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ABSTRACT | Significant advances in video compression sys-

tems have been made in the past several decades to satisfy

the near-exponential growth of Internet-scale video traffic.

From the application perspective, we have identified three

major functional blocks, including preprocessing, coding, and

postprocessing, which have been continuously investigated

to maximize the end-user quality of experience (QoE) under

a limited bit rate budget. Recently, artificial intelligence

(AI)-powered techniques have shown great potential to fur-

ther increase the efficiency of the aforementioned functional

blocks, both individually and jointly. In this article, we review

recent technical advances in video compression systems

extensively, with an emphasis on deep neural network (DNN)-

based approaches, and then present three comprehensive
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case studies. On preprocessing, we show a switchable texture-

based video coding example that leverages DNN-based scene

understanding to extract semantic areas for the improvement

of a subsequent video coder. On coding, we present an end-

to-end neural video coding framework that takes advantage

of the stacked DNNs to efficiently and compactly code input

raw videos via fully data-driven learning. On postprocessing,

we demonstrate two neural adaptive filters to, respectively,

facilitate the in-loop and postfiltering for the enhancement of

compressed frames. Finally, a companion website hosting the

contents developed in this work can be accessed publicly at

https://purdueviper.github.io/dnn-coding/.

KEYWORDS | Adaptive filters; deep neural networks (DNNs);

neural video coding; texture analysis.

N O M E N C L AT U R E
AE Autoencoder.
CNN Convolutional neural network.
CONV Convolution.
ConvLSTM Convolutional LSTM.
DNN Deep neural network.
FCN Fully connected network.
GAN Generative adversarial network.
LSTM Long short-term memory.
RNN Recurrent neural network.
VAE Variational autoencoder.
BD-PSNR Bjøntegaard delta PSNR.
BD-Rate Bjøntegaard delta rate.
GOP Group of pictures.
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MS-SSIM Multiscale SSIM.
MSE Mean squared error.
PSNR Peak signal-to-noise ratio.
QP Quantization parameter.
QoE Quality of experience.
SSIM Structural similarity index.
UEQ Unequal quality.
VMAF Video multimethod assessment fusion.
AV1 AOMedia video 1.
AVS Audio–video standard.
H.264/AVC H.264/advanced video coding.
H.265/HEVC H.265/high-efficiency video coding.
VVC Versatile video coding.
AOM Alliance of open media.
MPEG Moving Picture Experts Group.

I. I N T R O D U C T I O N
In recent years, Internet traffic has been dominated by
a wide range of applications involving video, including
video on demand (VOD), live streaming, and ultralow
latency real-time communications. With ever-increasing
demands in resolution (e.g., 4k, 8k, gigapixel [1], and
high speed [2]) and fidelity (e.g., high dynamic range [3]
and higher bit precision or bit depth [4]), more efficient
video compression is imperative for content transmission
and storage, by which networked video services can be
successfully deployed. Fundamentally, video compression
systems devise appropriate algorithms to minimize the
end-to-end reconstruction distortion (or maximize the
QoE), under a given bit rate budget. This is a clas-
sical rate-distortion (R-D) optimization problem. In the
past, the majority of effort had been focused on the
development and standardization of video coding tools
for optimized R-D performance, such as the intrapre-
diction/interprediction, transform, and entropy coding,
resulting in a number of popular standards and recommen-
dation specifications (e.g., ISO/IEC MPEG series [5]–[11],
ITU-T H.26x series [9]–[13], AVS series [14]–[16], and the
AV1 [17], [18] from the AOM [19]). All these standards
have been widely deployed in the market and enabled
advanced and high-performing services to both enter-
prises and consumers. They have been adopted to cover
all major video scenarios from VOD, to live streaming,
to ultralow latency interactive real-time communications,
used for applications, such as telemedicine, distance learn-
ing, video conferencing, broadcasting, e-commerce, online
gaming, and short-video platforms. Meanwhile, the system
R-D efficiency can also be improved from preprocessing
and postprocessing, individually and jointly, for content-
adaptive encoding (CAE). Notable examples include
saliency detection for subsequent regionwise quantiza-
tion control and adaptive filters to alleviate compression
distortions [20]–[22].

In this article, we, therefore, consider preprocessing,
coding, and postprocessing as three basic functional blocks
of an end-to-end video compression system and optimize

them to provide compact and high-quality representation
of input original video.

1) The “coding” block is the core unit that converts raw
pixels or pixel blocks into binary bits presentation.
In the past decades, the “coding” R-D efficiency
has been gradually improved by introducing more
advanced tools to better exploit spatial, temporal,
and statistical redundancies [23]. Nevertheless, this
process inevitably incurs compression artifacts, such
as blockiness and ringing, due to the R-D tradeoff,
especially at low bit rates.

2) The “postprocessing” block is introduced to alleviate
visually perceptible impairments produced as byprod-
ucts of coding. Postprocessing mostly relies on the
designated adaptive filters to enhance the recon-
structed video quality or QoE. Such “postprocessing”
filters can also be embedded into the “coding” loop
to jointly improve reconstruction quality and R-D
efficiency, for example, in-loop deblocking [24] and
sample adaptive offset (SAO) [25].

3) The “preprocessing” block exploits the discrimina-
tive content preference of the human visual system
(HVS), caused by the nonlinear response and fre-
quency selectivity (e.g., masking) of visual neurons
in the visual pathway. Preprocessing can extract con-
tent semantics (e.g., saliency and object instance)
to improve the psychovisual performance of the
“coding” block, for example, by allocating unequal
qualities (UEQs) across different areas according to
preprocessed cues [26].1

Building upon the advancements in DNNs, numerous
recently created video-processing algorithms have been
greatly improved to achieve superior performance, mostly
leveraging the powerful nonlinear representation capacity
of DNNs. At the same time, we have also witnessed an
explosive growth in the invention of DNN-based tech-
niques for video compression from both academic research
and industrial practices. For example, DNN-based filtering
in postprocessing was extensively studied when devel-
oping the VVC standard under the joint task force of
ISO/IEC and ITU-T experts in the past three years. More
recently, the standard committee issued a Call-for-Evidence
(CfE) [27], [28] to encourage the exploration of deep
learning-based video coding solutions beyond VVC.

In this article, we discuss recent advances in preprocess-
ing, coding, and postprocessing, with a particular emphasis
on the use of DNN-based approaches for efficient video
compression. We aim to provide a comprehensive overview
to bring readers up to date on recent advances in this
emerging field. We also suggest promising directions for
further exploration. As summarized in Fig. 1, we first dive
into video preprocessing, emphasizing the analysis and
application of content semantics, for example, saliency,

1Although adaptive filters can also be used in preprocessing for pre-
filtering, for example, denoising, motion deblurring, contrast enhance-
ment, and edge detection, our primary focus in this work will be on
semantic content understanding for subsequent intelligent “coding.”
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object, and texture characteristics, to video encoding.
We then discuss recently developed DNN-based video cod-
ing techniques for both modularized coding tool develop-
ment and end-to-end fully learned framework exploration.
Finally, we provide an overview of the adaptive filters that
can be either embedded in a codec loop or placed as a
postenhancement to improve final reconstruction. We also
present three case studies: 1) switchable texture-based video
coding in preprocessing; 2) E2E-NVC; and 3) efficient neural
filtering, to provide examples of the potential of DNNs
to improve both subjective and objective efficiency over
traditional video compression methodologies.

The remainder of the article is organized as follows.
From Sections II–IV, we extensively review the advances
in preprocessing, coding, and postprocessing, respectively.
Traditional methodologies are first briefly summarized,
and then DNN-based approaches are discussed in detail.
As in the case studies, we propose three neural approaches
in Sections V–VII, respectively. Regarding preprocess-
ing, we develop a CNN-based texture analysis/synthesis
scheme for the AV1 codec. For video compression, an end-
to-end neural coding framework is developed. In our
discussion of postprocessing, we present different neural
methods for in-loop and postfiltering that can enhance
the quality of reconstructed frames. Section VIII summa-
rizes this work and discusses open challenges and future
research directions. For your convenience, the nomencla-
ture provides an overview of abbreviations and acronyms
that are frequently used throughout this article.

II. O V E R V I E W O F D N N - B A S E D V I D E O
P R E P R O C E S S I N G
Preprocessing techniques are generally applied prior to
the video coding block, with the objective of guiding the
video encoder to remove psychovisual redundancy and
to maintain or improve visual quality, while simultane-
ously lowering bit rate consumption. One category of
preprocessing techniques is the execution of prefiltering
operations. Recently, a number of deep learning-based pre-
filtering approaches have been adopted for targeted coding
optimization. These include denoising [29], [30], motion
deblurring [31], [32], contrast enhancement [33], edge
detection [34], [35], and so on. Another important topic
is closely related to the analysis of video content seman-
tics, for example, object instance, saliency attention, and
texture distribution, and its application to intelligent video
coding. For the sake of simplicity, we refer to this group
of techniques as “preprocessing” for the remainder of this
article. In our discussion below, we also limit our focus to
saliency- and analysis-/synthesis-based approaches.

A. Saliency-Based Video Preprocessing

1) Saliency Prediction: Saliency is the quality of being
particularly noticeable or important. Thus, the salient area
refers to regions of an image that predominantly attracts
the attention of subjects. This concept corresponds closely
to the highly discriminative and selective behavior dis-

played in visual neuronal processing [36], [37]. Content
feature extraction, activation, suppression, and aggrega-
tion also occur in the visual pathway [38].

Earlier attempts to predict saliency typically utilized
handcrafted image features, such as color, intensity, and
orientation contrast [39], motion contrast [40], and
camera motion [41]. Later on, DNN-based semantic-level
features were extensively investigated for both image con-
tent [42]–[48] and video sequences [49]–[55]. Among
these features, image saliency prediction only exploits
spatial information, while video saliency prediction often
relies on spatial and temporal attributes jointly. One typ-
ical example of video saliency is a moving object that
incurs spatiotemporal dynamics over time and is, there-
fore, more likely to attract users’ attention. For example,
Bazzani et al. [49] modeled the spatial relations in videos
using 3-D convolutional features and the temporal consis-
tency with a convolutional LSTM network. Bak et al. [50]
applied a two-stream network that exploited different
fusion mechanisms to effectively integrate spatial and tem-
poral information. Sun et al. [51] proposed a step-gained
FCN to combine the time-domain memory information and
space-domain motion components. Jiang et al. [52] devel-
oped an object-to-motion CNN that was applied together
with an LSTM network. All of these efforts to predict video
saliency leveraged spatiotemporal attributes. More details
regarding the spatiotemporal saliency models for video
content can be found in [56].

2) Salient Object: One special example of image saliency
involved the object instance in a visual scene, specifically,
the moving object in videos. A simple, yet effective solution
to the problem of predicting image saliency, in this case,
involved segmenting foreground objects and background
components. The segmentation of foreground objects and
background components has mainly relied on foreground
extraction or background subtraction. For example, motion
information has been frequently used to mask out fore-
ground objects [57]–[61].

Recently, both CNN and foreground attentive neural
network (FANN) models have been developed to perform
foreground segmentation [62], [63]. In addition to con-
ventional Gaussian mixture model (GMM)-based back-
ground subtraction, recent explorations have also shown
that CNN models could be effectively used for the same
purpose [64], [65]. To address these separated foreground
objects and background attributes, Zhang et al. [66]
introduced a new background mode to more compactly
represent background information with better R-D effi-
ciency. To the best of our knowledge, such foreground
object/background segmentation has been mostly applied
in video surveillance applications, where the visual scene
lends itself to easier separation.

3) Video Compression With UEQ Scales: Saliency
or object, which refers to more visually attentive areas,
is straightforward to apply UEQ setting in a video encoder,
where light compression is used to encode the saliency

1496 PROCEEDINGS OF THE IEEE | Vol. 109, No. 9, September 2021



Ding et al.: Advances in Video Compression System Using DNN

Fig. 1. Topic outline. This article reviews DNN-based techniques used in preprocessing, coding, and postprocessing of a practical video

compression system. The “preprocessing” module leverages content semantics (e.g., texture) to guide video coding, followed by the

“coding” step to represent the video content using more compact spatiotemporal features. Finally, quality enhancement is applied in

“postprocessing” to improve the quality of reconstruction by alleviating processing artifacts. Companion case studies are, respectively,

offered to showcase the potential of DNN algorithms in video compression.

area, while heavy compression is used elsewhere. The use
of this technique often results in a lower level of total bit
rate consumption without compromising QoE.

For example, Hadi and Bajić [67] extended the well-
known Itti–Koch–Niebur (IKN) model to estimate saliency
in the DCT domain, also considering camera motion.
In addition, saliency-driven distortion was also introduced
to accurately capture the salient characteristics, in order to
improve R-D optimization in H.265/HEVC. Li et al. [68]
suggested using graph-based visual saliency to adapt
the quantizations in H.265/HEVC, to reduce total bits
consumption. Similarly, Ku et al. [69] applied saliency-
weighted coding tree unit (CTU)-level bit allocation, where
the CTU-aligned saliency weights were determined via
low-level feature fusion.

The aforementioned methodologies rely on traditional
handcrafted saliency prediction algorithms. As DNN-based
saliency algorithms have demonstrated superior perfor-
mance, we can safely assume that their application to
video coding will lead to better compression efficiency.
For example, Zhu and Xu [70] adopted a spatiotemporal
saliency model to accurately control the QP in an encoder
where the spatial saliency was generated using a ten-
layer CNN and whose temporal saliency was calculated
assuming the 2-D motion model [resulting in an aver-
age of 0.24 BD-PSNR gains over H.265/HEVC reference
model (version HM16.8)]. A performance improvement
due to fine-grained quantization adaptation was reported
using an open-source x264 encoder in [71]. This was
accomplished by jointly examining the input video frame
and associated saliency maps. These saliency maps were
generated by utilizing three CNN models suggested in
[52], [56], and [72]. Up to 25% bit rate reduction was
reported when distortion was measured using the edge-
weighted SSIM. Similarly, Sun et al. [73] implemented a
saliency-driven CTU-level adaptive bit rate control, where
the static saliency map of each frame was extracted using a
DNN model, and the dynamic saliency region was tracked
using a moving object segmentation algorithm. Experiment
results revealed that the PSNR of salient regions was
improved by 1.85 dB on average.

Though saliency-based preprocessing is mainly driven
by psychovisual studies, it heavily relies on saliency
detection to perform UEQ-based adaptive quantization
with a lower rate of bit consumption but visually iden-
tical reconstruction. On the other hand, visual selectivity
behavior is closely associated with video content distrib-
ution (e.g., frequency response), leading to perceptually
unequal preference. Thus, it is highly expected that such
content semantics-induced discriminative features can be
utilized to improve the system efficiency when integrated
into the video encoder. To this end, we will discuss the
analysis-/synthesis-based approach for preprocessing in
Section II-B.

B. Analysis-/Synthesis-Based Preprocessing

Since most videos are consumed by human vision,
subjective perception of HVS is the best way to evaluate
quality. However, it is quite difficult to devise a profoundly
accurate mathematical HVS model in an actual video
encoder for rate and perceptual quality optimization, due
to the complicated and unclear information processing
that occurs in the human visual pathway. Instead, many
pioneering psychovisual studies have suggested that neu-
ronal response to compound stimuli is highly nonlinear
[74]–[81] within the receptive field. This leads to well-
known visual behaviors, such as frequency selectivity and
masking, where such stimuli are closely related to the
content texture characteristics. Intuitively, video scenes can
be broken down into areas that are either “perceptually sig-
nificant” (pSIG) (e.g., measured in an MSE sense) or “per-
ceptually insignificant.” For “perceptually insignificant”
regions, users will not perceive compression or processing
impairments without a side-by-side comparison with the
original sample. This is because the HVS gains semantic
understanding by viewing content as a whole, instead of
interpreting texture details pixel by pixel [82]. This notable
effect of the HVS is also referred to as “masking,” where
visually insignificant information, for example, perceptu-
ally insignificant pixels, will be noticeably suppressed.

In practice, we can first analyze the texture character-
istics of original video content in the preprocessing step,
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Fig. 2. Texture coding system. A general framework of

analysis-/synthesis-based video coding.

for example, Texture Analyzer in Fig. 2, in order to sort
textures by their significance. Subsequently, we can use
any standard compliant video encoder to encode the pSIG
areas as the main bitstream payload and apply a statistical
model to represent the perceptually insignificant textures
with model parameters encapsulated as side information.
Finally, we can use decoded areas and parsed textures to
jointly synthesize the reconstructed sequences in Texture
Synthesizer. This type of texture modeling makes good
use of statistical and psychovisual representation jointly,
generally requiring fewer bits, despite yielding visually
identical sensation, compared to the traditional hybrid
“prediction+residual” method.2 Therefore, texture analy-
sis and synthesis play a vital role in subsequent video
coding. We will discuss related techniques in the following.

1) Texture Analysis: Early developments in texture
analysis and representation can be categorized into filter-
or statistical modeling-based approaches. The Gabor filter is
one typical example of filter-based approaches, by which
the input image is convoluted with nonlinear activation
for the derivation of corresponding texture representa-
tion [84], [85]. At the same time, in order to identify
static and dynamic textures for video content, Thakur and
Chubach [86] utilized the 2-D dual-tree complex wavelet
transform and steerable pyramid transform [87], respec-
tively. To accurately capture the temporal variations in the
video, Bansal et al. [88] again suggested the use of optic
flow for dynamic texture indication and later synthesis,
where optical flow could be generated using temporal
filtering. Leveraging statistical models, such as the Markov-
ian random field (MRF) [89], [90], is an alternative way to
analyze and represent texture. For efficient texture descrip-
tion, such statistical modeling was then extended using
handcrafted local features, for example, the scale-invariant
feature transform (SIFT) [91], speeded up robust features
(SURFs) [92], and local binary patterns (LBPs) [93].

Recently, stacked DNNs have demonstrated their supe-
rior efficiency in many computer vision (CV) tasks. This
efficiency is mainly due to the powerful capacity of DNN
features to be used for video content representation. The
most straightforward scheme directly extracted features

2A comprehensive survey of texture analysis-/synthesis-based video
coding technologies can be found in [83].

from the FC6 or FC7 layer of AlexNet [94] for texture rep-
resentation. Furthermore, Cimpoi et al. [95] demonstrated
that Fisher vectorized [96] CNN features were a decent
texture descriptor candidate.

2) Texture Synthesis: Texture synthesis reverse-
engineers the analysis in preprocessing to restore pixels
accordingly. It generally includes both nonparametric
and parametric methods. For nonparametric synthesis,
texture patches are usually resampled from reference
images [97]–[99]. In contrast, the parametric method
utilizes statistical models to reconstruct the texture regions
by jointly optimizing the observation outcomes and the
model itself [87], [100], [101].

DNN-based solutions exhibit great potential for texture
synthesis applications. One notable example demonstrat-
ing this potential used a pretrained image classification-
based CNN model to generate texture patches [102].
Li and Wand [103] then demonstrated that a Markovian
GAN-based texture synthesis could offer remarkable qual-
ity improvement.

To briefly summarize, earlier “texture analy-
sis/synthesis” approaches often relied on handcrafted
models and corresponding parameters. While they have
shown good performance to some extent for a set of test
videos, it is usually very difficult to generalize them to
large-scale video data sets without fine-tuning parameters
further. On the other hand, related neuroscience studies
propose a broader definition of texture, which is more
closely related to perceptual sensation, although existing
mathematical or data-driven texture representations
attempt to fully fulfill such perceptual motives.
Furthermore, recent DNN-based schemes present a
promising perspective. However, the complexity of these
schemes has not yet been appropriately exploited. Thus,
in Section V, we will reveal a CNN-based pixel-level
texture analysis approach to segment perceptually
insignificant texture areas in a frame for compression
and later synthesis. In order to model the textures both
spatially and temporally, we introduce a new coding mode
called the “switchable texture mode” that is determined at
GoP level according to the bit rate saving.

III. O V E R V I E W O F D N N - B A S E D
V I D E O C O D I N G
A number of investigations have shown that DNNs can be
used for efficient image/video coding [104]–[107]. This
topic has attracted extensive attention in recent years,
demonstrating its potential to enhance the conventional
system with better R-D performance.

There are three major directions currently under inves-
tigation. One is resolution resampling-based video cod-
ing, by which the input videos are first downsampled
prior to being encoded, and the reconstructed videos
are upsampled or super-resolved to the same resolution
as the input [108]–[111]. This category generally devel-
ops upscaling or super-resolution algorithms on top of
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standard video codecs. The second direction under inves-
tigation is modularized neural video coding (MOD-NVC),
which has attempted to improve individual coding tools
in a traditional hybrid coding framework using learning-
based solutions. The third direction is end-to-end neural
video coding (E2E-NVC), which fully leverages the stacked
neural networks to compactly represent input image/video
in an end-to-end learning manner. In the following, we will
primarily review the latter two cases since the first one has
been extensively discussed in many other studies [112].

A. Modularized Neural Video Coding

The MOD-NVC has inherited the traditional hybrid
coding framework within which handcrafted tools are
refined or replaced using learned solutions. The general
assumption is that existing rule-based coding tools can be
further improved via a data-driven approach that lever-
ages powerful DNNs to learn robust and efficient map-
ping functions for more compact content representation.
Two great articles have comprehensively reviewed relevant
studies in this direction [106], [107]. We briefly introduce
key techniques in intraprediction/interprediction, quanti-
zation, and entropy coding. Though in-loop filtering is
another important piece in the “coding” block, due to its
similarities with postfiltering, we have chosen to review
it in quality enhancement-aimed “postprocessing” for the
sake of creating a more cohesive presentation.

1) Intraprediction: Video frame content presents highly
correlated distribution across neighboring samples spa-
tially. Thus, block redundancy can be effectively exploited
using causal neighbors. In the meantime, due to the pres-
ence of local structural dynamics, block pixels can be better
represented from a variety of angular directed predictions.

In conventional standards, such as the H.264/AVC,
H.265/HEVC, or even emerging VVC, specific prediction
rules are carefully designated to use weighted neighbors
for respective angular directions. From the H.264/AVC
to recent VVC, intracoding efficiency has been gradually
improved by allowing more fine-grained angular directions
and flexible block size/partitions. In practice, an optimal
coding mode is often determined by R-D optimization.

One would intuitively expect that coding performance
can be further improved if better predictions can be pro-
duced. Therefore, there have been a number of attempts
to leverage the powerful capacity of stacked DNNs for
better intrapredictor generation, including the CNN-based
predictor refinement suggested in [113] to reduce predic-
tion residual, additional learned mode trained using FCN
models reported in [114] and [115], using RNNs in [116],
using CNNs in [108], even using GANs in [117], and so on.
These approaches have actively utilized the neighbor pix-
els or blocks and/or other context information (e.g., mode)
if applicable, in order to accurately represent the local
structures for better prediction. Many of these approaches
have reported more than 3% BD-Rate gains against the

popular H.265/HEVC reference model. These examples
demonstrate the efficiency of DNNs in intraprediction.

2) Interprediction: In addition to the spatial intrapredic-
tion, temporal correlations have also been exploited via
interprediction, by which previously reconstructed frames
are utilized to generate interpredictor for compensation
using displaced motion vectors.

Temporal prediction can be enhanced using references
with higher fidelity and more fine-grained motion compen-
sation. For example, fractional-pel interpolation is usually
deployed to improve prediction accuracy [118]. On the
other hand, motion compensation with flexible block parti-
tions is another major contributor to intercoding efficiency.

Similarly, earlier attempts have been made to uti-
lize DNN solutions for better intercoding. For instance,
CNN-based interpolations were studied in [119]–[121]
to improve the half-pel samples. Besides, an additional
virtual reference could be generated using CNN models for
improved R-D decision in [122]. Xia et al. [123] further
extended this approach using multiscale CNNs to create
an additional reference closer to the current frame by
which accurate pixel-wise motion representation could be
used. Furthermore, conventional references could be also
enhanced using DNNs to refine the compensation [124].

3) Quantization and Entropy Coding: Quantization and
entropy coding are used to remove statistical redundancy.
Scalar quantization is typically implemented in video
encoders to remove insensitive high-frequency compo-
nents, without losing the perceptual quality, while saving
the bit rate. Recently, a three-layer DNN was developed
to predict the local visibility threshold CT for each CTU,
by which more accurate quantization could be achieved via
the connection between CT and actual quantization step
size. This development led to noticeable R-D improvement,
for example, up to 11%, as reported in [125].

Context-adaptive binary arithmetic coding (CABAC) and
its variants are techniques that are widely adopted to
encode binarized symbols. The efficiency of CABAC is
heavily reliant on the accuracy of probability estima-
tion in different contexts. Since the H.264/AVC, hand-
crafted probability transfer functions (developed through
exhaustive simulations and typically implemented using
lookup tables) were utilized. Pfaff et al. [115] and
Song et al. [126] demonstrated that a combined FCN and
CNN model could be used to predict intramode probability
for better entropy coding. Another example of a combined
FCN and CNN model was presented in [127] to accurately
encode transform indexes via stacked CNNs. Likewise,
in [128], the intra-dc coefficient probability could also be
estimated using DNNs for better performance.

All of these explorations have reported positive R-D
gains when incorporating DNNs in traditional hybrid
coding frameworks. A companion H.265-/HEVC-based
software model is also offered by Liu et al. [106] to
advance the potential for society to further pursue this
line of exploration. However, integrating DNN-based tools
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could exponentially increase both the computational and
space complexity. Therefore, creating harmony between
learning-based and conventional rule-based tools under
the same framework requires further investigation. It is
also worth noting that an alternative approach is currently
being explored in parallel. In this approach, researchers
suggest using an E2E-NVC framework to drive the raw
video content representation via layered feature extrac-
tion, activation, suppression, and aggregation, mostly in a
supervised learning fashion, instead of refining individual
coding tools.

B. End-to-End Neural Video Coding

Representing raw video pixels as compactly as possi-
ble by massively exploiting its spatiotemporal and sta-
tistical correlations is the fundamental problem of lossy
video coding. Over decades, traditional hybrid cod-
ing frameworks have utilized pixel-domain intrapredic-
tion/interprediction, transform, entropy coding, and so
on to fulfill this purpose. Each coding tool is extensively
examined under a specific codec structure to carefully
justify the tradeoff between R-D efficiency and complex-
ity. This process led to the creation of well-known inter-
national or industry standards, such as the H.264/AVC,
H.265/HEVC, and AV1.

On the other hand, DNNs have demonstrated a powerful
capacity for video spatiotemporal feature representation
for vision tasks, such as object segmentation and tracking.
This naturally raises the question of whether it is possible
to encode those spatiotemporal features in a compact
format for efficient lossy compression.

Recently, we have witnessed the growth of video coding
technologies that rely completely on end-to-end supervised
learning. Most learned schemes still closely follow the
conventional intra/interframe definition by which different
algorithms are investigated to efficiently represent the
intraspatial textures, intermotion, and the interresiduals
(if applicable) [104], [129]–[131]. Raw video frames are
fed into stacked DNNs to extract, activate, and aggregate
appropriate compact features (at the bottleneck layer) for
quantization and entropy coding. Similarly, R-D optimiza-
tion is also facilitated to balance the rate and distortion
tradeoff. In the following, we will briefly review the afore-
mentioned key components.

1) Nonlinear Transform and Quantization: The AE or VAE
architectures are typically used to transform the intra-
texture or interresidual into compressible features. For
example, Toderic et al. [132] first applied fully connected
recurrent AEs for variable-rate thumbnail image compres-
sion. Their work was then improved in [133] and [134]
with the support of full-resolution image, unequal bit allo-
cation, and so on. Variable bit rate is intrinsically enabled
by these recurrent structures. The recurrent AEs, however,
suffer from higher computational complexity at higher bit
rates because more recurrent processing is desired. Alter-
natively, convolutional AEs have been extensively studied in

the past years, where different bit rates are adapted by set-
ting a variety of λ’s to optimize the R-D tradeoff. Note that
different network models may be required for individual
bit rates, making hardware implementation challenging
(e.g., model switch from one-bit rate to another). Recently,
conditional convolution [135] and scaling factor [136]
were proposed to enable variable-rate compression using
a single or very limited network model without noticeable
coding efficiency loss, which makes the convolutional AEs
more attractive for practical applications.

To generate a more compact feature representation,
Balle et al. [105] suggested replacing the traditional
nonlinear activation, for example, ReLU, using general-
ized divisive normalization (GDN) that is theoretically
proved to be more consistent with human visual per-
ception. A subsequent study [137] revealed that GDN
outperformed other nonlinear rectifiers, such as ReLU,
leakyReLU, and tan h, in compression tasks. Several follow-
up studies [138], [139] directly applied GDN in their
networks for compression exploration.

Quantization is a nondifferentiable operation, basically
converting arbitrary elements into symbols with a lim-
ited alphabet for efficient entropy coding in compression.
Quantization must be derivable in the end-to-end learning
framework for backpropagation. A number of methods,
such as adding uniform noise [105], stochastic round-
ing [132], and soft-to-hard vector quantization [140],
were developed to approximate a continuous distribution
for differentiation.

2) Motion Representation: Chen et al. [104] developed
the DeepCoder where a simple convolutional AE was
applied for both intracoding and residual coding at fixed
32×32 blocks, and block-based motion estimation in tradi-
tional video coding was reused for temporal compensation.
Lu et al. [141] introduced the optical flow for motion
representation in their DVC work, which, together with
the intracoding in [142], demonstrated similar perfor-
mance compared with the H.265/HEVC. However, coding
efficiency suffered from a sharp loss at low bit rates.
Chen et al. [136] extended their nonlocal attention opti-
mized image compression (NLAIC) for intraencoding and
residual encoding and applied second-order flow-to-flow
prediction for more compact motion representation, show-
ing consistent R-D gains across different contents and bit
rates.

Motion can also be implicitly inferred via temporal inter-
polation. For example, Wu et al. [143] applied RNN-based
frame interpolation. Together with the residual compensa-
tion, RNN-based frame interpolation offered comparable
performance to the H.264/AVC. Djelouah et al. [144]
furthered interpolation-based video coding by utilizing
advanced optical flow estimation and feature domain
residual coding. However, temporal interpolation usually
led to an inevitable structural coding delay.

Another interesting exploration made by Ripple et al.
in [130] was to jointly encode motion flow and residual
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using compound features, where a recurrent state was
embedded to aggregate multiframe information for effi-
cient flow generation and residual coding.

3) R-D Optimization: Li et al. [145] utilized a
separate three-layer CNN to generate an importance
map for spatial-complexity-based adaptive bit allocation,
leading to noticeable subjective quality improvement.
Mentzer et al. [140] further utilized the masked bottle-
neck layer to unequally weight features at different spa-
tial locations. Such importance map embedding is a
straightforward approach to end-to-end training. Impor-
tance derivation was later improved with the nonlocal
attention [146] mechanism to efficiently and implicitly
capture both global and local significance for better com-
pression performance [136].

Probabilistic models play a vital role in data compres-
sion. Assuming the Gaussian distribution for feature ele-
ments, Ballé et al. [142] utilized hyperpriors to estimate
the parameters of the Gaussian scale model (GSM) for
latent features. Later, Hu et al. [147] used hierarchical
hyperpriors (coarse-to-fine) to improve the entropy mod-
els in multiscale representations. Minnen et al. [148]
improved the context modeling using joint autoregressive
spatial neighbors and hyperpriors based on the GMM.
Autoregressive spatial priors were commonly fused by
PixelCNNs or PixelRNNs [149]. Reed et al. [150] fur-
ther introduced multiscale PixelCNNs, yielding competi-
tive density estimation and great boost in speed [e.g.,
from O(N) to O(log N)]. Prior aggregation (PA) was later
extended from 2-D architectures to 3-D PixelCNNs [140].
Channelwise weights sharing-based 3-D implementations
could greatly reduce network parameters without perfor-
mance loss. Parallel 3-D PixelCNNs for practical decoding
were presented by Chen et al. [136]. Previous methods
accumulated all the priors to estimate the probability based
on a single GMM assumption for each element. Recent
studies in [151] and [152] have shown that weighted
GMMs can further improve coding efficiency.

Pixel error, such as MSE, was one of the most popular
loss functions used. Concurrently, SSIM (or MS-SSIM) was
also adopted because of its greater consistency with visual
perception. Simulations revealed that SSIM-based loss can
improve reconstruction quality, especially at low bit rates.
Toward the perceptual-optimized encoding, perceptual
losses that were measured by adversarial loss [153]–[155]
and VGG loss [156] were embedded in learning to produce
visually appealing results.

Though E2E-NVC is still in its infancy, its fast-growing
R-D efficiency holds a great deal of promise. This is espe-
cially true, given that we can expect neural processors to
be deployed massively in the near future [157].

IV. O V E R V I E W O F D N N - B A S E D
P O S T P R O C E S S I N G
Compression artifacts are inevitably present in both tradi-
tional hybrid coding frameworks and learned compression

approaches, for example, blockiness, ringing, and cartoon-
ishness, severely impairing visual sensation and QoE. Thus,
quality enhancement filters are often applied as a post-
filtering step or in-loop module to alleviate compression
distortions. Toward this goal, adaptive filters are usually
developed to minimize the error between original and
distorted samples.

A. In-Loop Filtering

Existing video standards are mainly utilizing the in-
loop filters to improve the subjective quality of recon-
struction and also to offer better R-D efficiency due to
enhanced references. Examples include deblocking [24],
SAO [25], constrained directional enhancement filter
(CDEF) [158], loop-restoration (LR) [159], adaptive loop
filter (ALF) [160], and so on.

Recently, numerous CNN models have been developed
for in-loop filtering via a data-driven approach to learn the
mapping functions. It is worth pointing out that prediction
relationships must be carefully examined when designing
in-loop filters due to the frame referencing structure and
potential error propagation. Earlier explorations of this
subject have mainly focused on designing DNN-based fil-
ters for intracoded frames, particularly by trading network
depth and parameters for better coding efficiency. For
example, IFCNN [161] and VRCNN [162] are shallow
networks with ≈50 000 parameters, providing up to 5%
BD-Rate savings for the H.265/HEVC intraencoder. More
gains can be obtained if we use a deeper and denser
network [163]–[165], for example, 5.7% BD-Rate gain
reported in [163] by using the model with 3 340 000 para-
meters and 8.50% BD-Rate saving obtained in [166] by
using the model with 2 298 160 parameters. The more
parameters a model has, the more complex it is. Unfor-
tunately, greater complexity limits the network’s potential
for practical application. Such intraframe-based in-loop
filters treat decoded frames equally, without the consider-
ation of in-loop interprediction dependence. Nevertheless,
the aforementioned networks can be used in postfiltering
out of the coding loop.

It is necessary to include temporal prediction depen-
dence while designing the in-loop CNN-based filters for
interframe coding. Some studies leveraged prior knowl-
edge from the encoding process to assist the CNN training
and inference. For example, Jia et al. [167] incorporated
the colocated block information for in-loop filtering.
Meng et al. [168] utilized the coding unit partition for
further performance improvement. Li and Yu [169] input
both the reconstructed frame and the difference between
the reconstructed and predicted pixels to improve the cod-
ing efficiency. Applying prior knowledge in learning may
improve the coding performance, but it further complicates
the CNN model by involving additional information in
the networks. On the other hand, the contribution of this
prior knowledge is quite limited because such additional
priors are already implicitly embedded in the reconstructed
frame.
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If CNN-based in-loop filtering is applied to frame I0,
the impact will be gradually propagated to frame I1

that has frame I0 as the reference. Subsequently, I1 is
the reference of I2 and so forth.3 If frame I1 is filtered
again by the same CNN model, an overfiltering problem
will be triggered, resulting in severely degraded perfor-
mance, as analyzed in [170]. To overcome this challenging
problem, a CNN model called SimNet was built to carry
the relationship between the reconstructed frame and its
original frame in [171] to adaptively skip filtering oper-
ations in intercoding. SimNet reported 7.27% and 5.57%
BD-Rate savings for intracoding and intercoding of AV1,
respectively. A similar skipping strategy was suggested by
Chen et al. [172] to enable a wide activation residual
network (WARN), yielding 14.42% and 9.64% BD-Rate
savings for respective intracoding and intercoding on the
AV1 platform.

Alternative solutions resort to the more expensive R-D
optimization to avoid the overfiltering problem. For exam-
ple, Yin et al. [173] developed three sets of CNN filters
for luma and chroma components, where the R-D optimal
CNN model is used and signaled in the bitstream. Similar
ideas are developed in [174] and [175] as well, in which
multiple CNN models are trained and the R-D optimal
model is selected for inference.

It is impractical to use deeper and denser CNN models
in applications. It is also very expensive to conduct R-D
optimization to choose the optimal one from a set of pre-
trained models. Note that a limited number of pretrained
models are theoretically insufficient to be generalized for
large-scale video samples. To this end, in Section VII-A,
we introduce a guided-CNN scheme that adapts shallow
CNN models according to the characteristics of input video
content.

B. Postfiltering

Postfiltering is generally applied to the compressed
frames at the decoder side to further enhance the video
quality for better QoE.

Previous in-loop filters designated for intracoded
frames can be reused for single-frame postfiltering
[162], [176]–[184]. Appropriate retraining may be
applied in order to better capture the data characteristics.
However, single-frame postfiltering may introduce quality
fluctuation across frames. This may be due to the limited
capacity of CNN models to deal with a great number
of video contents. Thus, multiframe postfiltering can be
devised to massively exploit the correlation across suc-
cessive temporal frames. By doing so, it not only greatly
improves the single-frame solution, but also offers better
temporal quality over time.

Typically, a two-step strategy is applied for multi-
frame postfiltering. First, neighboring frames are aligned
to the current frame via (pixel-level) motion estimation

3Even though more advanced interreferencing strategies can be
devised, interpropagation-based behavior remains the same.

and compensation (MEMC). Then, all aligned frames are
fed into networks for high-quality reconstruction. Thus,
the accuracy of MEMC greatly affects reconstruction per-
formance. In applications, learned optical flow, such as
FlowNet [185], FlowNet2 [186], PWC-Net [187], and
TOFlow [188], are widely used.

Some exploration has already been made in this arena:
Bao et al. [189] and Wang et al. [190] implemented
a general video quality enhancement framework for
denoising, deblocking, and super-resolution, where
Bao et al. [189] employed the FlowNet and
Wang et al. [190] used pyramid, cascading, and
deformable convolutions to, respectively, align frames
temporally. Meanwhile, Yang et al. [191] proposed a
multiframe quality enhancement framework called MFQE-
1.0, in which a spatial transformer motion compensation
(STMC) network is used for alignment, and a deep quality
enhancement network (QE-net) is employed to improve
reconstruction quality. Then, Guan et al. [192] upgraded
MFQE-1.0 to MFQE-2.0 by replacing QE-net using a
dense CNN model, leading to better performance and less
complexity. Later on, Tong et al. [193] suggested using
FlowNet2 for temporal frame alignment (instead of default
STMC), yielding 0.23-dB PSNR gain over the original
MFQE-1.0. Similarly, FlowNet2 is also used in [194] for
improved efficiency.

All of these studies suggested the importance of tempo-
ral alignment in postfiltering. Thus, in the subsequent case
study (see Section VII-B), we first examine the efficiency of
alignment and then further discuss the contributions from
respective intracoded and intercoded frames for the quality
enhancement of final reconstruction. This will help audi-
ences gain a deeper understanding of similar postfiltering
techniques.

V. C A S E S T U D Y F O R
P R E P R O C E S S I N G : S W I T C H A B L E
T E X T U R E - B A S E D V I D E O C O D I N G
This section presents a switchable texture-based video
preprocessing that leverages DNN-based semantic under-
standing for subsequent coding improvement. In short,
we exploit DNNs to accurately segment “perceptually
InSIGnifcant” (pInSIG) texture areas to produce a corre-
sponding pInSIG mask. In many instances, this mask drives
the encoder to perform separately for pInSIG textures
that are typically inferred without additional residuals
and “pSIG” areas elsewhere using the traditional hybrid
coding method. This approach is implemented on top of
the AV1 codec [195]–[197] by enabling the GoP-level
switchable mechanism, resulting in noticeable bit rate sav-
ings for both standard test sequences and additional chal-
lenging sequences from the YouTube UGC data set [198],
under similar perceptual quality. The method that we
propose is a pioneering work that integrates learning-
based texture analysis and reconstruction approaches
with modern video codec to enhance video compression
performance.
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Fig. 3. Texture analyzer. The proposed semantic segmentation

network using PSPNet [199] and ResNet-50 [200].

A. Texture Analysis

Our previous attempt [201] yielded encouraging bit rate
savings without decreasing visual quality. This was accom-
plished by perceptually differentiating pInSIG textures and
other areas to be encoded in a hybrid coding framework.
However, the corresponding texture masks were derived
using traditional methods, at the coding block level. On the
other hand, building upon advancements created by DNNs
and large-scale labeled data sets (e.g., ImageNet [202],
COCO [203], and ADE20K [204]), learning-based seman-
tic scene segmentation algorithms [199], [204], [205]
have been tremendously improved to generate accurate
pixel-level texture masks.

In this work, we first rely on the powerful
ResNet50 [200] with dilated convolutions [206], [207] to
extract feature maps that effectively embed the content
semantics. We then introduce the pyramid pooling module
from PSPNet [199] to produce a pixel-level semantic
segmentation map shown in Fig. 3. Our implementation
starts with a pretrained PSPNet model generated using the
MIT SceneParse150 [208] as a scene parsing benchmark.
We then retrain the model on a subset of a densely
annotated data set ADE20K [204]. In the end, the model
offers a pixel segmentation accuracy of 80.23%.

It is worthwhile to note that such pixel-level segmenta-
tion may result in the creation of a number of semantic
classes. Nevertheless, this study suggests grouping similar
texture classes commonly found in nature scenes together
into four major categories, for example, “earth and grass,”
“water, sea, and river,” “mountain and hill,” and “tree.”
Each texture category would have an individual segmen-
tation mask to guide the compression performed by the
succeeding video encoder.

B. Switchable Texture-Based Video Coding

Texture masks are generally used to identify texture
blocks and perform the encoding of texture blocks and
nontexture blocks separately, as illustrated in Fig. 4(a).
In this case study, the AV1 reference software platform is
selected to exemplify the efficiency of our proposal.

1) Texture Blocks: Texture and nontexture blocks are
identified by overlaying the segmentation mask from the

texture analyzer on its corresponding frame. These frame-
aligned texture masks produce pixel-level accuracy, which
is capable of supporting arbitrary texture shapes. How-
ever, in order to support the block processing commonly
adopted by video encoders, we propose refining original
pixel-level masks to their block-based representations. The
minimum size of a texture block is 16×16. In order to
avoid boundary artifacts and maintain temporal consis-
tency, we implemented a conservative two-step strategy to
determine the texture block. First, the block itself must
be fully contained in the texture region marked using
the pixel-level mask. Then, its warped representation to
temporal references (e.g., the preceding and succeeding
frames in the encoding order) has to be inside the masked
texture area of corresponding reference frames as well.
Finally, these texture blocks are encoded using the texture
mode, and nontexture blocks are encoded as usual using
the hybrid coding structure.

2) Texture Mode: A coded block of the texture mode is
inferred by its temporal reference using the global motion
parameters without incurring any motion compensation
residuals. In contrast, nontexture blocks are compressed
using a hybrid “prediction+residual” scheme. For each cur-
rent frame and any one of its reference frames, AV1 syntax
specifies only one set of global motion parameters at the
frame header. Therefore, to comply with the AV1 syntax,

Fig. 4. Texture mode and switchable control scheme. (a) Texture

mode encoder implementation. (b) Switchable texture mode

decision.
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our implementation only considers one texture class for
each frame. This guarantees the general compatibility of
our solution to existing AV1 decoders. We further mod-
ify the AV1 global motion tool to estimate the motion
parameters based on the texture regions of the current
frame and its reference frame. We use the same feature
extraction and model fitting approach as in the global
motion coding tool in order to provide a more accurate
motion model for the texture regions. This is done to
prevent visual artifacts on the block edges between the
texture and nontexture blocks in the reconstructed videos.
Although we have demonstrated our algorithms using the
AV1 standard, we expect that the same methodology can
be applied to other standards. For instance, when using
the H.265/HEVC standard, we can leverage the SKIP mode
syntax to signal the texture mode instead of utilizing the
global motion parameters.

Previous discussions have suggested that the texture
mode is enabled along with interprediction. Our exten-
sive studies have also demonstrated that it is better
to activate the texture mode in frames where bidi-
rectional predictions are allowed (e.g., B-frames), for
the optimal tradeoff between bit rate saving and per-
ceived quality. As will be shown in the following per-
formance comparisons, we use an eight-frame GoP (or
golden-frame (GF) group defined in AV1) to exemplify
the texture mode in every other frame, by which the
compound prediction from bidirectional references can
be facilitated for prediction warping. Such bidirectional
prediction could also alleviate possible temporal quality
flickering.

3) Switchable Optimization: In our previous work [209],
the texture mode was enabled for every B frame, demon-
strating significant bit rate reduction at the same level of
perceptual sensation in most standard test videos, in com-
parison to the AV1 anchor. However, some videos did cause
the model to perform more poorly. One reason for this
effect is that higher QP settings typically incur more all-
zero residual blocks. Alternatively, the texture mode is also
content-dependent: a relatively small number of texture
blocks may be present for some videos. Both scenarios
limit the bit rate savings, and overhead of extra bits is
mandatory for global motion signaling if texture mode is
enabled.

To address these problems, we introduce a switchable
scheme to determine whether texture mode could be
potentially enabled for a GoP or a GF group. The criteria
for switching are based on the texture region percentage
that is calculated as the average ratio of texture blocks in B-
frames and on the potential bit rate savings with or without
texture mode. Fig. 4(b) illustrates the switchable tex-
ture mode decision. Currently, we use bit rate saving as
a criterion for switch decisions when the texture mode
is enabled. This assumes that perceptual sensation will
remain nearly the same since these texture blocks are
perceptually insignificant.

C. Experimental Results

We selected sequences with texture regions from stan-
dard test sequences and the more challenging YouTube
UGC data set4 [198]. The YouTube UGC data set is a sample
selected from thousands of user-generated content (UGC)
videos uploaded to YouTube. The names of the UGC videos
follow the format of Category_Resolution_UniqueID.
We calculate the bit rate savings at different QP values
for 150 frames of the test sequences. In our experiments,
we use the following parameters for the AV1 codec5 as
the baseline: eight-frame GoP or GF group using random
access configuration; 30 FPS; constant quality rate control
policy; multilayer coding structure for all GF groups; and
maximum intraframe interval at 150. We evaluate the
performance of our proposed method in terms of bit rate
savings and perceived quality.

1) Coding Performance: To evaluate the performance of
the proposed switchable texture mode method, bit rate
savings at four quantization levels (QP = 16, 24, 32,
and 40) are calculated for each test sequence in compari-
son to the AV1 baseline.

a) Texture analysis: We compare two DNN-based texture
analysis methods [209], [211] with a handcrafted feature-
based approach [210] for selected standard test sequences.
Results are shown in Table 1. A positive bit rate saving
(%) indicates a reduction compared with the AV1 base-
line. Compared to the feature-based approach, DNN-based
methods show improved performance in terms of bit rate
saving. The feature-based approach relies on color and
edge information to generate the texture mask and is
less accurate and consistent both spatially and temporally.
Therefore, the number of blocks that are reconstructed
using texture mode is usually much smaller than that of
DNN-based methods. Note that the parameters used in
the feature-based approach require manually tuning for
each video to optimize the texture analysis output. The
pixel-level segmentation [209] shows further advantages
compared with the block-level method [211] since the
CNN model does not require block size to be fixed.

b) Switchable scheme We also compare the proposed
method, also known as, tex-switch, with our previous work
in [209], also known as, tex-allgf, which enables texture
mode for all frames in a GF group. Both methods use
the same encoder setting for a fair comparison. Bit rate
saving results for various videos at different resolutions
against the AV1 baseline are shown in Table 2. A positive
bit rate saving (%) indicates a reduction compared with
the AV1 baseline.

In general, compared to the AV1 baseline, the coding
performance of tex-allgf shows significant bit rate sav-
ings at lower QPs. However, as QP increases, the savings
are diminished. In some cases, tex-allgf exhibits poorer
coding performance than the AV1 baseline at a high QP

4https://media.withyoutube.com/
5AV1 codec change-Id: Ibed6015aa7cce12fcc6f314ffde76624df

4ad2a1.
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Table 1 Bit Rate Saving (%) Comparison Between Handcraft Feature (FM) [210], Block-Level DNN (BM) [211], and Pixel-Level DNN (PM) [209] Texture

Analysis Against the AV1 Baseline for Selected Standard Test Sequences Using tex-allfg Method

(e.g., negative numbers at QP 40). At a high QP, most
blocks have zero residual due to heavy quantization, lead-
ing to very limited margins for bit rate savings using
texture mode. In addition, few extra bits are required
for the signaling of global motion of texture mode coded
blocks. The bit savings gained through residual skipping in
texture mode still cannot compensate for the bits used as
overhead for the side information.

Furthermore, the proposed tex-switch method retains
the greatest bit rate savings offered by tex-allgf and
resolves the loss at higher QP settings. As shown in Table 2,
negative numbers are mostly removed (highlighted in
green) by the introduction of a GoP-level switchable tex-
ture mode. In some cases where tex-switch has zero bit rate
savings compared to the AV1 baseline, the texture mode
is completely disabled for all the GF groups, whereas tex-
allgf has a loss. In a few cases, however, tex-switch has
less bit rate saving than tex-allgf (highlighted in red). This
is because the bit rate saving performance of the first GF
group in the scene fails to accurately represent the whole
scene in some of the UGC sequences with short scene cuts.
A possible solution is to identify additional GF groups that
show potential bit rate savings and enable texture mode
for these GF groups.

2) Subjective Evaluation: Although significant bit rate
savings have been achieved compared to the AV1 baseline,
it is acknowledged that identical QP values do not neces-
sarily imply the same video quality. We have performed a
subjective visual quality study with 20 participants. Recon-
structed videos produced by the proposed method (tex-
switch) and the baseline AV1 codec at QP = 16, 24, 32, and
40 are arranged randomly and assessed by the participants
using a double stimulus continuous quality scale (DSCQS)
method [212]. Subjects have been asked to choose among
three options: the first video has better visual quality,
the second video has better visual quality, or there is no
difference between the two versions.

The result of this study is summarized in Fig. 5. The
“Same Quality” indicates the percentage of participants
that cannot tell the difference between the reconstructed
videos by the AV1 baseline codec and the proposed
method tex-switch (69.03% on average). The term “tex-
switch” indicates the percentage of participants that prefer
the reconstructions by the proposed method tex-switch
(14.32% on average); the “AV1” indicates the percentage
of participants who think the visual quality of the recon-
structed videos using the AV1 baseline is better (16.65%
on average).

Table 2 Bit Rate Saving (%) Comparison for tex-allgf and tex-switch Methods Against the AV1 Baseline

Vol. 109, No. 9, September 2021 | PROCEEDINGS OF THE IEEE 1505



Ding et al.: Advances in Video Compression System Using DNN

Fig. 5. Subjective evaluation of visual preference. Results show

average subjective preference (%) for QP � 16, 24, 32, and

40 compared between AV1 baseline and proposed switchable

texture mode.

We observe that the results are sequence-dependent,
and both spatial and temporal artifacts can appear in the
reconstructed videos. The main artifacts come from the
inaccurate pixel-based texture mask. For example, in some
frames of TelevisionClip_360P-74dd sequence, the texture
masks include parts of the moving objects in the fore-
ground, which are reconstructed using the texture mode.
Since the motion of the moving objects is different from the
motion of the texture area, there are noticeable artifacts
around those parts of the frame. To further improve the
accuracy of region analysis using DNN-based preprocess-
ing, we plan to incorporate an in-loop perceptual visual
quality metric for optimization during the texture analysis
and reconstruction.

D. Discussion and Future Direction

We proposed a DNN-based texture analysis/synthesis
coding tool for the AV1 codec. Experimental results show
that our proposed method can achieve noticeable bit rate
reduction with satisfying visual quality for both standard
test sets and UGCs, which is verified by a subjective study.
We envision that video coding driven by semantic under-
standing will continue to improve in terms of both quality
and bit rate, especially by leveraging advances of deep
learning methods. However, there remain several open
challenges that require further investigation.

Accuracy of the region analysis is one of the major chal-
lenges for integrating semantic understanding into video
coding. However, recent advances in scene understand-
ing have significantly improved the performance of the
region analysis. Visual artifacts are still noticeable when
a nontexture region is incorrectly included in the texture
mask, particularly if the analysis/synthesis coding system
is open loop. One potential solution is to incorporate
some perceptual visual quality measures in-loop during the
texture region reconstruction.

Benchmark video segmentation data sets are important
for developing machine learning methods for video-based

semantic understanding. Existing segmentation data sets
are either based on images with texture [213], contain
general video objects only [214], [215], or focus on visual
quality but lack segmentation ground truth.

VI. C A S E S T U D Y F O R C O D I N G :
E N D - T O - E N D N E U R A L V I D E O C O D I N G
This section presents a framework for E2E-NVC.
We include a discussion of its key components as well as
its overall efficiency. Our proposed method is extended
from our pioneering work in [104] but with significant
performance improvements by allowing fully end-to-end
learning-based spatiotemporal feature representation.
More details can be found in [131], [136], and [216].

A. Framework

As with all modern video encoders, the proposed E2E-
NVC compresses the first frame in each GoP as an
intraframe using a VAE-based compression engine (neuro-
Intra). It codes the remaining frames in each GoP using
motion-compensated prediction. As shown in Fig. 6(a),
the proposed E2E-NVC uses the VAE compressor (neuro-
Motion) to generate the multiscale motion field between
the current frame and the reference frame. Then, a multi-
scale motion compensation network (MS-MCN) takes mul-
tiscale compressed flows, warps the multiscale features of
the reference frame, and combines these warped features
to generate the predicted frame. The prediction resid-
ual is then coded using another VAE-based compressor
(neuro-Res).

A low-delay E2E-NVC-based video encoder is speci-
ifically illustrated in this work. Given a GoP X =

{X1, X2, . . . , Xt}, we first encode X1 using the neuro-Intra-
module and have its reconstructed frame X̂1. The following
frame X2 is encoded predictively, using neuro-Motion,
MS-MCN, and neuro-Res together, as shown in Fig. 6(a).
Note that MS-MCN takes the multiscale optical flows
{�f1

d , �f2
d , . . . , �fs

d} derived by the pyramid decoder in neuro-
Motion and then uses them to generate the predicted
frame X̂

p

2 by multiscale motion compensation. Displaced
interresidual r2 = X2−X̂

p

2 is then compressed in neuro-Res,
yielding the reconstruction r̂2. The final reconstruction X̂2

is given by X̂2 = X̂
p

2 + r̂2. All of the remaining P-frames in
the GoP are then encoded using the same procedure.

Fig. 6(b) illustrates the general architecture of the VAE
model. The VAE model includes the main encoder–decoder
pair that is used for latent feature analysis and synthesis,
as well as a hyper-encoder–decoder for hyperprior genera-
tion. The main encoder Em uses four stacked CNN layers.
Each convolutional layer employs stride convolutions to
achieve downsampling (at a factor of 2 in this example)
and cascaded convolutions for efficient feature extraction
(here, we use three ResNet-based residual blocks [200]).6

6We choose to apply cascaded ResNets for stacked CNNs because
they are highly efficient and reliable. Other efficient CNN architectures
could also be applied.
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Fig. 6. E2E-NVC. This E2E-NVC in (a) consists of modularized

intracoding and intercoding, where intercoding utilizes respective

motion and residual coding. Each component is well exploited using

a stacked CNN-based VAE for efficient representations of intrapixels,

displaced interresiduals, and intermotions. All modularized

components are interconnected and optimized in an end-to-end

manner. (b) General VAE model applies stacked convolutions

(e.g., 5×5) with main encoder–decoder (Em, Dm) and

hyper-encoder–decoder pairs (Eh, Dh), where the main encoder Em

includes four major convolutional layers (e.g., convolutional

downsampling and three residual blocks (×3) robust feature
processing [200]). Hyperdecoder Dh mirrors the steps in

hyperencoder Eh for hyperprior information generation. PA engine

collects the information from hyperprior, autoregressive spatial

neighbors, and temporal correspondences (if applicable) for the

main decoder Dm to reconstruct the input scene. Nonlocal attention

is adopted to simulate the saliency masking at bottlenecks, and the

rectified linear unit (ReLU) is implicitly embedded with convolutions

for enabling the nonlinearity. “Q” is for quantization. AE and AD are

for respective arithmetic encoding and decoding. 2↓ and 2↑ are
downsampling and upsampling at a factor of 2 for both horizontal

and vertical dimensions.

We use two-layer hyperencoder Eh to further generate the
subsequent hyperpriors as side information, which is used
in the entropy coding of the latent features.

We apply stacked convolutional layers with a limited
(3×3) receptive field to capture the spatial locality. These
convolutional layers are stacked in order to simulate lay-
erwise feature extraction. These same ideas are used in
many relevant studies [142], [148]. We utilize the simplest
ReLU as the nonlinear activation function (although other
nonlinear activation functions, such as the GDN in [105],
could be used as well).

The HVS operates in two stages. First, the observer
scans an entire scene to gain a complete understanding of
everything within the field of vision. Second, the observer

focuses their attention on specific salient regions. During
image and video compression, this mechanism of visual
attention can be used to ensure that bit resources are
allocated where they are most needed (e.g., via unequal
feature quantization) [140], [217]. This allows resources
to be assigned such that salient areas are more accurately
reconstructed, while resources are conserved in the recon-
struction of less-salient areas. To more accurately discern
salient from nonsalient areas, we adopt the nonlocal atten-
tion module (NLAM) at the bottleneck layers of both the
main encoder and hyperencoder, prior to quantization,
in order to include both global and local information.

To enable more accurate conditional probability den-
sity modeling for entropy coding of the latent features,
we introduce the PA engine that fuses the inputs from the
hyperpriors, spatial neighbors, and temporal context (if
applicable).7 Information theory suggests that more accu-
rate context modeling requires fewer resources (e.g., bits)
to represent information [218]. For the sake of simplicity,
we assume the latent features (e.g., motion, image pixel,
and residual) are following the Gaussian distribution as
in [147] and [148]. We use the PA engine to derive the
mean and standard deviation of the distribution for each
feature.

B. Neural Intracoding

Our neuro-Intra is a simplified version of the NLAIC that
was originally proposed in [136].

One major difference between the NLAIC and the VAE
model using autoregressive spatial context in [148] is the
introduction of the NLAM inspired by Zhang et al. [219].
In addition, we have applied 3-D 5 × 5 × 5 masked CNN8

to extract spatial priors, which are fused with hyperpriors
in PA for entropy context modeling (e.g., the bottom part
of Fig. 9). Here, we have assumed the single Gaussian
distribution for the context modeling of entropy coding.
Note that temporal priors are not used for intrapixel and
interresidual in this article by only utilizing the spatial
priors.

The original NLAIC applies multiple NLAMs in both
main and hypercoders, leading to excessive memory con-
sumption at a large spatial scale. In E2E-NVC, NLAMs
are only used at the bottleneck layers for both main and
hyper-encoder–decoder pairs, allowing bits to be allocated
adaptively.

To overcome the nondifferentiability of the quantization
operation, quantization is usually simulated by adding
uniform noise in [142]. However, such noise augmentation
is not exactly consistent with the rounding in inference,
which can yield performance loss, as reported by [135].
Thus, we apply universal quantization (UQ) [135] in
neuro-Intra. UQ is used for neuro-Motion and neuro-Res

7Intracoding and residual coding only use joint spatial and hyperpri-
ors without temporal inference.

8This 5×5×5 convolutional kernel shares the same parameters for
all channels, offering great model complexity reduction compared with
the 2-D CNN-based solution in [148].
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Fig. 7. Efficiency of neuro-Intra. PSNR versus rate performance of

neuro-Intra in comparison to NLAIC [136], Minnen (2018) [148], BPG

(4:4:4), and JPEG2000. Note that the curves for neuro-Intra and

NLAIC overlap.

as well. When applied to the common Kodak data set,
neuro-Intra performs NLAIC [136] and outperforms Min-
nen (2018) [148], BPG (4:4:4), and JPEG2000, as shown
in Fig. 7.

C. Neural Motion Coding and Compensation

Interframe coding plays a vital role in video coding. The
key is how to efficiently represent motion in a compact
format for compensation. In contrast to the pixel-domain
block-based MEMC in conventional video coding, we rely
on optical flow to accurately capture the temporal infor-
mation for motion compensation.

To improve interframe prediction, we extend our earlier
work [131] to multiscale motion generation and compen-
sation. This multiscale motion processing directly trans-
forms two concatenated frames (where one frame is the
reference from the past, and one is the current frame)
into quantized temporal features that represent the inter-
frame motion. These quantized features are decoded into
compressed optical flow in an unsupervised way for frame
compensation via warping. This one-stage scheme does not
require any pretrained flow network, such as FlowNet2 or
PWC-net, to generate the optical flow explicitly. It allows
us to quantize the motion features rather than the optical
flow and to train the motion feature encoder and decoder
together with explicit consideration of quantization and
rate constraint.

The neuro-Motion module is modified for multiscale
motion generation, where the main encoder is used for fea-
ture fusion. We replace the main decoder with a pyramidal
flow decoder, which generates the multiscale compressed
optical flows (MCFs). MCFs will be processed together
with the reference frame, using an MS-MCN to obtain
the predicted frame efficiently, as shown in Fig. 8. Refer
to [216] for more details.

Encoding motion compactly is another important fac-
tor for overall performance improvement. We suggest
the joint spatiotemporal and hyperprior-based context-
adaptive model shown in Fig. 9 for efficiently inferring
current quantized features. This is implemented in the PA
engine of Fig. 6(b).

The joint spatiotemporal and hyperprior-based context-
adaptive model mainly consists of a spatiotemporal-
hyperaggregation module (STHAM) and a temporal
updating module (TUM), as shown in Fig. 9.
At timestamp t, STHAM is introduced to accumulate
all the accessible priors and estimate the mean and
standard deviation of GMM jointly using

(μF , σF) = F(F1, . . . , Fi−1, ẑt, ht−1). (1)

Spatial priors are autoregressively derived using masked
5×5×5 3-D convolutions and then concatenated with
decoded hyperpriors and temporal priors using stacked
1×1×1 convolutions. Fi, i = 0, 1, 2, . . . are elements
of quantized latent features (e.g., motion flow). ht−1 is
aggregated temporal priors from motion flows preceding
the current frame. The neuro-Motion module exploits tem-
poral redundancy to further predict the efficiency, lever-
aging the correlation between second-order moments of
intermotion. A probabilistic model of each element to be
encoded is derived with the estimated μF and σF by

pF|(F1,...,Fi−1,ẑt, ht−1)(Fi|F1, . . . , Fi−1, ẑt, ht−1)

=
�

i

�
N (μF , σ2

F ) ∗ U
�
−1

2
,
1

2

��
(Fi). (2)

Note that TUM is applied to embed current quantized
features Ft recurrently using a standard ConvLSTM [220]

(ht, ct) = ConvLSTM(Ft, ht−1, ct−1) (3)

where ht are updated temporal priors for the next frame,
and ct is a memory state to control information flow across
multiple time instances (e.g., frames). Other recurrent
units can also be used to capture temporal correlations as
in (3).

It is worth noting that leveraging second-order infor-
mation for the representation of compact motion is also
widely explored in traditional video coding approaches.
For example, motion vector predictions from spatial
and temporal colocated neighbors are standardized in
H.265/HEVC, by which only motion vector differences
(after prediction) are encoded.

D. Neural Residual Coding

Interframe residual coding is another significant module
contributing to the overall efficiency of the system. It is
used to compress the temporal prediction error pixels.
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Fig. 8. Multiscale MEMC. One-stage neuro-Motion with MS-MCN uses a pyramidal flow decoder to synthesize the MCFs that are used in an

MS-MCN for generating predicted frames.

It affects the efficiency of next frame prediction since errors
usually propagate temporally.

Here, we use the VAE architecture in Fig. 6(b) to encode
the residual rt. The rate-constrained loss function is used

L = λ · D2

�
Xt,
�
Xp

t + r̂t

��
+ R (4)

where D2 is the �2 loss between a residual compensated
frame Xp

t + r̂t and Xt. neuro-Res will be first pretrained
using the frames predicted by the pretrained neuro-Motion
and MS-MCN and a loss function in (4) where the rate
R only accounts for the bits for residual. Then, we refine
neuro-Res jointly with neuro-Motion and MS-MCN, using
a loss where R incorporates the bits for both motion and
residual with two frames.

E. Experimental Comparison

We apply the same low-delay coding setting as DVC
in [129] for our method, the H.264/AVC, and H.265/HEVC
for comparison. We encode 100 frames and use a GoP size
of 10 on H.265/HEVC test sequences and 600 frames with

Fig. 9. Context-adaptive modeling using joint spatiotemporal and

hyperpriors. All priors are fused in PA to provide estimates of the

probability distribution parameters.

a GoP size of 12 on the UVG data set. For the H.265/HEVC,
we apply the fast mode of the ×2659—a popular open-
source H.265/HEVC encoder implementation—while the
fast mode of the ×26410 is used as the representative of
the H.264/AVC encoder.

We show the leading compression efficiency in Fig. 10
using respective PSNR and MS-SSIM measures, across
H.265/HEVC and UVG test sequences. In Table 3, by set-
ting the same anchor using the H.264/AVC, our NVC
presents 35% BD-Rate gains, while H.265/HEVC and DVC
offer 30% and 22% gains, respectively. If the distortion is
measured by MS-SSIM, our gains in efficiency are even
larger. This demonstrates that NVC can achieve a 50%
improvement in efficiency, while both the H.265/HEVC
and DVC achieve only around 25%.

Our NVC rivals the recent DVC_Pro [221], an upgrade of
the earlier DVC [141], for example, 35.54% and 50.83%
BD-Rate reduction measured by PSNR and MS-SSIM dis-
tortion, respectively, for NVC, while 34.57% and 45.88%
are marked for DVC_Pro. DVC [141] has mainly achieved
a higher level of coding efficiency than the H.265/HEVC at
high bit rates. However, a sharp decline in the performance
of DVC is revealed at low bit rates (e.g., performing worse
than the H.264/AVC at some rates). We have also observed
that DVC’s performance varies for different test sequences.
DVC_Pro upgrades DVC with better intracoding/residual
coding using [148] and λ fine-tuning, showing state-of-
the-art performance [221].

Visual comparison. We provide a visual quality com-
parison between NVC, the H.264/AVC, and H.265/HEVC,
as shown in Fig. 11. Generally, NVC yields reconstruc-
tions that are much higher in quality than those of its
competitors, even with a lower bit rate cost. For the
sample clip “RaceHorse,” which includes nontranslational
motion and complex background, NVC uses 7% fewer bits
despite an improvement in quality greater than 1.5-dB

9http://x265.org/
10https://www.videolan.org/developers/x264.html
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Table 3 BD-Rate Gains of NVC, H.265/HEVC, and DVC Against the H.264/AVC

Fig. 10. BD-Rate illustration using PSNR & MS-SSIM. (a) NVC

offers averaged 35.34% gain against the anchor H.264/AVC when

distortion is measured using PSNR. (b) NVC shows over 50% gains

against the anchor H.264/AVC when using MS-SSIM evaluation.

MS-SSIM is usually studied as a perceptual quality metric in image

compression, especially at a low bit rate.

PSNR compared with the H.264/AVC. For other cases, our
method also shows robust improvement. Traditional codec
usually suffers from blocky artifacts and motion-induced
noise close to the edges of objects. In the H.264/AVC,
you clearly can observe block partition boundaries with
severe pixel discontinuity. Our results provide higher qual-
ity reconstruction and avoid noise and artifacts.

F. Discussion and Future Direction

We developed an end-to-end deep neural video coding
framework that can learn a compact spatiotemporal rep-
resentation of raw video input. Our extensive simulations
yield very encouraging results, demonstrating that our
proposed method can offer consistent and stable gains over
existing methods (e.g., the traditional H.265/HEVC and
recent learning-based approaches [129]) across a variety
of bit rates and a wide range of contents.

The H.264/AVC, H.264/HEVC, AVS, AV1, and even
the VVC are masterpieces of hybrid prediction/transform
framework-based video coding. R-D optimization, rate
control, and so on can certainly be incorporated to improve
learning-based solutions. For example, reference frame
selection is an important means by which we can embed
and aggregate the most appropriate information for reduc-
ing temporal error and improving overall intercoding effi-
ciency. Making deep learning-based video coding prac-
tically applicable is another direction worthy of deeper
investigation.

VII. C A S E S T U D I E S F O R
P O S T P R O C E S S I N G : E F F I C I E N T
N E U R A L F I L T E R I N G
In this case study, both in-loop and postfiltering are demon-
strated using stacked DNN-based neural filters for qual-
ity enhancement of reconstructed frames. We specifically
design a single-frame guided CNN that adapts pretrained
CNN models to different video contents for in-loop filtering
and a multiframe CNN leveraging spatiotemporal informa-
tion for postfiltering. Both reveal noticeable performance
gains. In practice, neural filters can be devised, that is, in-
loop or post, according to the application requirements.

A. In-Loop Filtering via Guided CNN

As reviewed in Section IV, most existing works design a
CNN model to directly map a degraded input frame to its
restored version (e.g., ground-truth label), as illustrated
in Fig. 12(a). To ensure that the model is generalizable
to other contexts, CNN models are often designed to use
deeper layers, denser connections, wider receptive fields,
and so on, with hundreds of millions of parameters. As a
consequence, such generalized models are poorly suited
to most practical applications. To address this problem,
we propose that content-adaptive weights can be used
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Fig. 11. Visual comparison. Reconstructed frames of NVC, H.265/HEVC, and H.264/AVC. We avoid blocky artifacts, visible noise, and so on

and provide better quality at lower bit rate.

to guide a shallow CNN model [as shown in Fig. 12(b)]
instead.

The principle underlying this approach is sparse signal
decomposition: we expect that the CNN model can repre-
sent any input as a weighted combination of channelwise
features. Note that weighting coefficients are dependent on
input signals, making this model generalizable to a variety
of content characteristics.

1) Method: Let x be a degraded block with N pixels in a
columnwise vector format. The corresponding source block
of x is s, which has a processing error d = s − x. We wish
to have rcorr from x so that the final reconstruction xcorr =

x + rcorr is closer to s.
Let the CNN output layer have M channels, that is, r0,

r1, . . . , rM−1. Then, rcorr is assumed as a linear combina-
tion of these channelwise feature vectors

rcorr = a0r0 + a1r1 + · · · + aM−1rM−1 (5)

where a0, a1, . . . , aM−1 are the weighting parameters that
are explicitly signaled in the compressed bitstream.

Our objective is to minimize the distance between the
restored block xcorr and its corresponding source s, that
is, |xcorr − s|2 = |rcorr − d|2. Given the channelwise

Fig. 12. CNN-based restoration. (a) Conventional model structure.

(b) Guided CNN model with adaptive weights.
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Table 4 Layered Structure and Parameter Settings of the CNN Model

Used

output features r0, r1, . . . , rM−1, for a degraded input x,
the weighting parameters a0, a1, . . . , aM−1 can then be
estimated by least-squares optimization as

[a0, a1, . . . , aM−1]
T = (RTR)−1RTd (6)

where R = [r0, r1, . . . , rM−1] is the matrix at a size of
N×M comprised of stacked output features in columnwise
order. The reconstruction error is given by

e = |rcorr − d|2 = |d|2 − dTR(RTR)−1RTd. (7)

2) Loss Function: Assuming that one training batch is
comprised of T patch pairs: {si, xi}, i = 0, 1, . . . , T − 1,
the overall reconstruction error over the training set is

E =
�

i

�|di|2 − di
TRi

�
Ri

TRi

�−1
Ri

Tdi

�
(8)

where di = si − xi is the error for the ith patch. Ri =

[ri,0, ri,1, . . . , ri,M−1] is the corresponding channelwise fea-
tures in matrix form, with ri,j being the jth channel when
the training sample xi is passed through the CNN model.
Given that |di|2 is independent of the network model,
the loss function can be simplified as

L =
�

i

�− di
TRi

�
Ri

TRi

�−1
Ri

Tdi

�
. (9)

3) Experimental Studies: A shallow baseline CNN model
(as described in Table 4) is used to demonstrate the
efficiency of the guided CNN model. This model is com-
prised of seven layers in total and has a fixed kernel size
of 3×3. At the bottleneck layer, the channel number of
the output feature map is M . After extensive simulations,
M = 2 was selected. In total, our model only requires
3744 parameters, far fewer than the number required by
existing methods.

In training, 1000 pictures of DIV2K [222] are used. All
frames are compressed using the AV1 encoder with in-
loop filters CDEF [158] and LR [159] turned off to gener-
ate corresponding quantization-induced degraded recon-
structions. We divide the 64 QPs into six ranges and
trained one model for each QP range. The six ranges
include QP values 7–16, 17–26, 27–36, 47–56, and 57–63.

Compressed frames falling into the same QP range are
used to train the corresponding CNN model. Frames
are segmented into 64×64 patches. Each batch contains
1000 patches. We adopt the Adaptive moment estimation
(Adam) algorithm, with the initial learning rate set at 1e-4.
The learning rate is halved every 20 epochs.

We use the Tensorflow platform, which runs on NVIDIA
GeForce GTX 1080Ti GPU, to evaluate coding efficiency
across four QPs, for example, {32, 43, 53, and 63}. Our test
set includes 24 video sequences with resolutions ranging
from 2560×1600 to 352×288. The first 50 frames of
each sequence are tested in both intraconfiguration and
interconfiguration.

In our experiments, N is set to 64, 128, 256, and the
whole frame, respectively. We find that N = 256 yields
the best performance. For each block, the linear combi-
nation parameters ai (i = 0, 1) are derived accordingly.
To strike an appropriate balance between bit consumption
and model efficiency, our experiments suggest that the
dynamic range of ai is within 15.

We compare the respective BD-Rate reductions of our
guided CNN model and a baseline CNN model against
the AV1 baseline encoder. All filters are enabled for the
AV1 anchor. For a description of the baseline CNN model,
see Table 4 with M = 1. Our guided CNN model is the
baseline model with M = 2 plus the adaptive weights.

Both baseline and guided CNN models are applied on
top of the AV1 encoder with only the deblocking filter
enabled and other filters (including CDEF and LR) turned
off. The findings reported in Table 5 demonstrate that
either baseline or guided CNN models can be used to
replace additional adaptive in-loop filters while improving
the R-D efficiency. Furthermore, regardless of the block size
and frame types, our guided model always outperforms
the baseline CNN. This is mainly due to the adaptive
weights used to better characterize content dynamics.
Similar lightweight CNN structures can be upgraded using
deep models [162], [163], [166] for potentially greater
BD-Rate savings.

B. Multiframe Postfiltering

This section demonstrates how multiframe video
enhancement (MVE) scheme-based postfiltering can be
used to minimize compression artifacts. We implement
our proposed approach on AV1 reconstructed frames and
achieve significant coding improvement. Similar observa-
tions are expected with different anchors, such as the
H.265/HEVC.

1) Method: Single-frame video enhancement (SVE)
refers to the sole application of the fusion network without
leveraging temporal frame correlations. As discussed in
Section IV, there are a great number of network models
that can be used to do SVE. In most cases, the effi-
ciency and complexity are at odds with one another: in
other words, efficiency and complexity come at the cost
of deeper networks and higher numbers of parameters.
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Table 5 BD-Rate Savings of Baseline and Guided CNN Models Against the AV1 Baseline

Fig. 13. WARN. This WARN is used to fuse/enhance the input

frame for improved quality. In the MVE case, it takes three inputs to

enhance the LFs; in the SVE case, it inputs a single frame and

outputs its enhanced version. This WARN generally follows the

ResNet structure with the residual link and ResBlk embedded. Note

that ResBlk is extended to support wide activation from its plain

version prior to ReLU activation.

Recently, Yu et al. [223] discovered that models with more
feature channels before activation could provide signifi-
cantly better performance with the same parameters and
computational budgets. We design a WARN by combining
wide activation with a powerful deep residual network
(ResNet) [224], as shown in Fig. 13. This WARN illustrates
the three inputs for an enhanced output in the MVE
framework. In contrast, SVE normally inputs a single frame
and outputs a corresponding enhanced representation.

This MVE closely follows the two-step strategy reviewed
in Section IV. It uses FlowNet2 [186] to perform pixel-level
motion estimation-/compensation-based temporal frame
alignment. Next, a WARN-based fusion network is used for
final enhancement. We allow the two high-quality frames

(HFs) immediately preceding and succeeding a low-quality
frame (LF) to enhance the LF in between. Bidirectional
warping is performed for each LF to produce compensated
HFs in Fig. 14.

2) Experimental Studies: We evaluate both SVE and MVE
against the AV1 baseline. A total of 118 video sequences
were selected to train network models. More specifically,
the first 200 frames of each sequence are encoded with
the AV1 encoder to generate the reconstructed frames. The
QPs are {32, 43, 53, 63}, yielding 23 600 reconstructed
frames in total. After frame alignment, we select one train-
ing set containing compensated HF0, compensated HF1,
and to-be-enhanced LF from every eight frames, yielding a
total of 2900 training sets. These sets are used to train the
WARN model as the fusion network. Notice that we train
the WARN models for SVE and MVE individually. The GoP
size is 16 with a hierarchical prediction structure. The LFs
and HFs are identified using their QPs, that is, HFs with
lower QP than the base QP are decoded, such as frames 0,
4, 8, 12, and 16 in Fig. 15.

Algorithms are implemented using the Tensorflow plat-
form, NVIDIA GeForce GTX 1080Ti GPU. In training,
frames are segmented into 64×64 patches, with 64 patches
included in each batch. We adopt the Adam optimizer with
the initial learning rate set at 1e-4. The learning rate can
then be adjusted using the step strategy with γ = 0.5.
Additional 18 sequences are also employed for testing. The
first 50 frames of each test sequence are compressed. Then,
the reconstructed frames are enhanced using the proposed
SVE and MVE methods.

We apply the proposed method to AV1 reconstructed
frames. The results are presented in Table 6. Due to the
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Fig. 14. Enhancement framework. (a) Single-input WARN-based SVE to enhance the HF. (b) and (c) Two-step MVE using FlowNet2 for

temporal alignment and three-input WARN-based fusion to use preceding and succeeding HFs for LF enhancement.

Fig. 15. Hierarchical coding structure in the AV1 encoder. The LFs

are enhanced using HFs following the prediction structure via MVE

scheme, and HFs are restored using SVE method.

Table 6 BD-Rate Improvement of the Proposed SVE and MVE

Scheme Against the AV1

hierarchical coding structure in interprediction, the LFs
in Fig. 15 are enhanced using the neighboring HFs via the
MVE framework. The HFs themselves are enhanced using
the SVE method.

The overall BD-Rate savings of the SVE and MVE meth-
ods are tabulated in Table 6, against the AV1 baseline. SVE
achieves an averaged reduction of 8.2% and 5.0% BD-Rate
for all intra and random access scenarios, respectively.
On the other hand, our MVE obtains 20.1% and 7.5% BD-
Rate savings on average, further demonstrating the effec-
tiveness of our proposed scheme. When random access
techniques are used, the HFs selected are generally distant
from a target LF, which reduces the benefits provided
from inter-HFs. On the other hand, intracoding techniques
uniformly demonstrate greater BD-Rate savings because

the neighboring frames nearest to target LFs can be used.
This contributes significantly to enhancement.

Besides the objective measures, sample snapshots of
reconstructed frames are illustrated in Fig. 16, clearly
demonstrating that blocky and ringing artifacts from
the AV1 baseline are attenuated after applying either
SVE or MVE-based filtering. Notably, MVE creates more
visually appealing images than SVE.

C. Discussion and Future Direction

In this section, we propose DNN-based approaches
for video quality enhancement. For in-loop filtering,
we develop a guided CNN framework to adapt pretrained
CNN models to various video contents. Under this frame-
work, the guided CNN learns to project an input signal
onto a subspace of dimension M . The weighting para-
meters for a linear combination of these channels are
explicitly signaled in the encoded bitstream to obtain the
final restoration. For postfiltering, we devise a spatiotem-
poral multiframe architecture to alleviate the compres-
sion artifacts. A two-step scheme is adopted in which
optical flow is first obtained for accurate motion estima-
tion/compensation, and then, a WARN is designed for
information fusion and quality enhancement. Our pro-
posed enhancement approaches can be implemented on
different CNN architectures.

The quality of enhanced frames plays a significant role
in overall coding performance since they serve as reference

Fig. 16. Qualitative visualization. Zoomed-in snapshots of

reconstructed frames for the AV1 baseline, SVE and MVE filtered

restoration, and the ground-truth label.
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frames for the motion estimation of subsequent frames.
Our future work will investigate the joint effect of in-
loop filtering and motion estimation on reference frames
to exploit the inherent correlations of these coding tools,
which could further improve coding performance.

VIII. C O N C L U S I O N A N D D I S C U S S I O N
As an old Chinese saying goes, “a journey of a thousand
miles begins with a single step.” This is particularly true in
the realm of technological advancement. Both the fields of
video compression and machine learning have been estab-
lished for many decades, but, until recently, they evolved
separately in both academic explorations and industrial
practice.

Lately, however, we have begun to witness the inter-
disciplinary advancements yielded by the proactive appli-
cation of deep learning technologies [225] into video
compression systems. The benefits of these advances
include remarkable improvements in performance in many
technical aspects. To showcase the remarkable products
of this disciplinary cross-pollination, we have identified
three major functional blocks in a practical video system,
for example, preprocessing, coding, and postprocessing.
We then reviewed related studies and publications to help
the audience familiarize themselves with these topics.
Finally, we presented three case studies to highlight the
state-of-the-art efficiency resulting from the application of
DNNs to video compression systems, which demonstrates
this avenue of exploration’s great potential to bring about
a new generation of video techniques, standards, and
products.

Though this article presents separate DNN-based case
studies for preprocessing, coding, and postprocessing,
we believe that a fully end-to-end DNN model could poten-
tially offer a greater improvement in performance while
enabling more functionalities. For example, Xia et al. [226]
applied deep object segmentation in preprocessing and
used it to guide neural video coding, demonstrating notice-
able visual improvements at very low bit rates. Meanwhile,
Lee et al. [152] and others observed similar effects when
a neural adaptive filter was successfully used to further
enhance neural compressed images.

Nevertheless, a number of open problems requiring sub-
stantial further study have been discovered. These include
the following.

1) Model generalization. It is vital for DNN models to
be generalizable to a wide variety of video content,
different artifacts, and so on. Currently, most DNN-
based video compression techniques utilize super-
vised learning, which often demands a significant
amount of labeled image/video data for the full
spectrum coverage of the aforementioned application
scenarios. Continuously developing a large-scale data
set, such as the ImageNet,11 presents one possible
solution to this problem. An alternative approach may

11http://www.image-net.org/

use more advanced techniques to alleviate uncer-
tainty related to a limited training sample for model
generalization. These techniques include (but are
not limited to) few-shot learning [227] and self-
supervised learning [225].

2) Complexity. Existing DNN-based methods are mainly
criticized for their unbearable complexity in both
computational and spatial dimensions. Compared to
conventional video codecs which require tens of
kilobytes of on-chip memory, most DNN algorithms
require several megabytes or even gigabytes of mem-
ory space. On the other hand, although inference may
be very fast, training could take hours, days, or even
weeks for converged and reliable models [141]. All
of these issues present serious barriers to the market
adoption of DNN-based tools, particularly on energy-
efficient mobile platforms. One promising solution is
to design specialized hardware for the acceleration of
DNN algorithms [157]. Currently, neural processing
units (NPUs) have attracted significant attention and
have been gradually deployed in heterogeneous plat-
forms (e.g., Qualcomm AI Engine in the Snapdragon
chip series and Neural Processor in Apple silicon).
This paints a promising picture of a future in which
DNN algorithms can be deployed on NPU-equipped
devices at a massive scale.

3) QoE metric. Video quality matters. A video QoE met-
ric that is better correlated with the HVS is highly
desirable not only for quality evaluation, but also for
loss control in DNN-based video compression. There
has been a notable development in both subjective
and objective video quality assessments, yielding sev-
eral well-known metrics, such as SSIM [228], just-
noticeable-distortion (JND) [229], and VMAF [230],
some of which are actively adopted for the evaluation
of video algorithms, application products, and so on.
On the other hand, existing DNN-based video coding
approaches can adaptively optimize the efficiency of
a predefined loss function, such as MSE, SSIM, adver-
sarial loss [156], and VGG feature-based semantic
loss. However, none of these loss functions has shown
clear advantages. A unified, differentiable, and HVS-
driven metric is of great importance for the capacity
of DNN-based video coding techniques to offer per-
ceptually better QoE.

The exponential growth of Internet traffic, a majority of
which involves videos and images, has been the driving
force for the development of video compression systems.
The availability of a vast amount of images through the
Internet, meanwhile, has been critical for the renaissance
of the field of machine learning. In this work, we show that
recent progress in deep learning can, in return, improve
video compression. These mutual positive feedback sug-
gest that significant progress could be achieved in both
fields when they are investigated together. Therefore, the
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approaches presented in this work could be the step-
ping stones for improving the compression efficiency in
Internet-scale video applications.

From a different perspective, most compressed videos
will be ultimately consumed by human beings or inter-
preted by machines, for subsequent task decisions. This
is a typical CV problem, that is, content understanding
and decisions for consumption or task-oriented application
(e.g., detection and classification). Existing approaches
have performed these tasks by first decoding the video
and then examining the tasks via learned or rule-based
methods on decoded pixels. Such separate processing, that
is, video decoding followed by CV tasks, is relied upon
mainly because traditional pixel-prediction-based differen-
tial video compression methods break the spatiotemporal
features that could be potentially helpful for vision tasks.

In contrast, recent DNN-based video compression algo-
rithms rely on feature extraction, activation, suppression,
and aggregation for more compact representation. For
these reasons, it is expected that the CV tasks can be
fulfilled in the compressive domain without bit decoding
and pixel reconstruction. Our earlier attempts have shown
a very encouraging gain in the accuracy of classification
and retrieval in compressive formats, without resorting
to the traditional feature-based approaches using decoded
pixels [231], [232]. Using powerful DNNs to unify video
compression and CV techniques is an exciting new field.
It is also worth noting that the ISO/IEC MPEG is now
actively working on a new project called “Video Coding
for Machine” (VCM),12 with emphasis on exploring video
compression solutions for both human perception and
machine intelligence.
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