV travels on
cities and highways at a speed of 31 mph and 56 mph,
respectively. In this case, the annual energy consump-
tion of EVs nationwide for computation is around 180
terawatt-hours.6 It is reported that Google data cen-
ters now use around 12 terawatt-hours of electricity
per year,7 so we infer that the national energy con-
sumption of EVs is approximately equal to the total
energy consumption of 15 representative technology
companies’ data centers each year.

Therefore, how to deal with a large amount of energy
consumption is an important issue. Moreover, since
most of the energy is consumed by the electric motor of
the vehicle, it is necessary to jointly design the battery,
energy management system, and computing system to
realize energy-efficient autonomous driving.

Computation Offloading
Although future CAVs will be endowed with server-
level computing power to process sensing data, it
becomes evident that safe and reliable autonomous
driving requires effective V2X computations to trans-
mit critical information. Accordingly, vehicles and con-
nected devices/things usually work together to
process the sensing data, extend their sensing capa-
bilities, and coordinate their decisions.

Nonetheless, collaborative computing between
CAVs and connected devices/things is not always fea-
sible due to the latency and reliability constraints.
Considering the heterogeneity of the computing capa-
bilities and the interdependency of computing tasks,
researchers have formulated optimization problems
for task scheduling. Lots of works has focused on task
offloading algorithms to optimize the computation off-
loading. For example, a resource allocation method is
proposed to optimize the performance of task offload-
ing when the computation requirement is unknown.8

Similarly, Tran et al.9 propose a task offloading model
to optimize the cost of the computation. However, all
the work is based on simulations, and the evaluation
in the real-world application scenarios is still missing.

Security and Privacy
The security of CAVs has evolved from the hardware
damage of conventional vehicles to comprehensive
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security with multidomain knowledge.10 Here, we
introduce several security problems strongly related
to CAVs including the mainstream attacking methods.

Sensing Security
The security of sensors is of paramount importance.
Generally, jamming attacks and spoofing attacks are
two main attacks for various sensors. For instance, a
spoofing attack generates interference signals, which
can cause the vehicle to capture fake obstacles.
Hence, effective protection mechanisms for sensing
security are desired.

Data Security
Data security denotes preventing data leakage from
the perspectives of transmission and storage. How to
protect real-time and historical data is waiting for
more advanced solutions.

Communication Security
Communication security includes the security of inter-
nal communication (such as CAN, LIN, and FlexRay) and
external communication that has been studied in
VANETswith V2X communications. Although cryptogra-
phy is a frequently used solution, the usage of cryptogra-
phy is limited due to the high computational cost.

Control Security
With vehicles’ electronification, drivers could control
their vehicles (e.g., open the door) through apps or
voice. However, this also leads to new attack surfaces
with various attack methods, including jamming
attacks, replay attacks, etc.

Privacy
CAVs rely heavily on data from the surrounding envi-
ronment and generate personalized driving data,
which usually contains private information. For exam-
ple, an attacker can obtain the location information
directly from the captured GPS data. Therefore, more
data desensitization methods are needed to protect
the privacy of drivers and passengers.

CONCLUSION
In this article, we first present the vision for vehicle com-
puting in the connected and autonomous driving era.
Then, we depict several reasons why vehicle computing
is important and emerging, followed by several case
studies to further illustrate our vision. Finally, we con-
clude the article by listing several technical challenges.
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EMERGING INTERNET TECHNOLOGIES

In this article, we first present the vision for vehicle 
computing in the connected and autonomous driv-
ing era. Then, we depict several reasons why vehicle 
computing is important and emerging, followed by 
several case studies to further illustrate our vision. 
Finally, we conclude the article by listing several 
technical challenges. 
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Ve h i c l e - t o - v e h i c l e 
(V2V) and vehicle-to- 
infrastructure (V2I) tech-

nologies are transforming the 
digital landscape. The automotive 
industry is shifting into a new digi-
tal age, where connected vehicles 
and smart cars are starting to col-
laborate among themselves with 
less reliance on human drivers. 
This communication is especially 
useful when considering their ben-
efits toward smart cities. Smart 
vehicles can exchange informa-
tion with each other, physical 
infrastructure like roadside units, 
and even potentially pedestrians. 
These use cases present bountiful 
opportunities for cities to address 
a number of issues, from traffic 
management to even the prevention of potential col-
lisions. Despite the benefits, V2V and V2I communica-
tion technologies also present a broad attack surface 
for cybercriminals. Some examples include stealing 
private data, remotely hijacking a vehicle, and coordi-
nating roadside infrastructure attacks.

M. Gupta et al.1 present an approach to securing 
V2V and V2I communication by utilizing cloudlets to 
ensure the confidentiality, integrity, and authentication 

of messages across a system. In addition, they discuss 
an attribute-based access control model for V2V and 
V2I called the attribute-based intelligent transporta-
tion system (AB-ITS). The proposed cloudlet architec-
ture is depicted in Figure 1. Trusted edge infrastruc-
tures produced by city administrators will operate as 
intermediaries between vehicles and entities inside the 
city’s geographic range by relaying secured messages. 
At the edge, messages are validated by a set of pre-
determined security policies before being forwarded 
across the interconnected network. Figure 2 illustrates 
a conceptual AB-ITS model. The attributes developed 
in the AB-ITS are supported by the cloudlets. A source 
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FIGURE 1. The proposed trusted cloudlet architecture. (Taken from Gupta et al.1)
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initiates operations on cloudlets 
and can be a set of vehicles, a trans-
portation infrastructure, or admin-
istrative users. Trusted cloudlets 
(TCs) enroll devices into a system 
through the use of a traditional 
public key infrastructure scheme. 
Target vehicles (VT) and source 
vehicles must be a part of the same 
TC to communicate. Authorization 
policies and attributes define oper-
ations for the overall secure func-
tioning of the ecosystem. Policies 
and attributes are also dynamic in 
nature and can shift to fit changing 
circumstances or communication 
preferences in a city.

A proof-of-concept implemen-
tation of the AB-ITS was simulated 
on the Amazon Web Services 
Internet of Things platform. The 
authors modeled situations such 
as ice-on-road and compromised 
rogue vehicles. The performance of 
the model can be measured by the 
execution time of attribute-based 
security policies against the number of vehicles asso-
ciated with a cloudlet. The authors found that the total 
trip time was comparable to that for a peer-to-peer ITS 
despite variations due to network traffic and latency. In 
a large city, more cloudlets and infrastructure devices 
can be installed to reduce the crowding of vehicles 
within one cloudlet, improving the execution time. 
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THE AUTOMOTIVE INDUSTRY IS 
SHIFTING INTO A NEW DIGITAL AGE, 
WHERE CONNECTED VEHICLES 
AND SMART CARS ARE STARTING TO 
COLLABORATE AMONG THEMSELVES 
WITH LESS RELIANCE ON HUMAN 
DRIVERS.
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We share our experiences teaching university students about clustering algorithms 
using EduClust, an online visualization we developed. EduClust supports professors 
in preparing teaching material and students in visually and interactively exploring 
cluster steps and the effects of changing clustering parameters. We used 
EduClust for two years in our computer science lectures on clustering algorithms 
and share our experience integrating the online application in a data science 
curriculum. We also point to opportunities for future development.

We are currently seeing an immense 
increase in online learning platforms 
and sharing of teaching material.1 We 

implemented EduClust (see Figure 2) to reduce the 
considerable effort in creating high-quality teaching 
material and to encourage learning in and outside 
the classroom. EduClust is an easily accessible online 
visualization application, which supports dynamic 
teaching and learning of clustering algorithms.2 
Simple two-dimensional data representations like 
scatterplots are used to show clustering behavior. We 
added animations to communicate changes between 
algorithmic steps. Different algorithms can be applied 
to various datasets and can be steered by changing 
input parameters or distance metrics. Additionally, 
further details about the algorithms are provided in 
a separate panel showing pseudocode, algorithmic 
complexity, and hyperparameters.

For two years, we used EduClust in our teaching 
routine. Based on our experiences with the software, 

we provide the interested reader with some guidance 
on preparing and organizing teaching material (e.g., 
slides and assignments) together with ideas about 
how to include the software in classroom settings (e.g., 
hands-on sessions with students). Given the positive 
feedback from our students using the software, we 
want to motivate similar development and research in 
this area.

TEACHING SCENARIOS  
WITH EduClust 

EduClust is accessible online (educlust.dbvis.de/) 
and comes with nine different clustering implemen-
tations and an initial pool of datasets. Teachers and 
students can start right away using the software. 
In our data mining lecture at the University of Kon-
stanz, we teach several different clustering algo-
rithms. Our learning goals are based on Krathwohl's 
revised version of Bloom's educational objectives.3 
They comprise simple cognitive processes like 
remembering for which clustering algorithms exist 
and understanding the different categories the algo-
rithms fall into, as well as the single steps of the algo-
rithmic behavior. We want students to be able to 
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apply the clustering algorithms to 
data in a meaningful way and ana-
lyze the influence of input param-
eters or distance measures on 
the clustering result. Ultimately 
we want students to evaluate 
(see Figure 1) the performance of 
clustering algorithms in certain 
situations and create scenarios, 
in which algorithms fail or outper-
form others. With EduClust, we 
were able to teach even complex 
cognitive processes and reduce 
the preparation time of the lec-
turer to a minimum.

Preparing Slides
The preparation of slides to show 
clustering steps can be a tedious 
task. To visually show changes 
over time, multiple intermediate 
steps of the algorithmic behav-
ior need to be drawn out and dis-
played, ideally with animation.

With EduClust, one can use an export mechanism 
for individual clustering animations and the details 
about the algorithm provided in the information 
space. Lecturers just have to decide which algo-
rithms, hyperparameters, and datasets they want 
to include in the slide deck. They run the software 
once and export the displayed animations in graphics 
interchange format to use in their slides. For details 
about the algorithmic behavior, complexity, or input 

parameters, EduClust provides ample text that can be 
copied on slides as well.

During the Lecture
To profit from EduClust during the lecture, we found 
it useful to split the session into three parts. First, a 
theoretical introduction to a new algorithm; next, a 
hands-on session; and finally a group discussion of 
advantages and disadvantages of different algorithms.

FIGURE 1. Application overview: Algorithms and datasets can be selected in the Selection Menu (top), parameters and anima-

tions can be adjusted in the Navigation Area and Parameter Settings (left), detailed text descriptions are displayed in the Infor-

mation Space (right), and the clustering behavior is visualized in the Cluster View (center).

FIGURE 2. Four of the nine clustering algorithms and their visualization supported 

in EduClust: (a) k-means clustering centers shown as circles. Shapes in this artificial 

dataset are not separated well. (b) In Single Linkage, a dendrogram from the hierar-

chical clustering (not shown here) was used to determine the effective horizontal 

cut to differentiate each shape. (c) DBSCAN algorithm uses an -distance, which 

is represented using blurry circles. (d) Visualization shows the spanning tree of the 

OPTICS algorithm.
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In our lectures, we always introduce new clustering 
algorithms showing slides with text information and 
pseudocode first, followed by a moderated animation 
generated by EduClust (see Figure 3). Students can 
see the algorithm in action, understand the individual 
clustering steps, and relate to the previously shown 
text descriptions. This first introduction is meant 
to support the cognitive processes remember and 
understand.

In the second part of the lecture, students use 
EduClust on their own to apply the algorithms to differ-
ent datasets and analyze their peculiarity. Students, 
thus, experience the influence of changing input 
parameters and cluster characteristics. The duration 

of these individual hands-on sessions depends on the 
complexity of the algorithm.

In the third part, we put clustering algorithms into 
context with each other (see Figure 1). The lecturer 
starts a discussion by bringing up a dataset with spe-
cific characteristics. Students then discuss whether 
or not clustering algorithms are capable of separating 
data points into clusters. The lecturer and students 
use EduClust to try algorithms with various input 
parameters and discuss their advantages and disad-
vantages. Thereby, students evaluate the usefulness 
of algorithms and understand their individual applica-
tion areas.

We found that this lecture structure covers nearly 
all cognitive processes to support student learning. 
However, we recommend to accompany the session 
with an assignment sheet to also support create as 
the another cognitive process.

Preparing an Assignment
Our assignments are designed to generate a deep 
engagement with specific clustering processes. We 
ask questions that require students to apply algo-
rithms, analyze the consequences when changing 
input parameters, or evaluate different clustering 
techniques given a certain dataset. To further increase 
the learning rate, we also include questions, in which 
students have to create datasets being suitable for the 
one algorithm but not for the others. In such scenarios, 
students have to understand details of the algorithms 
to come to a solution. Trial and error usually fails due to 
the complexity of the problem space with many differ-
ent variables, e. g., input parameters, clustering algo-
rithms, or distance metrics.

Student Assessment
EduClust supports the export and import of data files 
in the json format. This feature can facilitate the cor-
rection of submissions. When students have to create 
datasets for their assignment, they can export them 
and email their result to the lecturer. The lecturer 
can use EduClust to import the dataset and check for 
correctness.

Summary of Benefits
Although not exhaustive, EduClust covers the most 
prominent clustering algorithms and provides a visual 

FIGURE 3. Our instructional material consists of three 

parts: first, introduction slides with pseudocode; second, a 

live demonstration of the clustering behavior (animations 

exported with EduClust); third, an evaluation of the clustering 

results using datasets with different characteristics (in-class 

exploration with EduClust).
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categorization based on their clustering behavior. Lec-
turers can do live demonstrations of the clustering 
behavior of individual algorithms and use EduClust 
to prepare teaching material. EduClust offers data-
sets covering various cluster characteristics, which 
can be used together with all implemented clustering 
algorithms. The influence and importance of choos-
ing input parameters wisely can be shown by running 
the same algorithm on the same dataset with varying 
input parameters. During the lecture, multiple cluster-
ing algorithms can be compared using the same data-
set, revealing the benefits of each clustering algo-
rithm. Both the description of algorithmic steps (in 
text), and a sequence of images showing these steps 
on a dataset, can be exported and added to traditional 
teaching material.

Students can apply clustering algorithms without 
implementation effort to various datasets and rerun 
the same algorithm multiple times using different 
input parameters. While running the algorithm, the 
underlying pseudocode is displayed in the informa-
tion space. The selection of different algorithms and 
datasets help students to evaluate the performance 
of the respective algorithms. Finally, students can cre-
ate individual datasets to be clustered with all imple-
mented algorithms.

FUTURE RESEARCH DIRECTIONS
Qualitative evaluations showed that students are will-
ing to use EduClust in their learning routine.2 Cur-
rently, EduClust is limited to nine clustering algo-
rithms, but we will extend it to include cluster quality 
measures and additional algorithms like DENCLUE.

Given the positive feedback from our students, we 
also see a lot of potential for applying what we learned 
to different categories of algorithms. A promising 
starting point could be decision trees. In addition, we 
would like to use EduClust as a motivation to establish 
a new research direction called teachable AI. While 
explainable AI gets a lot of research attention, respec-
tive applications focus on understanding the algorith-
mic behavior of individual architectures. We would like 
to argue for further research toward experiencing the 
entire inner workings of multiple algorithms together 
with the consequences of changing parameters and 
the possibility to evaluate different approaches on 
the same dataset, along the lines of explAIner4 but 

with a focus on teaching ML algorithms from a profes-
sor and a student perspective. 
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• DCOSS (Int’l Conf. on Distrib-

uted Computing in Sensor Sys-

tems), Los Angeles, USA

• IPDPS (IEEE Int’l Parallel & Dis-

tributed Processing Sympo-

sium), Lyon, France

JUNE
6 June 

• EuroS&P (IEEE European Sym-

posium on Security and Pri-

vacy), Genoa, Italy

• MDM (IEEE Int ’ l  Conf. on 

Mobile Data Management), 

Paphos, Cyprus

11 June

• ISCA (ACM/IEEE Int’l Sympo-

sium on Computer Architec-

ture), New York, USA

14 June 

• WoWMoM (IEEE Int’l Sympo-

sium on a World of Wireless, 

Mobile and Multimedia Net-

works), Belfast, UK

19 June 

• CVPR (IEEE/CVF Conf. on Com-

puter Vision and Pa� ern Rec-

ognition), New Orleans, USA

25 June 

• CSCLOUD (IEEE Int’ l Conf. 

on Cyber Security and Cloud 

Computing), Xi’an, China

26 June

• ICIS (IEEE/ACIS Int’l Conf. on 

Computer and Information 

Science), Zhuhai, China

27 June 

• COMPSAC (IEEE Computers, 

Software, and Applications 

Conf.), Torino, Italy

• DSN (IEEE/IFIP Int’l Conf. on 

Dependable Systems and Net-

works), Baltimore, USA

• HOST (IEEE Int’l Symposium 

on Hardware Oriented Secu-

rity and Trust), McLean, Vir-

ginia, USA

JULY
1 July 

• ICALT (IEEE Int’ l Conf. on 

Advanced Learning Technolo-

gies), Bucharest, Romania

6 July 

• ISVLSI (IEEE Computer Society 

Symposium on VLSI), Nicosia, 

Cyprus

10 July 

• ICDCS (IEEE Int’l Conf. on Dis-

tributed Computing Systems), 

Bologna, Italy

11 July 

• ICME (IEEE Int’l Conf. on Mul-

timedia and Expo), Taipei, 

Taiwan

21 July 

• CBMS (IEEE Int’l Symposium 

on Computer-Based Medical 

Systems), Shenzhen, China 

AUGUST
1 August 

• ICCP (Int’l Conf. on Compu-

tational Photography), Pasa-

dena, USA

2 August 

• MIPR (IEEE Int’l Conf. on Multi-

media Information Processing 

and Retrieval), virtual 

4 August 

• BCD (IEEE/ACIS Int’l Conf. on 

Big Data, Cloud Computing, 

and Data Science Eng.), Dan-

ang, Vietnam 

7 August 

• CSF (IEEE Computer Secu-

rity Foundations Symposium), 

Haifa, Israel

9 August 

• IRI (IEEE Int’l Conf. on Informa-

tion Reuse and Integration for 

Data Science), virtual

15 August 

• RE (IEEE Int’l Requirements Eng. 

Conf.), Melbourne, Australia 

SEPTEMBER
6 September 

• CLUSTER (IEEE Int’l Conf. on 

Cluster Computing), Heidel-

berg, Germany

12 September 

• ARITH (IEEE Symposium on 

Computer Arithmetic), virtual

Learn more 
about IEEE 
Computer Society 
conferences

computer.org/conferences

ce1con(all).indd   73 12/6/21   4:55 PM

https://dcoss.org/
http://www.ipdps.org/
http://www.ieee-security.org/TC/EuroSP2022/
https://mdm2022.cs.ucy.ac.cy/
https://iscaconf.org/isca2022/
https://computing.ulster.ac.uk/WoWMoM2022/index.html
https://cvpr2022.thecvf.com/
http://www.cloud-conf.net/cscloud/2022/cscloud/index.html
http://acisinternational.org/conferences/icis-2022/
https://ieeecompsac.computer.org/2022/
https://ieeecompsac.computer.org/2022/
https://dsn2022.github.io/
http://www.hostsymposium.org/index.php
https://tc.computer.org/tclt/icalt-2022/
http://www.eng.ucy.ac.cy/theocharides/isvlsi22/
https://www.icdcs.org/
http://2022.ieeeicme.org/index.html
http://2022.cbms-conference.org/
http://www.ieee-mipr.org/
https://iccp2022.iccp-conference.org/
http://acisinternational.org/conferences/bcd-2022/
https://www.ieee-security.org/TC/CSF2022/
https://homepages.uc.edu/~niunn/IRI22/
https://conf.researchr.org/home/RE-2022
https://clustercomp.org/2022/
https://arith2022.arithsymposium.org/
http://www.computer.org/conferences/


Evolving Career 
Opportunities 
Need Your Skills
Explore new options—upload your resume today

I E E E  C O M P U T E R  S O C I E T Y  J O B S  B O A R D

Changes in the marketplace shift demands for vital skills 
and talent. The IEEE Computer Society Jobs Board is a 
valuable resource tool to keep job seekers up to date on 
the dynamic career opportunities offered by employers.

Take advantage of these special resources for job seekers:

No matter what your career level, the IEEE Computer 
Society Jobs Board keeps you connected to 

workplace trends and exciting career prospects.

JOB ALERTS

CAREER 
ADVICE

WEBINARSTEMPLATES

RESUMES VIEWED 
BY TOP EMPLOYERS

www.computer.org/jobs




