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Abstract—An automated fingerprint recognition system (AFRS) for 3D fingerprints
is essential and highly promising for biometric security. Despite the progress in
developing 3D AFRSs, achieving high-quality real-time reconstruction and
high-accuracy recognition of 3D fingerprints remain two challenging issues. To
address them, we propose a robust 3D AFRS based on ridge-valley (RV)-guided 3D
fingerprint reconstruction and 3D topology polymer (TTP) feature extraction. The
former considers the unique fingerprint characteristics of the RV and achieves
real-time reconstruction. Unlike traditional triangulation-based methods that
establish correspondences between points by cross-correlation-based searching,
we propose to establish RV correspondences (RVCs) between ridges/valleys by
defining and calculating a RVC matrix based on the topology of RV curves. To
enhance depth reconstruction, curve-based smoothing is proposed to refine our
novel RV disparity map. The TTP feature codes the 3D topology by projecting the
3D minutiae onto multiple planes and extracting their corresponding 2D topologies
and has proven to be effective and efficient for 3D fingerprint recognition.
Comprehensive experimental results demonstrate that our method outperforms the
state-of-the-art methods in terms of both reconstruction and recognition accuracy.
Also, due to its very short running time, it is appropriate for practical applications.

Index Terms—Biometrics, 3D fingerprint recognition, real-time 3D fingerprint
reconstruction, 3D topology feature extraction
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1 INTRODUCTION

As one of the most reliable and discriminative biometrics, a finger-
print has been widely used in various applications, such as personal
electronic products, secure payments, forensics and security [1]. Its
dominance has been established by the continuous emergence of vari-
ous automated fingerprint recognition systems (AFRSs), with current
ones focusing mainly on two-dimensional (2D) contact fingerprints,
the acquisition of which requires physical contact between the fingers
and sensor’s surface. Although 2D contact fingerprints are easy to
obtain and usually have high ridge-valley (RV) contrasts, the process
for capturing them tends to simultaneously introduce inconsistencies
and distortions through physical contact, which thereby affects an
AFRS’s accuracy [2]. Also, interference caused by the latent finger-
prints left on a scanner platen easily leads to issues of contaminated
fingerprints, failed acquisitions, and poor hygiene. More importantly,
2D fingerprints cannot truly represent natural three-dimensional (3D)
ones because they lose 3D information during acquisition when a
curved 3D finger is flattened against a 2D plane. Therefore, AFRSs for
3D fingerprints have been proposed in recent yeas [3], [4], [5], [6], [7],
(81,191, [101, [11], [12], [13].
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1.1 Motivation and Previous Studies

Despite progress in the development of 3D AFRSs, the two critical
problems still needing to be solved are: how to reconstruct accurate
3D fingerprints in real time; and how to extract effective 3D finger-
print features and compare them. This paper aims to address these
two issues and achieve a robust 3D AFRS.

1.1.1 3D Fingerprint Reconstruction

In recent years, several methods proposed for 3D fingerprint recon-
struction can be classified into three main categories based on their
imaging techniques: 1) photometric stereo [3], [4], [5], [6]; 2) structured
light scanning [7], [8], [9], [10]; and 3) stereo vision [11], [12], [13].

Photometric stereo-based reconstruction requires capturing mul-
tiple 2D fingerprint images under different illuminations using a
fixed high-speed camera. Its underlying principle is that 3D surface
reflectance can be determined by its orientation with respect to the
light source and observer [14], with the methods in [3], [4], [6] and [5]
reconstructing 3D fingerprint information by estimating the surface
normal. However, although their hardware systems are relatively
low-cost and compact (consisting of a high-speed camera and several
LEDs), they are extremely time-consuming due to the expense of
computing the surface normal for each pixel; for example, it takes
approximately 180 seconds to reconstruct a 3D fingerprint with a res-
olution of 300 x 200 in [4]. Moreover, they require a large random-
access memory to store the pre-calibrated data [5], [6].

Reconstructing 3D fingerprints based on structured light scanning
requires capturing multiple 2D fingerprint images with projected pat-
terns using several high-speed cameras and a DLP projector. Its prin-
ciple is triangulation, whereby the 3D depth information is recovered
according to the correspondences between images. As, in methods
[7], [10] and [8], the correspondences between the points of observed
and projected patterns are precisely pre-encoded, 3D fingerprints are
reconstructed by measuring the deformations of the projected pat-
terns. The advantage of this type of method is that RV details can be
recovered and relatively accurate 3D depth information generated.
However, their hardware systems are very expensive and bulky due
to the special projector and high-speed cameras they require.

Reconstructing 3D fingerprints based on stereo vision requires
capturing different views of 2D fingerprint images using two or more
cameras and then calculates the 3D depth information between corre-
sponding points according to the triangulation principle. However,
although the advantages of this type of method are that it is simple,
low-cost and relatively compact, current ones rely greatly on estab-
lishing correspondences between points which is computationally
complex and time-consuming. For example, the state-of-the-art meth-
ods in [12] and [13] still take 1.5 minutes to reconstruct one 3D finger-
print which is unsuitable for practical applications and, more
importantly, fail to recover RV details since the correspondences they
established are based on block regions rather than pixels.

Recently, several ones based on optical coherence tomography
and ultrasonic imaging have been proposed. The former methods
are accurate and have a potential anti-spoofing capability but are
very expensive [15], [16], [17], [18], at least $7000 according to the
report in [19]. The latter methods are low-cost but time-consuming
[20], [21], [22], for example, it takes approximately 5 seconds to
reconstruct a 3D fingerprint with a resolution of 1000 dpi in [22].
Also, this type of method is not completely contactless since it
requires fingers to be pressed against a platen during acquisition.

Therefore, in this paper, we propose a novel RV-guided 3D fin-
gerprint reconstruction method which is robust and can achieve
highly accurate 3D reconstruction in real time.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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1.1.2 3D Fingerprint Feature

In the recent decades, only a few 3D fingerprint features has been
developed for recognizing 3D fingerprints. Liu et al. [23] proposed
one based on the surface curvature of a 3D fingerprint, which con-
tains information of the overall structure of the fingerprint and
indicates the distribution of other features. However, it is not effec-
tive and has poor recognition accuracy (equal-error rates (EERs) of
15 and 14.4 percent, respectively) according to [23] and [6]. Kumar
et al. [5] proposed a 3D minutia feature denoted as a 5-tuple com-
posed of three coordinates and two ridge orientations in 3D space.
However, using this feature to achieve a 3D fingerprint comparison
is computationally expensive and time-consuming. To reduce
computational complexity, Lin et al. [6] proposed a Delaunay tetra-
hedron-based 3D minutia feature defined as a convex polyhedron
consisting of four triangular faces of 3D minutiae but its spatial
topology is susceptible to spurious and missing 3D minutiae [24],
[25]. Therefore, implementing an effective 3D fingerprint feature is
urgent. Inspired by the success of 2D local minutiae structures in
[11, [26], [27], [28], [29], [30], [31], in this paper, we propose a novel
3D topology polymer (TTP) feature that achieves highly accurate
3D fingerprint recognition.

1.2 Our Work and Contributions

We achieve a robust 3D AFRS based on RV-guided 3D fingerprint
reconstruction and TTP feature extraction. The former is based on the
topology of RV curves, whereby successful RV details and well-
structured 3D surfaces can be achieved by establishing a RV corre-
spondence (RVC) between different views of fingerprint images. In
it, different views of fingerprint images are first pre-processed to gen-
erate severed RV maps (SRVMs) (see details in Section 2.2), based on
which a RVC matrix (RVCM) is defined to measure the degree of cor-
respondence between RVs and calculated by our proposed dynamic
algorithm in one-dimensional (1D) space. Then, the RVC is estab-
lished according to the RVCM by our proposed greedy algorithm.
Finally, a novel RV disparity map (RDP), which adopts curve-based
smoothing to separately refine the disparities of ridges and valleys, is
calculated to reconstruct the 3D depth. Based on this reconstructed
3D fingerprint, a TTP feature is extracted for 3D fingerprint recogni-
tion as follows. First, 3D minutiae are extracted and re-represented in
multiple new 3D spaces and then by projecting them onto multiple
planes and coding their corresponding 2D topologies, the TTP is
extracted. Comprehensive experimental results demonstrate that the
proposed method outperforms state-of-the-art ones in terms of both
reconstructing and recognition a 3D fingerprint.

The key contributions of our work are summarized as follows.

1)  Traditional methods for 3D fingerprint reconstruction usu-
ally establish correspondences based on points, which are
particularly time-consuming and fail to recover RV details.
In this paper, we propose a RVC based on the topology of RV
curves, which fully considers the unique fingerprint charac-
teristics of the RVs and can reduce computational complex-
ity. In comparison with traditional methods, it achieves
successful 3D fingerprint RV reconstruction and generates
well-structured 3D surfaces.

2)  Unlike conventional methods that establish correspond-
ences using cross-correlation-based searching, we propose
achieving this by defining and calculating a RVCM. To the
best of our knowledge, this is the first of this type of
approach and more importantly, this RVCM is defined on
RV curves and calculated in 1D, rather than the traditional
2D, space, which significantly improves the efficiency of
establishing correspondences.

3)  We propose a RDP for reconstructing 3D depth information
and a curve-based smoothing to refine the RDP. Unlike tradi-
tional methods that calculate disparity based on pixels in a
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Fig. 1. Diagram of basic principle of triangulation, where P is a point of a 3D object,
pand p its corresponding points in 2D images captured by two cameras, O and
Oy, the centers of the left and right cameras, respectively, f the distance between
the lens and image plane, b the distance between the centers of the two camera
centers, and 2 — z, the disparity of point p in the left image.

2D space and tend to damage a RV’s depth structure, our
proposed RDP is based on RVs and, as it performs smoothing
in 1D space separately for ridges and valleys, it ensures effec-
tiveness and reduces computational complexity.

4)  We propose a robust TTP feature which fully exploits 3D
topological information of 3D minutiae. By projecting 3D
minutiae onto multiple planes and coding their corre-
sponding 2D topologies, this feature is efficiently extracted
with finite dimensions, and the experiments demonstrate
its effectiveness.

5) To the best of our knowledge, this is the first method that
achieves real-time 3D reconstruction (less than 0.1 seconds
to reconstruct 1M points). Also, the proposed TTP feature
significantly improves the speed of 3D fingerprint recogni-
tion by approximately 16 times that of the state-of-the-art
method in [6].

The rest of this paper is organized as follows: Section 2 describes
the proposed RV-guided 3D fingerprint reconstruction method in
detail; Section 3 presents the proposed 3D fingerprint TTP feature
and the recognition; the experiments and results are provided
and discussed in Section 4; and, finally, the paper is concluded in
Section 5.

2 RV-GUIDED 3D RECONSTRUCTION

The proposed RV-guided 3D fingerprint reconstruction method is
based on the classical triangulation principle [32] which is illus-
trated in Fig. 1. Given two rectified images (left and right) of the
same scene, the depth z(z, y) of point (z,y) in the left image is cal-
culated by

2(x,y) =bx f/d(x,y), @

where d(x,y) is the disparity of (z,y), b the distance between the
centers of two cameras, and f the focal length of the camera.
Assuming that point (z/,y) in the right image corresponds to point
(x,y) in the left one, the disparity d(z,y) is defined as the number
of pixels between these two points and calculated by

d(z,y) =z —a'. (2)

It is easy to determine that the key to reconstructing a 3D fingerprint
is establishing correspondence. Unlike traditional methods for
achieving this, we propose a RV-guided one which fully exploits the
unique characteristics of a 3D fingerprint and is both effective and
efficient (Section 2.3).

2.1 Camera Calibration

Camera calibration, which estimates a camera’s intrinsic parameters
and extrinsic ones, is a fundamental step in 3D reconstruction. We
use a three-camera system calibrated off-line based on the methods in
[32], [33], [34], [35]. The middle camera is selected as the reference,
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Fig. 2. A pair of rectified 2D fingerprint images (a) the middle-view image and (b)
the right-view image and their respective SRVMs (c) and (d), with white curves
refer to ridges and dark curves refer to valleys.

with its experimental implementation achieved using the toolboxes
in [36] and [37]. The accuracy of camera calibration is generally esti-
mated by the re-projection error [33], the mean of which in our cali-
bration is approximately 0.4305 pixels or 0.0110 mm.

2.2 Pre-Processing of Fingerprint Images

To facilitate the establishment of correspondence, we pre-process 2D
fingerprint images in the following four steps: 1) extract their fingertip
regions using a pre-trained convolutional neural network (CNN)
which is similar to the one in [38] but replaces the training database; 2)
rectify the extracted images using the parameters of the calibrated
camera so that corresponding points have the same row coordinate
and the establishing of 2D correspondence is reduced to a 1D space
which greatly decreases computational complexity; 3) first binarize
the rectified images using a fast implementation of the STFT method
[39] and then thin the binary image and its complement, respectively,
to form a RV map; and 4) generate a SRVM by removing the bifurca-
tion minutiae points and their 8-connected neighborhoods in the RV
map so that all the ridges and valleys are split into isolated curves to
provide the basis for RVC establishment and then mathematically
update the SRVM by assigning different positive and negative integer
values to different ridge and valley curves, respectively, with the same
curves having the same values and zero referring to the background.
Fig. 2 shows an example of a pair of rectified images and their SRVMs.

2.3 Establishment of RVC

The proposed establishment of RVC is based on an obvious proposi-
tion: if two ridges/valleys in the rectified stereo fingerprint images
correspond, so do their proximate valleys/ridges. This is easy to
understand because, as the corresponding points in 3D space will be
projected onto the same row in two 2D images, the topological rela-
tionship between the ridges and valleys will be well preserved and
able to be used as a guide to establish correspondence.

To establish the RVC, first, a RVCM is defined based on the
SRVM to record the degree of correspondence between their RVs
(Section 2.3.1). Then, a dynamic algorithm calculating the RVCM
(Section 2.3.2) and a greedy algorithm establishing the RVC
(Section 2.3.3) are developed.

2.3.1 Déefinition of RVCM

Assuming that M and M’ are two SRVMs of different views of two
fingerprint images, where M contains n, isolated ridge curves and
n, isolated valley curves, and M’ contains n,. isolated ridge curves
and 7/, isolated valley curves, then the RVCM M is defined as a
(ny +ny) X (n, 4+ nl) matrix in which element e;; is a weight that
measures the degree of correspondence between ridges/valleys i
and j in M and M’, respectively, with a larger value indicating a
better correspondence. The initial values of M are zeros and its cal-
culation is detailed in Section 2.3.2.

2.3.2 Calculation of RVCM

The RVCM is calculated by matching the RV curves according to the
SRVMs. To reduce computational complexity and improve accuracy,
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Fig. 3. Diagram of proposed Row-Operator calculating M backwards from (a)
matched pair of labels L, and L, to (b) previous pair of valley curve labels L,; and
LI

vl
a benchmark pair of curves is determined by selecting a benchmark
pair of minutiae which leads to the maximum number of minutia
matches when used as the reference one. In our work, minutiae are
extracted from ridge map according to the Standard ANSI/NIST-ITL
1-2007. Unlike traditional methods that use each pair of minutiae as
reference one, we constrain this selection by = — 2’ > 0,y — /| <
oy t==1t,andl > o; and I > oy, where (z,y) and (2/,y/) are the
coordinates of minutiae m = {z,y,6,¢} andm’ = {2/, y/, 0, t'}, respec-
tively, ¢ and ¢’ the types of minutia, [ and !’ the lengths of the curves
where minutiae m and m'’ are located, and o, and o; the thresholds.
The constraint term = — 2’ > 0 is based on the principle that the x-
coordinates of the minutiae from the left-view image must be larger
than those of corresponding minutiae from the right-view image (see
Fig. 1). The constraint term |y — ¢/| < o, is based on the fact that the
corresponding minutiae are located in the same or adjacent rows in
the rectified ridge maps. Thus, the benchmark pair of minutiae is
selected from all the candidate ones that satisfy these constraints using
the transformation-based method in [1], [26]. To enhance robustness,
if a selected benchmark minutia is a bifurcation one, we replace it
with its corresponding ending minutia. The curves where the bench-
mark pair of minutiae is located is defined as benchmark curves.

The proposed dynamic algorithm used to calculate the RVCM M
based on the benchmark curves consists of: a benchmark curves-
based calculation stage (BS); and a dynamic updating stage (DS) (see
the supplementary material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2019.2949299.). For convenience, we denote (z;,y;)
and (z},,) as the coordinates of the benchmark pair of minutiae m;
and m;, respectively, and L; and L} as the corresponding curve labels
in SRVMs M and M/, respectively. In the following paper, we also
refer to L, and L) as the RV curves since each isolated curve is
assigned a unique integer value which is used as its label (Section 2.2).

The BS calculates M along the benchmark curves L; and L] row by
row and the DS dynamically updates M according to the remaining
rows in M and M’, with the Row-Operator for calculating M for each
row illustrated in Fig. 3. R={..., L2, Ly, L1, Ly, Ls,...} and
R ={....L, L, L, L, L, -} are denoted as the salient label
vectors for the same row in M and M’, respectively, which are gener-
ated by removing adjacent labels with the same value. This ensures
that the values of a salient label vector alternately represent ridges
and valleys, thereby enabling the Row-Operator to efficiently deter-
mine the correspondence between their curves. The Row-Operator cal-
culates the values of M from the matched labels L, and L/, first
backwards to the first pair of labels and then forwards to the last pair
by e;; = e;; + 1, where i and j are the matched curve labels. In BS, the
matched labels L, and L/, are the labels of the benchmark curves and,
in DS, are dynamically determined by the maximum value of the cur-
rent row in M. With g, and 1, denoted as the minimum and maxi-
mum row indexes of the curves, respectively, the calculation ranges
of BSand DS are (Y. 4), and (0, y, — 1) and (4, + 1,n), respectively.

2.3.3 Establishment of RVC

We establisha RVC ¢ % (X1, A1) by updating the SRVMs M and M’

based on the RVCM M. According to the definition of a RVCM
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Fig. 4. Result for RVC, where corresponding RV curves have same color.

(Section 2.3.1), alarger value of element ¢;; indicates a better correspon-
dence between curves i and j. Therefore, curves ¢ and j from M and
M, respectively, are considered a match if e;; is the largest value in
row i or column j of M. This operation enhances the error tolerance of
the established RVC to the SRVMs. A greedy algorithm is developed
for this purpose (see the supplementary material, available online).
Fig. 4 shows a RVC result established using the proposed algorithm.

2.4 Reconstruction of 3D Depth Information

3D depth information is calculated based on the disparity map which,
traditionally, is calculated at the pixel level. To improve robustness,
we calculate a RDP at the curve level, which fully considers the
unique characteristics of the RV structure of a 3D fingerprint.

The proposed RDP calculation consists of three steps: 1) RV dis-
parity computation; 2) RV disparity refinement; and 3) RDP inter-
polation. In the first step, the disparities of the points located on
the RV curves are calculated. Since their corresponding curves are
assigned the same value in C, it is easy to obtain the corresponding
points ((z,y) in M and («/,y) in M’) and calculate their disparity
d(z,y) using Eq. (2). In the second step, smoothing is performed to
refine the RV disparity and suppress spike-like noise. Since tradi-
tional smoothing methods conducted in 2D space tend to damage
a RV’s depth structure, we propose a curve-based one undertaken
in 1D space to preserve this structure in local regions. First, a dis-
parity vector is generated by extracting the disparities of each point
in a RV curve along the curve’s direction. Then, median and aver-
age filtering are conducted sequentially on the disparity vector to
achieve curve-based smoothing on all curves in M which refines
the RV disparity. Fig. 5 illustrates this process for one curve. In the
third step, the disparities of the points between ridges and valleys
are quickly interpolated based on the refined RV disparity to obtain
the RDP for the whole fingerprint.

After obtaining the RDP, 3D fingerprint reconstruction is achieved
using Eq. (1). Fig. 6 comprehensively shows the results obtained from
this method for one finger which demonstrate the successful recovery
of 3D RVs and generation of well-structured 3D surfaces. Fig. 7 shows
the results for a contaminated finger, demonstrating the performance
of the proposed method in tough cases.

190

° Raw points
X Points by median filter

185
% . Smoothed points

180

175

170

165

Fig. 5. Diagram of proposed curve-based smoothing. (a) Disparity vectors of
example curve highlighted in red in (b), where gray circles represent initially calcu-
lated disparities, blue crosses disparities after median filtering, and red points
disparities after average filtering.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 3, MARCH 2021

(d)

Fig. 6. 3D reconstruction results of our method for one finger: (a) 3D point cloud;
(b) the mesh; (c) 3D surface; and (d) textured 3D surface.

3 TTP FEATURE EXTRACTION

For highly accurate 3D fingerprint recognition, first, 3D minutiae
are extracted and re-represented in new 3D spaces with each minu-
tia being the new origin (Section 3.1) and then a TTP feature of a 3D
fingerprint, which fully exploits the 3D topological information of
its 3D minutiae, is extracted(Section 3.2).

3.1 Extraction and Re-Representation of 3D Minutiae

As a 3D minutia is a nature extension of a 2D minutia in 3D space, we
represent it by a quintuplet {x, y, z, 6, ¢}, where x, y, z are the coordi-
nates with z representing the depth, and 6 and ¢ the minutia’s direc-
tions representing the 3D ridge orientation. In our work, first, 2D
minutiae are extracted using the software VeriFinger [40] and then
the 3D ones are obtained by calculating ¢ from the 3D cloud points
using the method in [41]. Denoting M®° = {m3®, m3P.... m3P} as
the set of 3D minutiae of a 3D fingerprint, for each one, e.g.,
miP = {;,y,,2,0;, ¢;} in M®P, we use it as an origin to create a new
3D coordinate system S; and re-represent the remaining ones in this
new 3D space. This operation, which can be intuitively understood as
rotating a 3D fingerprint around the current minutia with angles of 6;
and ¢, to simulate human observations of a 3D fingerprint from mul-
tiple perspectives, provides the basis for the following TTP feature
extraction.

For a concise presentation in this section, the 3D minutia set
M3P and 3D minutia m3P are hereafter simply denoted as M and
m; which does not introduce any ambiguity as only 3D minutiae
are involved.

Creating a new 3D coordinate system S; with minutia m; =

{zi,yi,2:,0;,¢;} as the origin means setting the new representation
m} = {z},y,,2,0,,¢;} of m; as (0,0,0,0,0). Therefore, the new
representation m; = {x,y},7,,0},¢} of the remaining minutia

mj = {z, 9, 2,05, ¢,} in M can be calculated by

1‘77 Tj— X
U | = T(=8)T(=6) | v — v |, ®)
Z‘/j Z]' —Zj

(b) (c)

Fig. 7. 3D reconstruction results for (a) a contaminated finger, (b) 3D surface, and
(c) textured 3D surface are both reconstructed with the contaminated pattern being
removed.

(a)
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TABLE 1
Comparison of 3D Fingerprint Reconstruction
Time of State-of-the-Art Methods

Categories Methods Time (/points) Size/Cost RV Details
Photometric Xie et al. [4] 180s /60K small/low yes
Stereo Kumaretal. [5]  7.5s/2.8M
Lin et al. [6] 3s/1.2M
Structured  Wang et al. [7] 1s/5M bulky/high  yes
Light Huangetal. [8]  0.5s/450K
Stereo Parzialeetal. [11] verylong  med./med. no
Vision Liu etal. [12] 90s/45K  small/low
Labatietal. [13]  24s/1.2M
Our Method 0.1s/1.2M small/low yes
and
T -
[1,0): 641" = Tr(Ty(~g) T(=0)Tr " (1,65,))), @
where function 7}, (¢) is formulated as
[cos¢p 0 —sing
T,(¢) = 0 1 0 , (5)
| sing 0 cos¢
function 7, (9) as
[ cos® —sind 0
T.00) = | sin6 cosf 0], (6)
0 0 1

function T’r(u, v, w), which is the transformation from a Cartesian to
spherical coordinate system, as

1
arctan 2(y, x)

arcsin(z/+/a? + y? + 2%)

and function Tr~!(1,6,¢), which is the inverse transform of
Tr(z,y,z), as

TT(I7 Y, Z) = ) (7)

Tr=1(1,6,¢) = [ cos@cos ¢, sin b cos ¢, sinq,')]T, (8

By performing this for every minutia, m 3D spaces {Si,-, Sy}
and m new representations {M'y,-,M',,,} of the set of minutiae M
are obtained.

3.2 Extraction and Recognition of TTP Feature

The TTP feature is extracted by coding the 2D topologies of the set
of 3D minutiae on multiple planes determined by the multiple 3D
spaces created in Section 3.1. Denote M} = {m), m),---,m/ } as the
set of 3D minutiae represented in S; with mj as the origin. First, a
2D minutia set M{ = {m{, mj, ..., m] } centered at m{ is generated
by projecting M; onto the xy-plane of S;. Then, the local topology
T; of M{, which can be considered the projection of the topology of
M; and further understood as the depiction of the topology of M in
S, is extracted by calculating the MCC [30] of m;’ on M. Finally,
the m topologies corresponding to m re-represented minutia sets
in m 3D spaces are obtained and coded as the TTP 7 = {7,
Ts,...,T,,} torepresent a 3D fingerprint.

The effectiveness of the proposed TTP feature can be justified by
the following facts. Two sets of 3D minutiae of the same finger
should have the similar 3D minutiae topology including their rela-
tive orientation relationship, which should be invariant to the rota-
tion and shift of the finger. Therefore, their 2D projections based on
the same registered minutia should preserve the same 2D minutiae
topology including their relative orientation relationships. Appar-
ently, such 2D projections involve the 3D topology of the relevant
3D minutiae including their 3D minutiae relationships. Since this
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Fig. 8. Comparison of 3D fingerprint surface reconstructed using the methods
based on photometric stereo ((a), (b), and (c)), structured light ((d) and (e)), and
stereo vision ((f), (g), (h), and (i)).

extraction considers only the spaces determined by the 3D minu-
tiae and the topology for the origin minutia, it is particularity effi-
cient. Also, by reducing its dimension from 3D to 2D, this TTP
feature extraction significantly reduces computational complexity:
for example, the running time for a minutia set M containing 200
3D minutiae is approximately 7ms. After this TTP extraction, 3D
fingerprint recognition is achieved by calculating the comparison
score of two TTP features using the LSA-R method [30].

4 EXPERIMENTAL RESULTS AND DISCUSSION

We evaluate the performance of our method in terms of both recon-
structing and recognizing 3D fingerprints.

4.1 3D Fingerprint Reconstruction

The performance of our 3D fingerprint reconstruction method is
compared with those of eight state-of-the-art ones, with their
reconstruction times and levels of accuracy.

4.1.1  Reconstruction Time

Running time is critical for a 3D AFRS in practical applications.
Table 1 presents the times taken by the different methods and
their corresponding requirements and outputs, with those in bold
the best. As can be seen, our method achieves an outstanding per-
formance as it takes approximately 0.1 seconds to reconstruct a
3D fingerprint with 1.2 million points, that is, real-time 3D finger-
print reconstruction. In comparison with the other methods, it can
be concluded that ours is approximately 2.5 and 10 times faster
than the second and third fastest method in Ref. [7] and [8],
respectively.

4.1.2  Accuracy of Reconstruction

The performance of our 3D fingerprint reconstruction method can
be verified by visually inspecting the results provided in Figs. 6
and 7. It is clear that, for all the regions, including the minutia
and contaminated ones, our method provides good subjective
visual quality with a well-reconstructed RV structure. Moreover,
the entire reconstructed 3D fingerprint is spotless and noise-free.
For better evaluation, some 3D reconstruction results obtained by
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Fig. 9. Fingerprints with illuminated patterns.

our and eight other methods are shown in Fig. 8. It can be seen
that the results of the method in [5] are anomalous and even have
spike-like noise, those of the method in [7] are very noisy, and
those of the method in [8] have lots of weird strip shadows that
are obviously not the fingerprint textures. The results of tradi-
tional stereo vision-based methods in [11], [12], [13] tend to be
smooth surfaces without RV structure. The inability of these
methods to recover RV depth information is due mainly to their
establishment of correspondence being based on region blocks
whereas our method overcomes this problem and achieves highly
accurate 3D fingerprint reconstruction results.

To quantitatively evaluate the performance of our reconstruc-
tion method, we adopt two metrics of percentage of bad matching
pixels (PBP) and root-mean-squared (RMS) error to estimate the
reconstruction accuracy as in [42], [43]. The ground-truth 3D fin-
gerprint is obtained using a structured light illumination method
in [42], with two Nikon D750 cameras and a DLP LightCrafter Dis-
play 3010 evaluation module Gen2 from Texas Instruments syn-
chronized through a program developed on the open source
software digiCamControl [44] and Psychtoolbox [45]. In the experi-
ment, sixty ground-truth samples are obtained for twenty fingers,
with three samples for each finger. Fig. 9 shows some collected fin-
gerprints with illuminated patterns. Fig. 10 shows samples of a
ground-truth disparity map and a reconstructed one from our
method, with the average PBPs for different error thresholds pro-
vided. The average RMS errors for dense, ridge, and valley dispar-
ities are approximately 3.37, 3.26, and 3.22, respectively.

4.2 3D Fingerprint Recognition
Comprehensive experiments are conducted on two databases to evalu-
ate and compare the 3D fingerprint recognition performances of our
proposed and state-of-the-art methods in terms of both recognition
accuracy and running time. DB1 is a 3D fingerprint database generated
by our reconstruction method with stereo fingerprint images obtained
from a three-camera system, containing 3000 3D fingerprints from
1500 different fingers. DB2 [5] is a publicly available 3D fingerprint
database consisting of 1400 3D fingerprints from 240 different fingers.
Therefore, DB1 has 1500 genuine and 1,124,250 (1500 x 1449/2) impos-
tor comparisons, respectively, and DB2 has 3600 (240 x 6 x 5/2) genu-
ine and 28,680 (240 x 239/2) impostor comparisons, respectively. All
the experiments are implemented in C\C++ and run on a workstation
with Intel Xeon E5-2670 CPUs powered by a Linux system.

Table 2 shows the 3D fingerprint recognition performances of our
and three methods in [5], [6], [13] evaluated on DB1 and DB2 with
respect to their EER and rank-1 accuracy values and average times,

—b— Dense disparities
—%— Ridge disparities

\ Valley disparities

V\‘;

threshold o

Q
B
/

percentag

N

4 5

3
(a) (b) (a]

Fig. 10. Samples of (a) ground-truth disparity map and (b) reconstructed one from
our method, with (c) the average PBPs for different thresholds.
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TABLE 2
Comparison of Performances for 3D Fingerprint Recognition of
State-of-the-Art Methods Evaluated on Databases DB1 and DB2

Methods Equal Error Rate(%) Rank-1 Accuracy(%) Avg.
DB1 DB2 Avg. DBl DB2 Avg. Time
FR1 [5] 0.96 1.02 0.99 98.1 96.7 97.4 2.435s
FR2 [13] 0.62 0.70 0.66 97.3 96.5 96.9 5.670s
FR3 [6] 1.39 1.51 1.45 98.2 97.7  97.95 0.380s
Our 0.64 0.68 0.66 985 976 98.05 0.046s
VM 2.08 1.47 1.78 97.1 95.8  96.45 0.031s
VU 1.39 1.51 1.45 97.8 97.1 97.45 0.036s
ey =
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Fig. 11. Comparison of ROC and CMC curves for 3D fingerprint recognition of
state-of-the-art methods evaluated on databases DB1 and DB2.

with those in bold the best, and the performances of VM ( multi-view
2D fingerprints recognition using Verifinger 6.3 [40]) and VU
(unwrapped 3D fingerprints [7] recognition using Verifinger 6.3). It is
clear that our method achieves the highest rank-1 accuracy on DBI,
the lowest EER on DB2, and the best average EER and average rank-1
accuracy, with the shortest average comparison time. For a compre-
hensive evaluation, ROC and CMC curves of our and the three meth-
ods performed on DB1 and DB2 are shown in Fig. 11, with those of
the VM and VU methods the benchmarks.

5 CONCLUSION

We proposed a robust 3D AFRS based on RV-guided 3D recon-
struction and TTP feature extraction. The former establishes RVCs
based on the topology of RV curves, which is different from tradi-
tional methods that establish correspondences between points and
considers the unique fingerprint characteristics of the RV so that
achieves real-time reconstruction. The latter extracts the TTP fea-
ture which codes the 3D topology by projecting the 3D minutiae
onto multiple planes and extracting their corresponding 2D topolo-
gies and has proven to be effective and efficient for 3D fingerprint
recognition. The comprehensive experimental results demonstrate
that the proposed method outperforms state-of-the-art ones in
terms of both the reconstruction and recognition of a 3D fingerprint
and, due to its significantly short running time, is suitable for prac-
tical applications.

Despite this method’s promising results, more research can be
conducted to improve the reliability of a 3D AFRS. In the future,
potential anti-spoofing capability for enhancing the security of bio-
metrics systems could be studies as 3D fingerprints provide the
real 3D space information of fingers.
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