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The dominant cost in most large-scale com-
putational science applications comes from
writing new code. A pragmatic approach to
overcoming this difficulty is to create an appli-
cation-specific package (or library)—a software
system that provides a coding interface to solve
a target class of problems without focusing on
implementation details. This approach origi-
nates from the era of sequential computers but
has become especially popular for parallel
machines, because their low-level program-
ming was (and still is) a formidable task. 

The library-based approach to program-
ming parallel computers is especially wide-
spread in computational linear algebra.
Numerous parallel linear algebra packages
exist, all differing in their orientation (a shared
or distributed memory model of parallel pro-
gramming), functionality (using direct or iter-
ative methods, solving linear systems or eigen-
value problems), exploitation of sparsity of data,
availability of support for using linear algebra
methods in solving real-life problems, and so
forth. Among these packages are Lapack and
ScaLapack, Plapack, Aztec, PSPARSLIB,
PETSc, BlockSolve, and Parpack.

Using Plapack: Parallel Linear Algebra Pack-
age is part of the MIT Press’s renowned Scien-
tific and Engineering Computation series. The
series includes such well-known publications
as Using MPI: Parallel Programming with the
Message-Passing Interface by William Gropp,
Ewing Lusk, and Anthony Skejellum (1994)
and PVM: Parallel Virtual Machine, by Al Geist,
Adam Beguelin, Jack Dongarra, Weicheng
Jiang, Robert Manchek, and Vaidy Sunderam
(1994), both of which have played an impor-

tant role in the dissemination of the message-
passing parallel-programming model. Van de
Geijn’s book follows the pattern established by
these successful publications.

HOW TO BUILD AND USE PLAPACK
Van de Geijn’s goal is to deliver the princi-

ples for building and using Plapack. This
portable parallel linear-algebra library, devel-
oped at the University of Texas in Austin, is
based on the MPI. However, thanks to object-
based programming, Plapack hides many par-
ticulars from the user, such as indexing and
the implementation details of data distribu-
tion and exchange.

Chapter 1 offers the most significant infor-
mation, concisely summarizing Plapack’s
main ideas. It starts with the recursive formu-
lation of the Cholesky factorization, and this
simple example shows what programmers
need to code parallel linear-algebra algo-
rithms. The next four chapters—of which two
and five are the most important—contain a
guide to the basic routines of the Plapack
infrastructure. Chapter 2 acquaints the reader
with the routines Plapack provides. These
routines initialize the environment, create a
template describing the distribution of vec-
tors and matrices among a logical topology of
nodes, and create linear algebra objects that
encapsulate the distributed vectors and matri-
ces. Chapter 5 details the copy and reduce
operations that Plapack uses to hide commu-
nication. Chapters 6 through 8 discuss the
implementation of routines contained in the
Basic Linear Algebra Subprograms library. Their
contents are structured in accordance with the
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three levels of BLAS: vector–vector, matrix–vector, and
matrix–matrix operations, respectively. Each chapter describes
both the local and global versions of BLAS calls for Fortran
and C binding and concludes with examples that clarify the
principles and details of using these calls in practice. 

Chapter 9 illustrates the use of the Plapack routines in lin-
ear algebra applications by discussing in detail several
approaches to the parallelization of the Cholesky factoriza-
tion, namely level-2 and level-3 BLAS implementations for
the right-looking and left-looking variants. The correspond-
ing codes reflect algorithms given in standard textbooks in a
natural, unsophisticated manner. However—even in the most
advantageous implementation—when using a sequence of Pla-
pack level-3 BLAS routines, considerable inefficiency could
occur when increasing the number of messages and temporary
work buffers. Van de Geijn shows how to reduce this ineffi-
ciency for the left-looking level-3-based algorithm, which is
reimplemented at a lower level. However, this makes the
resulting implementation considerably more complex. 

The book closes with two appendices containing summaries
of the basic and BLAS-related routines of Plapack and their
calling sequences.

A USEFUL BUT LIMITED GUIDE
Using Plapack offers a well-balanced view of the Plapack par-

allel software, including its implementation and use. Conse-
quently, it proves very useful to its primary readers—scientific-
application programmers. For the same reasons, it has in-

terested developers of parallel libraries in various application
areas. Additionally, I recommend it for undergraduate and
postgraduate students in different disciplines. The high level
of the provided routines and easy access to such a compre-
hensive guide make Plapack a good tool for parallel scientific
computing education. 

However, from an educational perspective, I question the
extremely condensed presentation of BLAS. Independent of
whether this was Van de Geijn’s decision or the result of edi-
torial constraints, this shortcoming could be redressed to a cer-
tain extent by including in the bibliography references to
appropriate textbooks such as Numerical Linear Algebra for
High-Performance Computers by Jack Dongarra, Lain Duff,
Danny Sorensen, and H. Van der Vorst.

Unfortunately, the book lacks an overview of its contents—
a serious disadvantage to many readers. This makes the mate-
rial difficult to read and understand, especially for those who
are not familiar with parallel dense linear-algebra libraries. An
overview would have let readers choose for themselves the
most appropriate path through the book. 

Another problem concerns the limited number of examples.
Fortunately, Van de Geijn refer readers to the Plapack Web
page (www.cs.utexas.edu/users/plapack), where you can access
the Plapack public-domain software and documentation. In
particular, this page provides information on the project’s cur-
rent status, additional calls, and codes for all the examples pre-
sented in each chapter. Other examples include LU factoriza-
tion with pivoting and Householder QR factorization. 

• is publishable in its own right as a new scientific result inde-
pendent of the fact that the result was mechanically created;

• is equal to or better than the most recent human-created
solution to a long-standing problem for which there has been
a succession of increasingly better human-created solutions;

• is equal to or better than a result that was considered an
achievement in its field at the time it was first discovered;

• solves a problem of indisputable difficulty in its field; or
• holds its own or wins a regulated competition involving

human contestants (in the form of either live human play-
ers or human-written computer programs).

PARALLELIZATION
The major component of the computational burden of solv-

ing nontrivial problems with the GA or genetic programming
is the task of measuring each individual’s fitness in each gen-
eration of the evolving population. Because the task of mea-
suring the fitness of one particular individual in the popula-
tion is decoupled from the task of measuring the fitness of all
other individuals, we can realize nearly 100% efficiency from
a parallel computer system running GAs and genetic pro-
gramming. In fact, the decoupled nature of GAs and genetic
programming usually also extends to the level of fitness cases.

Given the inherent parallelism of genetic programming, var-
ious schemes for mapping genetic programming onto multi-
ple processors are possible, including mapping

• a semi-isolated subpopulation to each processor (island
model),

• a single individual to each processor,
• a single fitness case to each processor,
• a single time step to particular processors, and
• a particular independent run to a processor.

A mapping can be static or dynamic. Similarly, there are
many possible schemes for the processors to communicate and
exchange information about the solutions. One approach is to
let each processor work totally independently and communi-
cate only at the end to select the best solution among all proces-
sors. However, a processor might waste all its processing cycles
when it gets stuck at a poor population without the knowledge
that other processors are searching in some more promising
search-space regions. This might reduce the diversity of the
chromosomes in the search space. We could also let the proces-
sors communicate periodically to exchange the information
about their solutions found thus far and then broadcast the
best solution to all the processors. However, the information
exchange can be a significant overhead that limits the achiev-
able speedup. 
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