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Tensor-Based Method for Residual Water
Suppression in 1H Magnetic Resonance

Spectroscopic Imaging
Bharath Halandur Nagaraja , Otto Debals , Diana M. Sima, Uwe Himmelreich,

Lieven De Lathauwer , and Sabine Van Huffel

Abstract—Objective: Magnetic resonance spectroscopic
imaging (MRSI) signals are often corrupted by residual
water and artifacts. Residual water suppression plays an
important role in accurate and efficient quantification of
metabolites from MRSI. A tensor-based method for sup-
pressing residual water is proposed. Methods: A third-order
tensor is constructed by stacking the Löwner matrices cor-
responding to each MRSI voxel spectrum along the third
mode. A canonical polyadic decomposition is applied on
the tensor to extract the water component and to, subse-
quently, remove it from the original MRSI signals. Results:
The proposed method applied on both simulated and in-
vivo MRSI signals showed good water suppression perfor-
mance. Conclusion: The tensor-based Löwner method has
better performance in suppressing residual water in MRSI
signals as compared to the widely used subspace-based
Hankel singular value decomposition method. Significance:
A tensor method suppresses residual water simultaneously
from all the voxels in the MRSI grid and helps in preventing
the failure of the water suppression in single voxels.

Index Terms—Canonical polyadic decomposition, mag-
netic resonance spectroscopic imaging, Löwner matrix,
Hankel matrix, blind source separation.
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I. INTRODUCTION

MAGNETIC resonance spectroscopic imaging (MRSI) is
a non-invasive imaging technique that provides spectral

profiles in a 2- or 3-D voxel grid, from which the spatial distri-
bution of metabolite concentrations or metabolite ratios can be
estimated. Each voxel in the MRSI grid has a spectrum com-
posed of several peaks corresponding to the metabolites present
at that location. MRSI has many clinical applications and is
used, among others, to investigate psychiatric disorders [1], for
diagnosis and prognosis of brain tumors [2], [3], breast cancer
[4] and autism [5]. Most of the clinical applications use metabo-
lite concentrations or metabolite ratios obtained from MRSI.
Hence, an accurate and efficient quantification of metabolites is
important. The metabolite levels in the human tissue are small
compared to water, therefore 1H MRSI signals typically con-
tain a large water peak which is usually 103 to 104 larger than
the metabolites of interest. This will affect the quantification of
metabolites and has to be suppressed before applying any quan-
tification algorithm. Typically, water suppression techniques are
used during the acquisition of MRSI signals to get rid of large
water peaks [6]. However, it is difficult to remove the water com-
pletely with these methods and some residual water will still be
present in the spectra. It is important to suppress the water sig-
nal as much as possible for accurate and robust quantification
of metabolites.

In general, residual water is suppressed before metabolite
quantification, in a pre-processing step. Algorithms such as
subspace-based Hankel singular value decomposition (HSVD)
[7]–[9], multi-phase finite impulse response filtering [10],
wavelet-based [11] and low rank methods based on union-of-
subspaces [12] are available. Variants of these and other different
methods are described in the review paper [13]. In the HSVD
method, the water signal is first estimated using a subspace-
based decomposition into a sum of complex damped expo-
nentials and subsequently removed from the measured signal
to suppress the water component. HSVD is the most popular
residual water suppression technique and is available in many
software packages such as jMRUI [14], SPID [15], VeSPA [16]
and TARQUIN [11] as a preprocessing step before quantifica-
tion. In MRSI, HSVD method suppress water one voxel at a
time and do not exploit the shared information present among
the voxels in the MRSI grid. As such, the HSVD method might
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result in poor residual water suppression for some of the voxels
in the MRSI grid.

Instead of using matrix-based approaches for blind source
separation (BSS), there is a trend to convert the matrix data to a
higher-order tensor. This transformation is called tensorization,
and is part of tensor-based approaches applied to matrix data
[17]. Higher-order tensors and their corresponding tools display
certain properties that are not available in the matrix domain
[18], [19]. Uniqueness of tensor decomposition under mild con-
ditions is one such strong property, where additional constraints
are not needed to obtain solutions as compared to the matrix
case [20], [21]. In blind source separation (BSS) problems, pro-
vided the sources can be modeled or approximated by rational
functions, then tensorization followed by applying tensor de-
compositions has better performance compared to that of the
matrix based counterpart [17].

The water removal from the MRSI signals can be formu-
lated as a blind source separation (BSS) problem. Recently,
a Löwner-based BSS method has been developed, which can
be used if the source signals can be approximated by rational
functions. In this paper, we propose a tensor-based algorithm to
suppress the residual water simultaneously from all the voxels
in the MRSI signal using this Löwner-based BSS method, un-
der the assumption that the different MRSI components can be
well approximated by low-degree rational functions. We have
also explored a Hankel-tensor based exponential data flitting
method for water suppression. These tensor-based methods are
compared against the matrix based HSVD method.

This paper is organized as follows: Section II discusses some
preliminaries and the Löwner-based blind source separation and
exponential data fitting using multilinear algebra. The Löwner
and Hankel-based method are then applied in Section III in
the MRSI water removal setting. The proposed methods are
compared with HSVD using simulations and in-vivo data in
Section IV. Some discussions and conclusions are presented in
Section V and Section VI, respectively.

II. LÖWNER-BASED BLIND SIGNAL SEPARATION

Section II-A introduces tensors and tensor decompositions
as part of multilinear algebra and fixes the notations. Löwner
matrices are defined in Section II-B while Section II-C discusses
the problem of blind signal separation (BSS). In Section II-D,
it is shown how Löwner matrices and tensors can be used in the
setting of separating (approximations by) rational functions. In
Section II-E exponential data fitting using a Hankel tensor for
the multichannel case is described.

A. Multilinear Algebra and Notations

1) Tensors and Notation: Tensors, denoted by calligraphic
letters, e.g., A , are higher-order generalizations of vectors (de-
noted by boldface lowercase letters, e.g., a) and matrices (de-
noted by boldface uppercase letters, e.g., A). Scalars are written
as italic lowercase letters, e.g., a. The entry with row index i
and column index j of a matrix A ∈ CI×J is denoted by aij .
Likewise, the (i1 , i2 , . . . , iN )th entry of an N th-order tensor
A ∈ CI1 ×I2 ×...×IN is denoted by ai1 i2 ...iN

. The jth column of

a matrix A ∈ CI×J is denoted by aj . The superscripts ·T, ·H, ·−1

and ·† represent the transpose, complex conjugated transpose,
inverse and pseudo inverse, respectively. The symbol ⊗ and ◦
denotes the outer product and Hadamard product, respectively.

2) Tensor Decompositions: A tensor T has rank 1 if it
can be written as the outer product of some nonzero vectors:
T = a(1) ⊗ a(2) ⊗ . . . ⊗ a(N ) . If T is written as a linear
combination of R rank-1 tensors, one obtains a Polyadic De-
composition (PD):

T =
R∑

r=1

a(1)
r ⊗ · · · ⊗ a(N )

r �
[[
A(1) , ... ,A(N )

]]
.

If R is minimal, the decomposition becomes canonical (CPD)
and the rank of T is defined as R.

Another decomposition is the low multilinear rank approxi-
mation (LMLRA) [22]. One way of calculating an LMLRA is
through the multilinear singular value decomposition (MLSVD)
[23]. A tensor T can then be written as the tensor-matrix prod-
uct of a typically smaller core tensor S with N factor matrices
U(n) , n = 1, . . . , N , along the different modes. For more details
on tensors and tensor decompositions, we refer the interested
reader to [18], [19], [24].

3) Computation of Tensor Decompositions: Given a ten-
sor T , there are a number of algorithms available to find the
rank-1 terms of T . The most popular one is the alternating least
squares (ALS) method, whereas a more advanced algorithm is
the nonlinear least squares (NLS) method. Two commonly used
initialization methods are random initializations and a technique
based on the generalized eigenvalue decomposition (GEVD)
[25].

The approach in this paper makes use of a compression step
and a CPD step [26]. The compression step applies an MLSVD
with truncation to compute a smaller core tensor S and corre-
sponding factor matrices U(n) . Provided that the dimensions of
S exceed R, it can be shown that S still has (approximately)
rank R if T has (approximately) rank R. In the second step, a
CPD is performed on the smaller tensor S (rather than on T ),
which returns the factor matrices B(n) . The nth factor matrix
of T is then equal to A(n) = U(n)B(n) . This two-step proce-
dure is especially beneficial if T is large, as the computation
complexity of the CPD algorithm is higher compared to the
MLSVD algorithm. If T only approximately has rank R, the
two-step procedure still provides good estimates in various oc-
casions which differ only minimally compared to the estimates
from computing a CPD on T directly.

B. Löwner and Hankel Matrices/Tensors

While the concept of Löwner matrices is highly acknowl-
edged in the domain of system identification [27], [28], it is
not well known in other application domains. In a recent study,
Löwner matrices have been used in a BSS context to separate
(approximations by) rational functions [17].

Suppose a function f(t) ∈ C is given, evaluated in the
point set T = {t1 , t2 , . . . , tN }. The point set T is partitioned
into two distinct point sets, X = {x1 , x2 , ..., xI } and Y =
{y1 , y2 , ..., yJ } with I + J = N . The elements of the Löwner
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matrix L ∈ CI×J are then defined as

∀i, j : lij =
f(xi) − f(yi)

xi − yj
.

We thus obtain the following matrix:

L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (x1 )−f (y1 )
x1 −y1

f (x1 )−f (y2 )
x1 −y2

. . . f (x1 )−f (yJ )
x1 −yJ

f (x2 )−f (y1 )
x2 −y1

f (x2 )−f (y2 )
x2 −y2

. . . f (x2 )−f (yJ )
x2 −yJ

...
...

. . .
...

f (xI )−f (y1 )
xI −y1

f (xI )−f (y2 )
xI −y2

. . . f (xI )−f (yJ )
xI −yJ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Given K functions fi(t) evaluated on the same set of N points,
a Löwner matrix Li can be computed for each function. By
stacking the different matrices Li in a tensor along the third
mode, a Löwner tensor L ∈ CI×J×K is obtained.

Hankel matrices are used in many applications such as system
identification, coding theory. For a function f(t) ∈ C evaluated
at N distinct points T = {t1 , t2 , ..., tN }, the elements of a I × J
Hankel matrix with I + J − 1 = N are defined as

∀i, j : hij = f(ti+j−1).

and in matrix form it is represented as:

H =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(t1) f(t2) . . . f(tJ−1) f(tJ )

f(t2) f(t3) . . . f(tJ ) f(tJ +1)

...
...

. . .
...

...

f(tI−1) f(tI ) . . . f(tI+J−3) f(tI+J−2)

f(tI ) f(tI+1) . . . f(tI+J−2) f(tI+J−1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Similar to the Löwner tensor, a Hankel tensor H ∈ CI×J×K can
be constructed from K functions fi(t) by stacking the Hankel
matrices Hi in a tensor along the third mode.

C. Blind Source Separation

Given a set of observed signals S ∈ CN×K , the BSS problem
consists of identifying the mixing matrix H ∈ CK×R and/or the
original source signals in W ∈ CN×R based on the following
linear model:

S = WHT, (1)

with K the number of observed signals, R the number of source
signals and N the number of samples per signal. By itself,
the solution cannot be uniquely identified as different working
hypotheses lead to different solutions (at least for the non-trivial
cases R > 1). Different working assumptions have been used
before such as mutual independence of the source signals which
leads to independent component analysis. In this paper, we use
a deterministic approach with the assumption that each source
can be well approximated by a rational function as discussed in
the next section.

D. Löwner-Based Blind Source Separation of
(Approximations by) Rational Functions

Rational functions are formed by algebraic fractions with
polynomials in the numerator and denominator. We limit the
discussion in this paper to rational functions of degree 1, mean-
ing that the numerator and denominator are linear functions.
This is a special case of the technique developed in [17] for
arbitrary degree.

If L is a Löwner matrix constructed by a rational function of
degree 1, it has been proven that L has rank 1 [27], [29]. This is
easy to verify: f(t) = c

t−p gives Li,j = −c · 1
xi −p · 1

yj −p , which
is a rank-1 structure:

L = −c ·

⎡

⎢⎢⎢⎣

1
x1 −p

...
1

xI −p

⎤

⎥⎥⎥⎦

[
1

y1 −p · · · 1
yJ −p

]
.

Consider now the construction of two tensors LS ∈ CI×J×K

and LW ∈ CI×J×N . The tensors LS and LW contain Löwner
matrices along the third mode constructed from the observed
signals from S, and the source signals from W, respectively.
Following the linear model (1), the tensor LS can be expressed
as

LS =
R∑

r=1

Lw r
⊗ hr . (2)

If each source signal is an evaluated rational function (or can
be approximated by an evaluated rational function), each matrix
Lw r

has (approximately) rank 1 [17]. Hence, each term in (2)
has (approximately) rank 1 and the tensor LS has CPD structure
with rank R.

To solve the BSS problem from (1) under the deterministic
assumption of rationality, a CPD can be computed of LS with
rank R. The factor matrix Ĥ in the third mode is then an estimate
of the mixing matrix H. The source signals can be recovered

as Ŵ = S
(
ĤT

)†
. Alternatively, estimates of the source signals

can be obtained from the estimated matrices L̂w r
. Note that

the two indeterminacies of BSS are consistent with the inde-
terminacies of the CPD: the source signals (factor vectors) are
recovered up to permutation and scaling.

It remains to show that the separation is unique. This property
guarantees that the recovered source signals are (estimates of)
the original source signals. This uniqueness problem boils down
to the CPD uniqueness given the special rational structure of the
factor vectors. In [17, Theorem 4], it has been proven that if
the poles of the rational functions of the different source signals
are distinct and if N is sufficiently large, the CPD is unique
(up to permutation and scaling of the factor vectors) given that
H does not contain proportional columns. Note that uniqueness
can still be guaranteed for underdetermined mixtures with fewer
observed signals than source signals. Generic conditions for the
BSS settings are given in [30].
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E. Hankel-Based Exponential Data Fitting

For the blind BSS problem in (1), if each of the observed
signals are modeled as a sum of complex exponentials sk =
∑R̂

r=1 ckr z
n
kr ,∀n = {0, 1, ..., N − 1}, a Hankel-based expo-

nential data fitting method can be applied for estimating the
source and mixing matrix [31]. A tensor H ∈ CI×J×K con-
structed by stacking K Hankel matrices obtained from columns
of S can be decomposed as follows:

H =
R∑

r=1

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1
z1

r

z2
r

...

zI
r

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⊗

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1
z1

r

z2
r

...

zJ
r

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⊗

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

c1r

c2r

c3r

...

ckr

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

H = I ×1 V(1) ×2 V(2) ×3 C,

where ×n is the n-mode product of a tensor by a matrix [23],
I is a pseudo-diagonal (R × R × R)-tensor with ones on its
diagonal, V(1) ∈ CI×R , V(2) ∈ CJ×R are Vandermonde ma-
trices and C ∈ CK×R contains the complex amplitudes. A
I × R Vandermonde matrix V with z1 , ..., zR as generators is
defined as:

V =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1

z1 z2 . . . z1

z2
1 z2

2 . . . z2
R

...
...

. . .
...

zI−1
1 zI−1

2 . . . zI−1
R

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

Vandermonde decomposition is difficult to estimate. However,
a similar decomposition can be obtained by applying truncated
MLSVD to the Hankel tensor H

H = A ×1 U(1) ×2 U(2) ×3 U(3) . (4)

where A is an all-orthogonal, ordered, complex (R × R × R)-
tensor, U(1) ∈ CI×R is a complex matrix of which the orthonor-
mal columns span the column space of V(1) , U(2) ∈ CJ×R is
a complex matrix of which the orthonormal columns span the
column space of V(2) and U(3) ∈ CK×R is a complex matrix of
which the orthonormal columns span the column space of C. Be-
cause of an underlying isomorphism between equation (3) and
(4), the matrices U(p) are related to matrices V(p)(p = 1, 2) by
a non-singular matrix Q

U(p) = V(p)Q. (5)

Signal poles zr can be determined using the shift-invariance
property of Vandermonde matrices [31]:

V(p)↑ = V(p)
↓ Z, (6)

where the up and down arrow placed after a matrix stands for
deleting the top and bottom row of the considered matrix, re-
spectively and Z is a diagonal matrix with signal poles zr along

the diagonal. Combining equations (5) and (6) result in the
shift-invariance property of the MLSVD factor matrices U(p)

U(p)↑ = U(p)
↓ Ẑ,

with Ẑ = Q−1ZQ. The matrices Z and Ẑ have the same
eigenvalues. A least squares solution is used to estimate Ẑ =
(U(p)

↓ )†U(p)↑. Finally, the signal poles zr are obtained from

the eigen-decomposition of Ẑ. A Vandermonde source matrix
is constructed from the estimated signal poles and the mixing
matrix H can then be estimated using least squares.

III. LÖWNER-BASED METHOD FOR WATER REMOVAL

Section III-A explains the MRSI and the water signal model.
Section III-B discusses blind source separation of MRSI signals
and in Section III-B2, estimation of source parameters obtained
from BSS is explained. Section III-B3 describes the extraction
of the water component from the MRSI data.

A. MRSI and Residual Water

The MRSI time-domain signal is represented by a free-
induction (FID). The complex time-domain FID signal in
each voxel can be modeled by a sum of complex damped
exponentials:

F (t) =
R∑

r=1

are
jφr e(−dr +j2πfr )t ,

in which R is the number of resonance peaks in the signal,
and fr , ar , φr and dr are the frequency, amplitude, phase and
damping of the rth resonance peak, respectively. Similarly, in
the frequency domain, the Fourier transform of the FID signal
can be modeled as a sum of rational functions.

S(f) =
R∑

r=1

are
jφr /2π

dr + j2π(f − fr )

=
R∑

r=1

cr

jω + pr
, (7)

where cr = are
jφr /2π is the complex amplitude, pr = dr −

j2πfr is the complex pole and ω = 2πf is the angular
frequency.

The MRSI data matrix S is constructed by stacking
the spectra from each voxel in the columns. Similarly,
the data matrix F is defined by stacking the FID’s from
each voxel. The residual water present in the MRSI signals
is sometimes large and can strongly affect the metabolite
peaks of interest, which belong to the region of interest in
0.25–4.2 ppm as shown in Fig. 1. In theory, the water signal
can be represented by only one exponential/rational function in
time/frequency domain, but this model is not sufficient for an
in-vivo signal. In practice, it is possible to model the residual
water signal with a linear combination of several exponentials
[8], which can then be extracted from S (respectively, F).
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Fig. 1. Magnitude of the absorption spectra from one of the voxels in
the MRSI grid with a large residual water signal. The region of interest
for metabolites is shown within the red box.

B. Löwner-Based Water Suppression

1) Löwner-Based Blind Source Separation in MRSI: It
has been shown in [8] that it is possible to model the in-vivo
residual water signal with a linear combination of several expo-
nentials. Here, we assume that neighboring voxels in the MRSI
signal share sources (rank-1 rational functions) that are used to
model the residual water signal. Hence, the estimation of sources
that model residual water and their corresponding abundances
from the K measured MRSI signals can be formulated as a BSS
problem:

S = WHT,

where columns of S ∈ CN×K contain the measured spectra
from all the voxels, the columns of W ∈ CN×R represent the in-
dividual metabolite components and the columns of H ∈ CK×R

(the mixing matrix) represent their corresponding abundances
(weights) in each voxel. We use the Löwner-based BSS tech-
nique explained in Section II-D to estimate the individual
metabolite sources. For each voxel, a Löwner matrix Lsk

is
constructed from the corresponding spectrum in the MRSI grid:

Lsk
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sk (x1 )−Sk (y1 )
x1 −y1

Sk (x1 )−Sk (y2 )
x1 −y2

. . . Sk (x1 )−Sk (yJ )
x1 −yJ

Sk (x2 )−Sk (y1 )
x2 −y1

Sk (x2 )−Sk (y2 )
x2 −y2

. . . Sk (x2 )−Sk (yJ )
x2 −yJ

...
...

. . .
...

Sk (xI )−Sk (y1 )
xI −y1

Sk (xI )−Sk (y2 )
xI −y2

. . . Sk (xI )−Sk (yJ )
xI −yJ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

in which Sk is the spectrum of the kth voxel, and with
{x1 , ..., xI } and {y1 , ..., yI } two partitions of the point set
Ω = {ω1 , . . . , ωN } with N = I + J . Two typical partitioning
types for Ω are interleaved and block partitioning. Interleaved
partition was used for constructing the Löwner matrix in this
paper.

The Löwner matrix is constructed using the spectrum
from 0.25–6.5 ppm, which contains the region of interest in
0.25–4.2 ppm and the water region. A third-order tensor LS is
obtained by stacking the Löwner matrices along the third mode
as shown in Fig. 2.

As it is assumed that each individual component wr can be
well approximated by a degree-1 rational function with a sin-
gle resonance peak as described in (7), each corresponding rth
Löwner matrix has approximately rank 1 and can be described

Fig. 2. Construction of the Löwner tensor T from the spectra of the
different MRSI voxels.

as arbT
r . Hence, a CPD can be applied on LS :

LS ≈
R∑

r=1

ar ⊗ br ⊗ hr = [[A,B,H]], (8)

with A ∈ CI×R , B ∈ CJ×R and H ∈ CK×R . Each rank-1 ten-
sor corresponds to the contribution of a particular component to
the observed spectral data.

2) Estimation of Source Parameters: The abundance vec-
tors hr can be directly identified from (8). A second goal is
to identify the source components and their corresponding pa-
rameters as described in (7). The rth source is modeled by
wr (ω) = cr

jω+pr
, and its corresponding Löwner matrix Lw r

can
be written as:

Lw r
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−jcr

(jx1 +pr )(jy1 +pr )
−jcr

(jx1 +pr )(jy2 +pr ) . . . −jcr

(jx1 +pr )(jyJ +pr )

−jcr

(jx2 +pr )(jy1 +pr )
−jcr

(jx2 +pr )(jy2 +pr ) . . . −jcr

(jx2 +pr )(jyJ +pr )

...
...

. . .
...

−jcr

(jxI +pr )(jy1 +pr )
−jcr

(jxI +pr )(jy2 +pr ) . . . −jcr

(jxI +pr )(jyJ +pr )

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

c
( 1 )
r

jx1 +pr

c
( 1 )
r

jx2 +pr

...

c
( 1 )
r

jxI +pr

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
c

( 2 )
r

jy1 +pr

c
( 2 )
r

jy2 +pr
· · · c

( 2 )
r

jyJ +pr

]

= arbr
T

with −jcr = c
(1)
r c

(2)
r . The parameters c

(1)
r and pr can be ob-

tained from ar using least squares,
[

pr

c
(1)
r

]
=

[
ar −1

]†(jx ◦ ar ),

where 1 ∈ RI is the vector with all ones. We can estimate c
(2)
r

and pr from br in a similar way. The final estimate of pr can be
obtained by averaging the estimates from ar and br .

3) Water Signal Suppression: Once the source parameters
are estimated, the model is extrapolated to the entire length of
the frequency region. The abundance matrix H is calculated
using least squares from the source signals and measured spec-
tra, H = (W†S)T

. The real part of each estimated pole gives
the damping factor of the corresponding source (dr ) while the
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imaginary part returns the resonance frequency. The compo-
nents whose resonance frequencies are outside the region of
interest (0.25 - 4.2 ppm) belong to the water component or
provide other nuisance peaks. Therefore, the influence of the
water component on the observed spectral data is constructed
using only those components and their corresponding abun-
dance vectors. Let Φ denote the set of P indices corresponding
to the P water sources. Then Wwater =

[
wΦ1 · · · wΦP

]
and

Hwater =
[
hΦ1 · · · hΦP

]
, and the contribution of the water

component can be expressed as Swater = WwaterHT
water . The

water component can then be removed from the measured MRSI
spectra as Ssuppressed = S − Swater .

After removing the water component from the MRSI signal, a
small baseline will be present at the outer edges of the spectrum.
This arises mainly because the Löwner method is not able to
model the complex water signal properly at the outer edges of the
spectrum when the water signal has some baseline. Also damped
complex exponential function translates to rational function only
when signal is continues and infinitely long. The HSVD method
can estimate a source with a broad peak (large damping) to
model the edges of the water spectrum, whereas Löwner method
fails to extract such broad peaks and hence fails to model the
water spectrum at the outer edges and results in a baseline.
This problem can be corrected by modeling the baseline using
a polynomial function of degree D. Therefore, the polynomial
functions are added to the estimated source matrix W to obtain
the matrix Wpoly ∈ RN×(K +d+1) :

Wpoly =

⎡

⎢⎢⎢⎢⎢⎣

w11 w12 . . . w1R 1 f1 f 2
1 . . . fd

1

w21 w22 . . . w2R 1 f2 f 2
2 . . . fd

2

...
...

. . .
...

...
...

...
. . .

...

wN 1 wN 2 . . . wN R 1 fN f 2
N . . . fd

N

⎤

⎥⎥⎥⎥⎥⎦

The abundance matrix H is recalculated in a least-squares sense
using the estimate of Wpoly and the measured spectra in S. The
residual water component is suppressed using the subtraction
method as explained above. Each polynomial source is also
considered as a water component.

In this method the water signal in each voxel is modeled as
a linear combination of many (resonance peaks/rank-1 ratio-
nal functions) (typically 20–30). For each voxel, the rows of
the abundance matrix H specify the subset of sources that are
used to model the water signal by means of their correspond-
ing weights. Since these weight combinations are voxel-wise
different, they can model voxel-wise variations in the water
component. This will allow to handle the B0 inhomogeneity
and spectrum distortions present in the MRSI signals.

The CPD algorithm requires an initial value for the factor
matrices. Random initializations can sometimes result in poor
water suppression. In order to overcome this problem, different
initializations are used if the water suppression is not sufficient.
To verify the quality of the water suppression, the variance in the
water region and noise region are compared. If the variance in
the water segment is larger than the variance in the noise segment
by a given threshold, the water suppression is considered to be

poor and a different initial value is used until a good suppression
is obtained.

C. Hankel-Tensor Based Water Suppression in MRSI

In the time domain the BSS problem of separating individual
resonance peaks can be formulated as:

F = VHT, (9)

where columns of F ∈ CN×K contain the measured FID from
all the voxels, V ∈ CN×R is the Vandermonde matrix of the R
source poles (zr ) and the columns of H ∈ CK×R (the mixing
matrix) represent their corresponding abundances (weights) in
each voxel.

Similarly to the Löwner method, for each voxel a Hankel
matrix Hfk

is constructed from the corresponding time-domain
FID signal. A third-order tensor Hf is obtained by stacking
the Hankel matrices along the third mode as shown in Fig. 2.
We can estimate the poles zr = e−dr +2πfr of the MRSI signals
by applying MLSVD to the Hankel tensor Hf as explained in
Section II-E. The abundance matrix H is then calculated us-
ing the least squares solution of the equation (9) in which the
Vandermonde matrix V is derived from the estimated poles,
H = (V†F)T

. The real part of each log(zr ) gives the damping
factor of the corresponding source (dr ) while the imaginary part
returns the resonance frequency. The components with reso-
nance frequencies outside the region of interest (0.25 - 4.2 ppm)
are considered to reconstruct the water component and possibly
other nuisance peaks. Finally, the residual water is suppressed
from the MRSI signal by subtracting the estimated water com-
ponent similarly to the Löwner method.

IV. RESULTS

To test the performance of the Löwner and Hankel-tensor
based water suppression methods, they are applied on both
simulated and in-vivo MRSI data. Section IV-C discusses the
performance of the Löwner, the Hankel-tensor and the HSVD
methods on simulated datasets. In Section IV-D the performance
of the Löwner, Hankel-tensor and HSVD methods is assessed
using in-vivo data. Tensorlab is used for the Löwner and Hankel
matrix constructions and tensor computations [32], [33]. The
signal-to-noise ratio (SNR) is defined as the power of the sig-
nal to the power of the noise. Unless stated otherwise, a rank
R = 50 is used for the CPD of the Löwner tensor LS and d = 4
degree polynomial sources are used for the entire MRSI in both
the simulation and in-vivo cases. For the HSVD, an order of 50
was used for each voxel and for Hankel-tensor we have used an
order of 100 in the MLSVD of the entire MRSI signal.

A. Materials

A total of 28 2-D-1H MRSI data was acquired on a 3T MR
scanner (Achieva, Philips, Best, The Netherlands) at the Uni-
versity Hospital of Leuven from brain tumour patients. The
study and the experimental procedures involving human sub-
jects have been approved by the ethical committee of the insti-
tute. The following protocol [34] was used for the acquisition: a
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Fig. 3. (a) & (c) Absorption spectra of an in-vivo signal without wa-
ter suppression (red, dashed-line) overlapped with the estimated water
spectra (black, solid-line) from two different voxels in the MRSI grid.
(b) & (d) Individual resonance peaks used in the modelling of the water
signal from (a) and (c), respectively.

point-resolved spectroscopy (PRESS) sequence was used as the
volume selection technique with a bandwidth of 1.3 kHz for
the conventional slice-selective pulses; repetition time (TR)/
echo time (TE): 2000/35 ms; Field of view (FOV): 160 ×
160 mm2; maximal volume of interest (VOI): 80 × 80 mm2;
slice thickness: 10 mm; acquisition voxel size: 10 × 10 mm2;
reconstruction voxel size: 5 × 5 mm2; receiver bandwidth:
2000 Hz; samples: 2048; number of signal averages: 1; wa-
ter suppression method: multiple optimizations insensitive sup-
pression train (MOIST) [6]; first- and second-order pencil
beam shimming; parallel imaging: sensitivity encoding with
reduction factors of 2 (left-right) and 1.8 (anterior-posterior);
scan time: around 3 min 30 s. Automated prescanning opti-
mized the shim in order to yield a peak width consistently
under 20 Hz full-width half-maximum (FWHM). Voxels out-
side the MRSI PRESS excitation volume are excluded from
the analysis.

B. Spectral Variations in MRSI Voxels

To demonstrate that our proposed method can handle B0
inhomogeneity and spectrum distortions, we have applied the
Löwner method to one in-vivo dataset. Fig. 3(a) & (c) shows
absorption spectra of an in-vivo MRSI signal from two of the
voxels having different spectral shape (red, dashed-line). The
estimated water signal (black, solid-line) is overlapped on
the measured spectrum in the figure, and we can clearly see
that the estimated water signal (black, solid line) models both
voxels that are having distinct spectral shapes. Fig. 3(b) & (d)
show the individual resonance peaks used to model the water
signal. From the figure we can observe that the individual reso-
nance peaks used to model the water component have different
complex amplitude for both voxels, which enables to handle B0
inhomogeneity and spectral distortions.

Fig. 4. (a) Absorption spectrum of a simulated in-vitro signal without
water from one of the MRSI voxels. (b) Absorption spectrum of a sim-
ulated in-vitro signal with large water peak from one of the MRSI vox-
els. (c) Absorption spectrum of the water-suppressed signal using the
Löwner method without polynomial sources. (d) Absorption spectrum of
the water-suppressed signal using the Löwner method with polynomial
sources.

C. Simulations

The simulated signals containing residual water are gener-
ated using an in-vitro basis set which was obtained as de-
scribed in [35]. The basis set consisting of in-vitro signals from
Alanine (Ala), Aspartate (Ala), Choline (Cho), Creatine (Cre),
γ-aminobutyric acid (GABA), Glutamate (Glu), Lactate (Lac),
two lipids (Lip1 and Lip2), myo-Inositol (MI), N-Acetyl-
Aspartate (NAA) and Taurine (Tau) metabolites was used to
generate the spectra. A grid of MRSI signals of size 16 × 16 was
generated for simulation. First, signals consisting of 12 metabo-
lites are constructed using the basis set without any residual
water. The amplitude of each metabolite in the grid is varied
using a 2-D Gaussian window,

g(x, y) = e−(x2 +y 2 )/2σ 2
+ U(x, y)

where U(x, y) is a uniformly distributed random number, and
x = 0, y = 0 is the central voxel. Circular Gaussian noise is
added to the metabolite signals. Residual water signal was gen-
erated by scaling the in-vivo measured MRSI water reference
signal. In each voxel the residual water signal is distorted by
multiplying it with a Gaussian decaying signal e(−dk t2 ) , where
dk is modelled as a uniformly distributed random variable be-
tween 0 and 0.005. Finally, residual water was added to the
noisy metabolite signals to generate the MRSI data.

The Löwner method with and without polynomial sources
was applied on a simulated MRSI signal to suppress the residual
water. The result of water removal in one of the voxels is shown
in Fig. 4. From Fig. 4(c) & (d) we can clearly observe that the
Löwner method will introduce a baseline and it can be addressed
by including the polynomial sources in the least squares stage. In
the remainder of the paper, we have only considered the Löwner
method with polynomial sources, unless explicitly mentioned.
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Fig. 5. Boxplot of the residual errors after water suppression using the
HSVD, the Löwner (LT), and the Hankel-tensor (HT) methods on 100
simulated in-vitro MRSI signals. The error is calculated as the l2 -norm
of the difference between the water-suppressed signal and the original
water-free signal (with noise).

The Löwner, Hankel-tensor and HSVD water-suppression
methods are applied on the simulated MRSI signals for 100
different noise and metabolite amplitude realizations. Fig. 5
shows the boxplot of errors between the water-suppressed signal
and the metabolite signal (with noise) for two different noise lev-
els. The boxplot indicates that both the Löwner-based method
and the Hankel-tensor method have a lower average error com-
pared to the HSVD method and suppresses the residual water
better without distorting the metabolite spectra. The Löwner-
based method has the best performance in suppressing residual
water compared to other two methods.

D. In-Vivo Results

To test the performance of the algorithms we have applied
the HSVD, Hankel tensor and Löwner methods on 28 in-vivo
datasets. Fig. 6 shows the real part of the spectra with residual
water and after water suppression for two different voxels in a
MRSI grid. In many voxels, all three methods give good water
suppression as shown in Fig. 6(c). However, in some voxels the
HSVD method does not perform well as shown in Fig. 6(f). In
Fig. 6(b), we can observe that an artefact is present at the right
side of the water signal. Therefore the HSVD method fails to
suppress water completely and results in a significant residue.
However, both tensor methods are able to suppress water even
in the presence of an artefact.

There is no ground truth available for in-vivo data to measure
the quality of water suppression. To measure the performance,
we calculate the difference in sample variance between the wa-
ter region segment and the noise segment in each voxel. The
spectrum in the region of 4.2–5.2 ppm is considered as water
segment and the spectrum at the outer edges is considered as
noise segment. For each MRSI signal, the average difference in
variance is used as the performance measure. Fig. 7 shows the
boxplot of sample variance difference of 28 MRSI in-vivo data
signals for the HSVD, Hankel tensor and Löwner methods.

Next, we tried to analyse the quality of water suppression
by quantifying MRSI signals and examining the Cramer Rao
bounds of the metabolite amplitudes. Two in-vivo MRSI signals

Fig. 6. Residual water suppression in in-vivo MRSI signals. (a)–(b) Ab-
sorption spectra of measured MRSI signal with large residual water peak
for two voxels. (c)–(d) Absorption spectrum of the water-suppressed sig-
nal (blue) using the Löwner method and the quantified signal (red) in
the two corresponding voxels. (e)–(f) Absorption spectrum of the water-
suppressed signal using HSVD method and the quantified signal (red) in
the two corresponding voxels. (g)–(h) Absorption spectrum of the water-
suppressed signal using the Hankel-tensor method and the quantified
signal (red) in the two corresponding voxels.

Fig. 7. Boxplots of error after residual water suppression using the
methods HSVD, Löwner, and Hankel-tensor in 28 in-vivo MRSI signals.
The error is calculated as the difference between the variance in water
region segment and the variance from a segment in the noise region.

measured from brain tumor patients with a grid size 16 × 16
were used in this analysis. A band of three voxels at the outer
edges of the MRSI grid were omitted to avoid chemical shift
displacement artefacts and bad quality spectra. This resulted in
a reduced MRSI grid size of 10 × 10. AQSES [36] was used to
quantify the MRSI signal in Matlab based SPID software [15].
An in-vitro basis set consisting of two lipids (Lip1 and Lip2),
phosphocholine (PCh), Cre, Glu, glutamine (Gln), MI, Lac,
N-Acetyl-Aspartate (NAA) and glycine (Gly) metabolites was
used in the AQSES algorithm. Table I shows the average Cramer
Rao bounds in % of quantified amplitude of five metabolites
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TABLE I
MEAN AND STANDARD DEVIATION OF CRAMER RAO BOUNDS IN % OF QUANTIFIED AMPLITUDE FOR LIPID (LIP1), GLUTAMATE, N-ACETYLASPARTATE (NAA),

AND PHOSPHOCHOLINE (PCH) METABOLITES OVER 10 × 10 MRSI VOXEL GRID

Fig. 8. Improper water suppression using the HSVD method in two
voxels of the 10 × 10 MRSI grid. (a)–(b) Absorption spectra of mea-
sured MRSI signal with large residual water peak for two voxels. (c)–(d)
Absorption spectrum of the water-suppressed signal (blue) using the
Löwner method and the quantified signal (red) in the two corresponding
voxels. (e)–(f) Absorption spectrum of the water-suppressed signal using
HSVD method and the quantified signal (red) in the two corresponding
voxels. (g)–(h) Absorption spectrum of the water-suppressed signal us-
ing the Hankel-tensor method and the quantified signal (red) in the two
corresponding voxels.

along with the standard deviation for two of the in-vivo MRSI
signals. In the first patient all three methods perform well and the
average Cramer Rao bounds are similar. However, for the second
patient the metabolites estimated from the MRSI signals after
water suppression using HSVD clearly show higher Cramer Rao
bounds for Glutamate and lipid metabolites because the HSVD
method fails to suppress the water signal properly in many of
the voxels as shown in Fig. 8. From Fig. 8, we can clearly see
that the improper suppression the water signal will result in bad
quantification of metabolites such as Glutamate. Even though
the suppression of the water signal in two of those voxels using
Hankel tensor is better than using HSVD, the quantification is
not good compared to Löwner water suppression.

V. DISCUSSION

Residual water suppression is one of the common preprocess-
ing steps used in the quantification of MRSI signals. T. Sundin
et. al. [10] propose a maximum-phase finite impulse response
filter for residual water suppression. This method will alter the
amplitude and phase of the filtered signal, which may create
problems in quantification methods where different phase vari-
ations are not allowed and where spectra instead of quantified
metabolites are used for the analysis [37], [38]. HSVD is the
most widely used method and is available as a preprocessing
step in many MRSI software packages. As it is applied on a
voxel-by-voxel basis and as it computes the water source com-
ponents separately for each voxel, it does not exploit the infor-
mation shared among the voxels in the MRSI grid. Therefore,
the HSVD method can fail to suppress water completely in a
particular voxel due to noise or artifacts present in that voxel.
This problem can be seen in an in-vivo example shown in Fig. 6
where the HSVD method fails to suppress the water in a par-
ticular voxel (Fig. 6(f)) and performs better in another voxel
(Fig. 6(e)). This has motivated us to develop a new algorithm,
which can exploit the similarity in water sources present among
all voxels.

In this paper, we have represented the second-order MRSI
data using a third-order tensor by means of a Löwner trans-
form. A novel residual water-suppression method based on CPD,
where sources are shared among many voxels, was developed.
This work explored the feasibility and efficiency of the pro-
posed algorithm in suppressing the residual water from MRSI
data using both simulation and in-vivo signals. The Löwner-
based method is applied simultaneously on the entire MRSI
grid to estimate a large number of sources which can be used,
in various combinations, to model the water component in each
voxel. The water signal in each voxel is estimated as a linear
combination of the sources with different voxel specific weights.
This helps in preventing the failure of the water suppression in
single voxels. The Löwner tensor is constructed using truncated
spectra. Only the parts where the metabolite and water peaks
are present are retained in the spectra. This helps in reducing
the size of the tensor and the computational complexity of the
algorithm without any significant impact on water suppression
quality. The Löwner-based method requires fewer parameters
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to model the water signal in the MRSI grid. For example, in
the HSVD method with a rank-50, for each voxel we estimate
50 complex amplitude + 50 complex poles. For an MRSI grid
of 8 × 8 the total number of free parameters includes 50 × 64
complex amplitudes and 50 × 64 complex poles. In case of the
Löwner method with a rank-50 and polynomial degree 4, the to-
tal number of free parameters for an MRSI grid of 8 × 8 include
50 complex poles + 54 × 64 complex amplitudes.

When using the Löwner method to estimate the water sources
we have applied the CPD only on the compressed core ten-
sor S and the factor matrices are obtained as explained in the
Section II-A. It speeds up the algorithm without any signifi-
cant negative consequences in the estimated water signal. In
general, the factor matrices obtained from the compressed CPD
step are typically used as the initial values in the computation
of the CPD of the full tensor to further improve the decomposi-
tion, also known as the refinement step. Here, we have not used
the refinement step as it is computationally intensive and did
not provide any significant improvement in the estimated water
signal. In the Löwner-based method we have added a quality
verification on the water suppression to overcome the problems
with random initialization. If the algorithm is used with different
initializations to obtain a better water suppression, the compres-
sion step is only performed once as it is deterministic. Since the
compression step takes most of the computation time and the
CPD on the core tensor is relatively fast, running the algorithm
again with a different initialization will not increase the compu-
tation significantly. A rank R = 50 was used for the CPD of the
Löwner tensor LS based on the assumption that the water sig-
nal from all the voxels can be modelled using 20–25 first-order
rational functions and the remaining ones are sufficient to model
the metabolites. The chosen rank was not sensitive to the grid
size in the sense that similar performance was obtained on the
larger voxel grid (16 × 16) as well as on the smaller voxel grid
(8 × 8). Also, the selection of the rank itself is not so sensitive
since the results did not change significantly when increasing
(e.g., R = 60) or decreasing the rank (e.g., R = 40).

The Hankel-tensor based method has been used to estimate
the parameters of exponentially damped sinusoids of multichan-
nel signals [31]. In this paper we have used the Hankel-tensor
based method as a natural extension of the HSVD method to
estimate the water signals from MRSI data. The Hankel-tensor
method has better performance compared to the HSVD method
in both simulations and in-vivo data, however its performance
is still worse than the Löwner method. Both Hankel-tensor and
HSVD methods extract sources with broad peaks, which helps
in tackling the baseline without the need for additional poly-
nomial sources. A higher model-order (rank) of 100 was used,
as the performance deteriorated when a model order similar to
the HSVD-rank (50) was used. The reason is that a rank of 50
is typically sufficient for modelling a signal from an individual
voxel, but is not sufficient to capture all the variations in damp-
ing and frequency shifts across signals in the MRSI grid. The
Hankel tensor requires a higher model order (rank) compared
to the Löwner method because the frequency domain decou-
ples the noise, artefacts and trends present outside the region of
interest and also a higher rank was needed to model the vari-
ations in trend across different voxels. The Hankel-tensor was

constructed using the entire FID signal of length 2048, which
resulted in a large tensor and higher computational complexity.
A truncated FID (<2048 samples) can also be used to construct
the Hankel-tensor to reduce the size and complexity, but its
performance is worse than HSVD in in-vivo MRSI data.

All three methods model the total MRS signal sufficiently
well, however in some voxels HSVD fails to suppress the wa-
ter completely. This happens mainly because the water signal
is modeled from the sources whose frequencies are outside the
region of interest (0.25–4.2 ppm) and in some cases (e.g., Fig. 6)
part of the water signal is modelled by a few sources whose fre-
quencies lie in the region of interest (0.25–4.2 ppm). Therefore,
a small residual water is present in the water suppressed signal,
since part of the water signal modelled by sources in the region
of interest (0.25–4.2 ppm) is not subtracted.

As a proof of concept, we have analyzed the proposed meth-
ods in terms of residual error in case of simulation and differ-
ence in variance for in-vivo examples. Also, we have assessed
the water suppression quality of three methods using the average
Cramér-Rao bounds of the metabolite amplitude in two in-vivo
patients. Although Cramér-Rao bounds depend on more factors,
they are often used in in-vivo studies to assess the reliability of
metabolite quantification. In the future, these water suppres-
sion methods could also be compared in terms of reliability of
metabolite quantification in a test-retest experiment.

VI. CONCLUSION

A tensor-based method which suppresses residual water si-
multaneously in all MRSI voxels using a Löwner-based blind
source separation technique and Hankel-tensor based exponen-
tial data-fitting technique are proposed. These methods were
tested on both simulated and in-vivo 1H MRSI signals. In both
cases the tensor-based methods perform better than the widely-
used subspace-based HSVD method, which uses a single Hankel
matrix from one spectrum at a time. Comparing the two tensor-
based methods, the Löwner-tensor based method was shown to
better suppress residual water in MRSI. The main advantage of
Löwner-based method is that it can handle presence of artifacts
in some voxels without significantly affecting the water suppres-
sion quality. In contrast, the HSVD method completely fails to
suppress water in some volxels when artifacts are present, thus
making the further analysis of those spectra difficult.
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