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ABSTRACT Employment of ground-based positioning systems has been consistently growing over the past
decades due to the growing number of applications that require location information where the conventional
satellite-based systems have limitations. Such systems have been successfully adopted in the context of
wireless emergency services, tactical military operations, and various other applications offering location-
based services. In current and previous generation of cellular systems, i.e., 3G, 4G, and LTE, the base stations,
which have known locations, have been assumed to be stationary and fixed. However, with the possibility
of having mobile relays in 5G networks, there is a demand for novel algorithms that address the challenges
that did not exist in the previous generations of localization systems. This paper includes a review of various
fundamental techniques, current trends, and state-of-the-art systems and algorithms employed in wireless
position estimation using moving receivers. Subsequently, performance criteria comparisons are given for
the aforementioned techniques and systems. Moreover, a discussion addressing potential research directions
when dealing with moving receivers, e.g., receiver’s movement pattern for efficient and accurate localization,
non-line-of-sight problem, sensor fusion, and cooperative localization, is briefly given.

INDEX TERMS AOA, Gaussian mixture, geolocation, FDOA, Kalman filter, particle filter, TDOA, TOA.

I. INTRODUCTION
In global navigation satellite systems (GNSS), the receiver,
which might be near or on the ground, receives measure-
ments from some satellites, and then estimates its position
if enough line of sight (LOS) satellites are available. One
of the most popular systems is the global positioning
system (GPS), which is operated by the US government,
initially used for military applications, and over two decades
by civilians. The GPS system has several disadvantages:
(i) the battery life of GPS devices is high, making it unsuitable
for several low-power devices, (ii) the performance of GPS
systems is degraded in indoor places or dense urban areas
where the GPS signal is week or unavailable. Due to such
limitations, it becomes necessary for several applications
to rely on a ground-based network to find the position of
radio-frequency (RF) devices more accurately, denoted as
network-based localization or wireless geolocation systems.

In order to find the location of an RF device, different
measurements can be used: received signal strength (RSS),
time of arrival (TOA), time difference of arrival (TDOA),
frequency difference of arrival (FDOA), and angle of
arrival (AOA) are the most popular types of measurements.
In [1], [2], and the references therein, the different position
estimation methods and techniques can be found.

Different wireless networks can benefit from location
information, such as cellular networks [3] and wireless
sensor networks [4]. Due to expanding demand and appli-
cations of wireless geolocation such as: location-based ser-
vices (LBSs) [5], wireless emergency services [6], intelligent
transportation systems, andmilitary applications [7], wireless
geolocation has received considerable attention over the past
two decades. This continuous growth and reliance onwireless
geolocation will make the fifth-generation (5G) networks the
first generation to benefit from location information that is
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sufficiently precise to be leveraged in its design and optimiza-
tion at the various network layers [8].

Cellular location technologies, which are designed to
estimate the position of a mobile station (MS) or user
equipment (UE), have received much of attention over the
past few decades. The quality of service (QoS) of posi-
tioning accuracy of such systems has been driven by the
requirements on subscriber safety service (i.e., E-911 and
E-211 [9]–[11]) and the continuously growing interest in
location-based services (LBSs) applications, that will be
described in more details below:
• Emergency positioning requirements: Due to the
order by U.S. Federal Communication Commis-
sion (FCC) [9], cellular network operators are required
to locate and provide the position of wireless terminals
with 1 meter of accuracy by 2020. This requirement
might be satisfied for rural areas for UEs equipped with
GPS, however, in urban canyons and indoor areas where
a GPS signal is week, the GPS has limitations [1], [12].
By relying on a ground-based wireless network, such
as cellular network, the limitation of GPS can be over-
come, however, the accuracy may not be guaranteed in
none-line-of-sight (NLOS) scenarios, which is usually
unavoidable in indoor areas and urban canyons.

• LBSs: The growing number of LBSs dictates that current
and future cellular systems, such as LTE systems and
beyond, need to respond efficiently to service-dependent
positioning in unprecedented manner. Due to various
wireless environments that could be complex and harsh,
the node that carries-out the positioning process needs
to be capable of selecting the appropriate combina-
tion of positioning methods to achieve the desired
positioning QoS.

Therefore, enhanced accuracy position estimation algorithms
under various circumstances and environments are becoming
a necessity [13]. Some LBSs requiring certain level of QoS
that could not be met with traditional approaches may require
that future positioning technologies deploy new and more
sophisticated methods. For instance, it may become feasible
to process photos and additional data at positioning servers to
provide precise positioning accuracy previously unattainable
at a given setting whether outdoor or indoor. It is envisioned
that assisted GPS (A-GPS) [1], [3], [14], [15] will still remain
the conspicuous technology in the current and future releases
of cellular-based systems as in LTE systems [16], [17] among
the many alternative positioning technologies.

From our previous discussions, it is evident that the current
interests to use localization approaches for RF emitters is
continuously expanding. In response to demands imposed
by newly developed applications, dynamic mobile platforms
are employed as receivers [4], [18], [19]. To address such
specialized systems and advanced complex algorithms, we
start by providing a brief introduction of most popular
position-related parameters involved in wireless geolocation
in conjugation with localization methods and error mitiga-
tion techniques. Then, we conduct a focused exploration

of positioning systems and algorithms that are available to
mobile receivers architectures (base stations). Unlike previ-
ous studies and surveys, our literature survey presents and
focuses on some recent advances and current research arti-
cles on positioning systems for wireless systems deploying
moving receivers platforms. Various current state-of-the-art
techniques that utilize the different positioning parameters
and algorithms that were investigated in the literature are
explored. In such systems, the main challenge is in the
ad-hoc nature of the network where one or more receivers
are not fixed like in conventional wireless networks.

The rest of the paper is organized as follows: in Section II,
we classify different localization techniques and mainly
discuss range-free and range-based classifications.
In Section III, different localization systems that have been
used and are still useful will be described. Localization
and tracking algorithms with moving receivers are reviewed
in Section IV, and the comparison and challenges facing
such systems are given in Section V. Finally, conclusions and
future works are given in Section VI.

II. CLASSIFICATION OF RF LOCALIZATION TECHNIQUES
Localization techniques can be classified in several different
ways [20] as will be described briefly below.

A. CENTRALIZED OR DISTRIBUTED
Based on the computation handling, localization can be
divided into centralized or distributed techniques. In central-
ized techniques all the measurements and information are
collected at a fusion center and then the locations of the
targets are estimated. Some popular centralized techniques
have been proposed in [21]–[23]. However, in distributed
approaches, the position of the targets can be locally esti-
mated either at the target itself [24], [25], or at the closest
BSs or anchors [26]. The distributed approaches have several
advantages over centralized techniques due to being scalable
and tolerant against node failure, however, they are generally
sub-optimal in accuracy and require exchange of information
iteratively until convergence.

B. NON-COOPERATIVE OR COOPERATIVE
In non-cooperative techniques, each target only exchanges
information with the anchors or BSs. However, in cooperative
networks, the targets obtain measurements from their neigh-
boring targets and exchange information with one another.
In this way, the localization performance can be improved and
the targets that are far from fixed reference nodes and have
other targets in their neighborhood can be localized more
accurately [27].

C. DETERMINISTIC OR PROBABILISTIC
Based on utilization of the probability density function (PDF)
information, we can also classify different localization tech-
niques. In deterministic approaches the information about
the probability distribution (e.g., noise distribution) is not
employed directly and the estimation is done by techniques
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such as least squares. The probabilistic approaches, on the
other hand, take advantage of prior knowledge of statistical
distributions of the measurements if they are available. For
instance, particle filter is a probabilistic approach where the
probability distribution information has direct impact on its
performance [28]. Another class of probabilistic approaches
are belief propagation (BP) approaches which are techniques
to simplify the joint probability distribution of a network
using factorization on a graphical model [25]. In general, if
knowledge about the distribution is available, probabilistic
techniques perform better than deterministic ones and are
preferred.

D. RANGE-FREE OR RANGE-BASED
If in determining the location of an RF device, the measure-
ments are employed to somehow relate the position of the
device to some metric such as distance, and then the position
is estimated, these techniques are referred to as range-based
techniques. However, in range-free techniques, the measure-
ments are not converted to range and instead the location is
estimated by some other metrics. In the sequel, we describe
these two main categories.

1) RANGE-FREE TECHNIQUES
The range-free techniques can be divided into two main
categories:

a: FINGERPRINTING
In fingerprint-based localization systems, a database of
fingerprints should be incorporated a priori. There are various
fingerprint-based localization techniques proposed in the lit-
erature [29]. Localization performance of each fingerprinting
type varies in their metrics such as accuracy, latency, etc. in
addition to their implementation. The goal of position esti-
mation in mapping techniques (fingerprinting) is to identify a
relationship, relaying on a set of training data, for the purpose
of estimating the position of a desired node [2]. Fingerprint-
ing schemes have became feasible and a viable approach
due to present trends in increasing storage capacities of
current mobile terminals and other electronic devices [29].
The method entails two-steps: training phase and position-
ing phases. In the training phase, the RSS measurements
(fingerprints) from all the available APs at some locations are
collected and a database is formed. In the positioning phase,
the RF device compares the received RSS powers from the
available APS and compares them with the RSS of the corre-
sponding APs collected at the database. In positioning phase,
different data mining and machine learning approaches such
as k-nearest neighbour (K-NN) algorithm [30] or a neural net-
work [31] can be used. Proper selection of important features
(fingerprints) and construction of the database will influence
the performance of these methods. Very accurate position
estimation with multipath and NLOS propagation in addition
to challenging environments is a prominent advantage of fin-
gerprinting techniques [31]–[33]. This is because they pose
a form of natural robustness when employed in unfavorable

scenarios of propagation. However, the main drawback of
these techniques is that the training database could grow
very large to have sufficient resemblance of the operational
environment to produce accurate positioning fix. Moreover,
the database linked to a certain scenario and environment
must be updated as often as changes in the environment
occur that could alter the channel characteristics signifi-
cantly from the characteristics used while constructing the
RSS database [34].

b: HOP COUNT
Other categories of range-free techniques is when instead of
using RF measurements, each sensor counts the number of
hops that it is located from each anchor through a routing
protocol. Then the closest anchor will be used as a reference
for the position of the sensor. For instance if the sensor is
three hops away from an anchor, it can approximately locate
itself to be in a circle with radius 3R with the aforementioned
anchor in the center and R being the sensing range of the
nodes. For a more detailed overview of hop-count techniques
the readers are referred to [35].

While these techniques do not require the infrastructure for
ranging, due to the rough approximations made in estimating
the position, these techniques are not applicable for applica-
tions that require accurate location estimates.

2) RANGE-BASED TECHNIQUES
In range-based techniques several different types of measure-
ments can be employed so that the position can be estimated,
as described below.

a: RECEIVED SIGNAL STRENGTH (RSS)
The RSS is one of the most widespread types of measure-
ments, firstly used in [36]. The RSS of a signal traveling
between two transceivers is a signal parameter that con-
tains information related to the distance between them. This
RSS can be used in conjugation with a suitable attenua-
tion model and shadowing effect to estimate distance [37].
The shadowing effect is commonly modeled as a zero mean
Gaussian random variable with a variance of σ 2 in the loga-
rithmic scale. Therefore, the received power P(d) in dB can
be expressed as:

P(d) = P0 − 10n log10(d/d0)+ γ, (1)

where n is the path loss exponent that takes on values between
1 and 5,P0 is the received power in dB at a short reference dis-
tance d0, and γ ∼ N (0, σ 2). Note that this model can be used
in both line-of-sight (LOS) and non-line-of-sight (NLOS)
scenarios with an appropriate choice of channel parameters.
However, it is very difficult to find a suitable choice of param-
eters inmultipath andNLOS environments and therefore RSS
measurements cannot be converted to range accurately.

An RSS estimate at a receiver (base station/sensor) deter-
mines the position of a transmitter (a mobile station/target)
on a circle in the error-free case. Fig. 1 shows the intersection
of range circles formed by three base stations and a mobile
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FIGURE 1. Location by ranges such as RSS or TOA measurements.

terminal, which is referred to as trilateration. For estimation
of a target in a 2-D space using trilateration, a minimum of
three receivers is needed. In the presence of measurement
noise, the circles will not intersect at a single point and
a LS solution is obtained instead. However, the trilateraiton
does not yield the ML solution and furthermore, its perfor-
mance is not robust in the presence of outliers or NLOS
errors.

b: THE TIME-OF-ARRIVAL (TOA)
The TOA allows us to deduce the range directly. It requires an
accurate synchronization between the mobile station (target)
and the base stations (sensor) [38]. The receive time, τi with
reference to the transmit time of a signal is known, then it
can be used to calculate a distance as di = cτi, where c is
the speed of light. The larger the bandwidth of the signal
is, the better the estimation performance for such parameters
will be [39]. The correlation method is conventionally used
to calculate the TOAwith a matched filter (MF) to the known
transmitted signal. Measurement of TOA, τi, on the ith base
station implies that both transmitter and receiver are tightly
synchronized, which is not the case in mobile networks.
Furthermore, a time-stamp has to be included in the signal,
which is why TOA measurement is used in an active local-
ization scenario. If synchronization can not be maintained,
then the Round Trip Time (RTT) protocol can be used, in
which the receiver should send back another TOA signal to
the transmitter and by averaging the two TOA signals, most
of the clock error terms will be canceled and the range can be
estimated accurately. Similar to the RSS-based techniques,
the position of the mobile is the intersection of circles whose
radii are equal to di as depicted in Fig. 1 in the error-free case.
In practice where there is measurement error, the measure-
ments are linearized and the position is estimated by solving a
system of linear equations. While the trilateration works well
in LOS scenarios, in the presence of NLOS measurements,
the TOA measurements become positively biased which can
drastically degrade the performance of trilateraion or other
techniques used assuming zero-mean measurement errors.
In NLOS scenarios, more advanced techniques need to be
used, [40]–[43]. A summary of techniques used in cellular
systems for TOA-based localization in NLOS is also given
in [44].

c: THE TIME-DIFFERENCE-OF-ARRIVAL (TDOA)
If the target can not be synchronized with the receivers and
RTT cannot be obtained, then the received timing signals at
the receivers are subtracted from the signal of one of the
receivers selected to be the reference (usually home BS).
Let the measured time of flight at the i-th receiver be τi.
If we select the BS with index i = 1 as the reference,
then the TDOA measurement will be 1τi = τi − τ1, where
the clock error terms will disappear. Similar to TOA, this
also requires synchronization among receivers, however, the
TDOA technique is less restrictive as it does not require
accurate synchronization between the transmitter and the
receivers. The position of the target outlines a hyperbola,
with foci at the two anchors or BSs. The target lies at the
intersections of hyperbolas, as shown in Fig. 2. In case of
error, the measurements can be linearized in a similar way to
trilateration, called hyperbolic localization. However, a mini-
mum of four receivers are required in 2-D space such that the
location can be estimated therefore TDOA-based techniques
have a drawback in this respect compared to TOA-based
techniques. As in TOA, the larger the bandwidth the better the
estimation performance for such parameters. As compared to
TOA-based techniques, TDOA-based ones have not received
attention in NLOS scenarios and seem to be degraded in
performance in NLOS scenarios. There are only a few works
in the literature which have mitigated the NLOS effect for
TDOA or other techniques [45]. In general, the TDOA-based
techniques are less suitable for NLOS situations as compared
to TOA-based techniques.

FIGURE 2. Hyperbolas of the TDOA method with three base station
receivers.

d: FREQUENCY-DIFFERENCE-OF-ARRIVAL (FDOA)
Analogous to TDOA methods, in FDOA measurements or
in frequency-of-arrival (FOA), we rely on the fact that
when the emitter is moving, the motion creates a fre-
quency shift proportional to the signal frequency and radial
velocity [46], [47]. The Doppler characteristics, which are the
basis to determine the location coordinates of a source [48],
are obtained as a result of measuring the instantaneous fre-
quency of a received signal [49]. FDOA eliminates the need
to know the transmitted frequency [50]. Fig. 3 demonstrates
positioning of a stationary target by three sensors all moving
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FIGURE 3. Differential Doppler target positioning with curves of constant
differential Doppler shift [51].

at a velocity of 100m/s along the x-axis relying on FDOA
from [51]. The FDOA receiver is difficult to implement,
and very costly, especially when the signal is already at a
very low power level [52]. At the receiver, the ability to
measure frequency with more accuracy than the smallest
expected frequency shift, is a requirement. Also, similar to
TDOA, all receiver nodes must be synchronized to correlate
measurements.

e: THE ANGLE-OF-ARRIVAL (AOA)
The AOA is the arrival angle of the signal observed at a
receiver, which was emitted by the target [53]. A line of bear-
ing (LOB) can be drawn for each AOA (emitter to receiver),
and the intersection of at least two LOB will provide the
possible position estimation for the unknown target (emitter)
in 2-D space [54]. This technique is known as triangulation
as shown in Fig. 4. Geolocation using AOA requires a mini-
mum of two receivers, while in TOA techniques three range
measurements are required for a two-dimensional position
estimate. However, AOA-based systems require relatively
large and complex smart antenna arrays and complex periodic
calibration. For a more detailed survey on AOA estimation
see in [55].

FIGURE 4. Angle of arrival.

f: HYBRID MEASUREMENTS
A combination of the measurement techniques introduced
so far can be combined together to obtain more accurate
estimate of the target’s position. The selected schemes to

be combined together in order to determine the position of
the target will depend on the type of application, available
infrastructure, and the localization environment. Demonstra-
tions of such combinations for various positioning applica-
tions can be found in several works. For instance, different
hybrid schemes have been proposed such as AOA/RSS [56],
RSS/TOA [57], TDOA/RSS [58], and TDOA/AOA [59].
Other combinations also exist for improved precision in cer-
tain applications, e.g., a hybrid of TDOA, angle-of-departure,
and Doppler shift is found in [60] and [61], while an hybrid of
AOA, gain-ratio-of-arrival, and TDOA is presented in [62],
and a hybrid AOA/TDOA geolocation approach is depicted
in Fig. 5.

FIGURE 5. A hybrid AOA-TDOA geolocation scheme.

A comparison of different types of measurements used for
localization is summarized in Table 1.

III. OVERVIEW OF DIFFERENT SYSTEMS
USED FOR LOCALIZATION
We will provide a brief presentation on some of the current
RF geolocation technologies and systems such as wireless
local area network (WLAN) [63], radio frequency identifi-
cation (RFID) [64], [65], wireless sensor network (WSN)
[66], [67] with ZigBee [68]–[70], Bluetooth techno-
logy [71]–[73], bluetooth low energy (BLE) [74], ultra-wide
band (UWB), and the cellular system. A considerable amount
of research has been focused on improving the accuracy [75]
and enhanced performance of such indoor positing systems.
Most network-based positioning systems use geometric posi-
tioning techniques with similar basic functional principles to
the methods described earlier, in addition to various signal
processing algorithms [76]–[78] used for calculating target’s
position from measured signal parameters representing the
geometric relationships to sensor nodes. Themethods include
typical measured positioning parameters: TOA [79], [80],
TDOA [81], [82], AOA [64], [83], but using RSS [84]–[86]
is an attractive approach for indoor positioning since it can
take advantage of existing wireless infrastructures and thus
presents tremendous cost savings where all current standard
indoor radio technologies report RSS measurements, and
therefore can share the same algorithms across various
platforms [1], [87].
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TABLE 1. Comparison of different measurement methods for source localization [1].

A. WIRELESS LOCAL AREA NETWORK (WLAN)
WLAN positioning has attracted considerable research to
improve the positioning accuracy mainly due to its cost
effectiveness and availability [88], [89]. That is because the
WLAN technology is very mature, popular, and has been
deployed in various public and private areas such as hos-
pitals, train stations, airports, and universities just to name
a few. Also, as was mentioned, WLAN-based positioning
systems can reuse the already installedWLAN infrastructures
in indoor environments [90], which reduces the cost [35].
Examples of some of the well-know WLAN position-
ing systems include: RADAR [91], Ekahau [92], [93],
COMPASS [94], Pazl [95], HiMLoc [96], EDIPS [97],
WaP [98]. However, because of complex indoor environ-
ments, the accuracy of indoor location estimations based
on the signal strength of WLAN signals is of several
meters [35], and is affected by various elements in indoor
environments. The influence of these elements, which
may include human body, mobile terminals and elec-
tronic devices, building materials, doors, and such, has
been studied and discussed in the literature [94], [99].
Due to the dynamic changes in the environment, the
database needs to be updated after several weeks or months,
which makes WiFi fingerprinting difficult to maintain over
time.

Most of recent research efforts concentrate on establish-
ing more accurate functional mappings relating the RSS
and the physical position for improved WLAN positioning
accuracy [84], [90], [100], [101]. To this end, special
considerations of the deployment of APs have been dis-
cussed and optimization methods were suggested [63], [102].
Others suggested the use of compressive sensing theory to
reduce fingerprint collection in conjugation with RSS from
WLAN APs for indoor localization [103]–[105] relaying on
the sparse nature of location finding through sparse signal
recovery for more accurate indoor positioning. The idea of

Gaussian process has also been deployed in some works to
reconstruct the RSS map in [106].

Recently, other metrics of WiFi system such as channel
state information (CSI) has been employed instead of RSS for
getting more diverse features at each location [107], [108].
The CSI has better stability and less variation compared
to RSS and can be considered as a more reliable metric
for fingerprinting. Using the CSI measurements for all the
subcarriers and antennas at each location instead of only
a single RSS measurement, can provide more useful infor-
mation as a signature, and thus fingerprints can be distin-
guished more accurately. The fingerprinting techniques using
CSI is promising for research and will likely be employed in
commercial localization systems in the future.

B. RADIO FREQUENCY IDENTIFICATION (RFID)
The RFID is a technology for storing and retrieving data
through electromagnetic transmission to an RF compatible
integrated circuit [109]–[111]. RFID has been recognized
as a promising technology in enabling indoor positioning
systems [112]. RFID positioning systems are deployed for
a wide range of applications in complicated indoor envi-
ronments such as offices, hospitals, factories, warehouses,
and libraries just to name a few [113], [114]. As a wireless
technology, RFID provides flexible and low-cost advanced
automatic identification of individuals or devices [110], [115]
via RFID tags. An RFID system consists of three principal
parts: RFID tags, readers and miniature antennas between the
tags and the readers.

RFID position estimation is accomplished through electro-
magnetic communication between the RFID readers and the
corresponding RFID tags [116], [117]. With passive RFID,
which is usually small and inexpensive, a tracked tag is
a receiver. These technologies rely primarily on using the
readily available RSS information for positioning. Hence,
the range is limited to approximately 1 − 2 m for these
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passive tags. When coupled with the relative cost of com-
patible readers, they constitute drawbacks of theses RFID
systems [64], [118], [119].

C. BLUETOOTH
Bluetooth is a specification for wireless personal area net-
works (PANs) as was standardized in the IEEE 802.15.1 stan-
dard. It is a short-range wireless communications technology
with an approximate range of 100m for class 1 devices.
It enables low-cost and low-bandwidth communication for
the purpose of connecting electronic devices such as mobile
phones, headsets, tablets, portable computers, printers, etc.
In addition, several Bluetooth devices can be connected to
form Piconets [120]. Bluetooth has evolved through several
versions since it was first conceived to enhance speeds and
features.

In Bluetooth-based positioning systems [120]–[122],
various Bluetooth clusters are formed as infrastructures for
positioning [123], [124]. Examples of such systems are:
BluePos [125], BlueCat [126], BLIP [73], [127], PBIL [128],
Topaz [129]. The position of a Bluetooth mobile device is
located by the effort of other mobile terminals in the same
cluster [130]. Bluetooth positioning technology locates object
by measuring the signal strength [72], [131] in conjunction
with localization techniques such as fingerprinting [132] and
signal processing algorithms (e.g., Bayesian filtering, or neu-
ral networks, etc.) [133], [134].

One of the example Bluetooth positioning technologies
that use tags in indoor environments is Topaz [129]. The
Topaz positioning solution is suitable for tracking humans
and assets. It is made-up of three types of elements: position-
ing server(s), wireless access points, and wireless tags [111].
The system consists of software and hardware parts for local
positioning of Bluetooth tags or any device equipped with
Bluetooth technology [35]. The system provides room-wise
accuracy, or a 2 m spatial accuracy, with more than 95%
reliability. The positioning delay is 15-30s. In this system,
32 IR and Bluetooth APs are typically associated with one
Bluetooth server, which is responsible for various function-
ality and managing APs [35]. Bluetooth servers, location
servers and location clients are connected with LAN. Tens of
objects can be tracked at the same time. In general, in complex
and varying indoor environments, Bluetooth positioning sys-
tems suffer from similar drawbacks as of other RF positioning
techniques [35], [89].

D. BLUETOOTH LOW ENERGY
The most current version of Bluetooth technology, i.e.,
version 4.0, a.k.a Bluetooth low energy (BLE) [135] has
several interesting properties that has made big companies
such as Apple Inc, focus on this technology for improving
the location accuracy of the devices. Unlike the ordinary
Bluetooth technology in which the devices need to be paired,
in BLE, such a requirement is not needed and the BLE
devices can be employed in broadcast mode only. It also
seems that BLE is a promising technology in the Internet

of Things (IoT) implementations [136]–[138]. Localization
using BLE is based on RSS measurements. Therefore, the
RSS measurements can either be converted to range and
then the range-based techniques can be employed, or can
be used in conjugation with fingerprinting techniques. The
first approach has a low accuracy, which is similar to other
technologies due to the difficulty in relating the range to RSS
accurately. However, in LOS and with a close proximity to
BLE beacons, a few meters of accuracy can be obtained. The
second approach might be of interest in some applications,
but the advantages of BLE over WiFi for fingerprinting has
not been studied in the literature extensively, and hence it is
not clear which one is a better candidate.

E. ULTRA-WIDE BAND (UWB)
Another technology that has received considerable attention
for accurate ranging is the Ultra-wide Band Sensors (UWB)
technology. The unlicensed use of UWB in the frequency
range of 3.1-10.6GHz is authorized by FCC. With UWB
signaling, accurate TOA measurements can be obtained due
to the fine timing resolution of UWB pulses. The larger the
bandwidth, the more accurate the measured range in LOS
scenarios. The UWB signals can penetrate the objects and
walls and are useful also in NLOS scenarios, although in such
scenarios the range measurements become positively biased.
The UWB ranging is well suited for short-range applications
and thus it is useful for indoors, while for outdoors it has
certain limitations.

F. WIRELESS SENSOR NETWORK (WSN)
The WSNs have attracted much attention in recent years due
to their potential use in many applications including some
that can have vital impact such as surveillance and combat
operations [139]. Sensor nodes can be exposed to a physical
or environmental condition to sense sound, pressure, temper-
ature, light, etc., and generate proportional outputs [35], [67].
WSN-based positioning is considered a cost effective and
low power technology for locating individuals and objects
because of the decreasing prices, power, and the sizes of var-
ious types of sensors [140], [141]. Positioning methods using
sensor networks were described in [85] and [142]–[148],
where techniques based on TOA, AOA, and RSS measure-
ments are discussed. However, compared to other wireless
electronic devices, small and low-cost sensors of WSN have
the drawbacks of limited processing power and battery capac-
ity when they are in indoor positioning set-ups [149]. This
imposes more restriction on the types of sensors that can be
used.

G. CELLULAR NETWORKS
Previous generations of cellular systems, as well as current
4G systems such as LTE, have adopted standardized posi-
tioning schemes [150], including observed time difference
of arrival (OTDOA) [1], [151], [152], AoA [1], [153]–[155],
fingerprinting [156]–[158], cell identity (CID) [1], [159] and
enhanced cell ID (E-CID) [1], [16], [17], [160]. The methods
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may be classified as UE-based, UE-assisted, or network-
based, according to where the measurements are performed
and final location is estimated [1]. A scheme of a cellular
network is illustrated in Fig. 6.

FIGURE 6. Scheme of cellular localization system.

1) CELL IDENTITY (CID)
CID is the process of using the knowledge of the network
of the mobile device, within the controlling cell site and
relaying the sector information [161]. CID operates in GSM,
GPRS, UMTS and LTE networks. The accuracy of this
method depends on the cell size; for instance, given that the
GSM cell diameter can be between 2km to 20km, the accu-
racy can be poor [161].

Given the cell ID of the serving cell, the UE position
is associated with the cell coverage area, which can be
described, for instance, by a pre-stored polygon [1]. The poly-
gon format is one of the standardized positioning reporting
formats in 3GPP [1], [159], where a polygon is defined as a
list of 315 corners with each corner represented by latitude
and longitude encoded in the WGS84 system [1], [159]. The
cell boundary is modelled by the set of non-intersecting poly-
gon segments connecting all the corners. The UE is assumed
to be within the polygon with a certain confidence. This is
the fastest positioning method since no measurements are
needed [1].

2) ENHANCED CID (E-CID)
E-CID methods employ four sources of information for posi-
tion estimation [1]: the CID of the serving cell and its corre-
sponding geographical description, the timing advance (TA)
of the serving cell, the corresponding signal measurements of
up to 32 cells in LTE, and AOA measurements.

a: CID AND TA
One common E-CID method combines the geographical cell
description (eNodeB position), and the distance between the
eNodeB and the UE which is obtained from a time measure-
ment. Round-trip time (RTT) positioning in the WCDMA
system is a demonstration of this technique [162], [163]. The
granularity of the TA is of the order of 1 km in GSM, while in
LTE, the granularity is of the order of 10 m. A radial accuracy

of at least as good as that of RTT positioning in WCDMA is
expected since typically the bandwidth of LTE is larger than
that of WCMDA [162], [164].

b: SIGNAL STRENGTH
Distance measures can also be derived from signal strengths
measured in the UE and combined with cell polygons as done
for CID and TA. Unfortunately, a direct measurement of the
distance from the RSS cannot be reliable, since the value
of the RSS mainly depends on the path-loss model that has
been considered. Besides, RSS measurements depend on the
channel characteristics and become inaccurate when shadow
fading affects the signal propagation of hand-held UEs [165].
Therefore, RSS-based positioning algorithms are sensitive to
channel parameters estimation [161]. The use of advanced
pattern matching techniques and advanced signal processing
is known to improve accuracy [1], [156].

c: AOA
An AOA-based positioning technique involves measur-
ing angles of the mobile station seen by reference base
station [166]. The AOA measurement standard for LTE is
defined as the estimated angle of a UE with respect to a
reference direction. AOA can improve accuracy, as compared
to the CID and TAmethod, by defining the angle. If the range
and angle measurements are available at a receiver, then a
unique position can be estimated using hybrid techniques [1].
The traditional method for measuring AOA is by using an
antenna array, but in LTE, it is also possible to utilize the
precoder matrix indices (PMIs) reported by the UE [1], [153].
Each precoder index defines the corresponding antenna beam
that is being used. Hence, the reported PMI points to the
direction of the position of the UE [1].

3) FINGERPRINTING
Fingerprinting denotes a set of positioning methods that
exploit detailed radio maps for positioning [1]. A fingerprint-
based localization system is comprised of two main
modules: fingerprint sensing module and fingerprint match-
ing module [29]. For instance, in LTE systems, the UE mea-
sures the radio properties it experiences and sends them to the
the evolved serving mobile location center (E-SMLC), which
controls the coordination and scheduling of the resources
required to locate the mobile device. The E-SMLC then
searches for a best match between its stored geographical
map of radio properties and the measured radio properties
sent by the UE. The best match determines the position of
the UE. Fingerprinting positioning has been studied rela-
tively little for cellular applications [167], although fielded
cellular fingerprinting systems exist [168], [169]. The LTE
positioning standard has taken into account fingerprinting
positioning and yields for signaling of CIDs, signal strengths,
TA, andAOA alongwith OTDOA [170] andA-GPS/A-GNSS
measurements [171] between the UE, the eNodeB and the
E-SMLC [1], [172].
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a: RF FINGERPRINTING
The most common technique for fingerprinting is
RF fingerprinting or RF pattern matching [173], [174].
In LTE, it would exploit UE measurements of received sig-
nal strength [175]–[177], from a number of eNodeBs. The
geographical RF maps can be created by advanced radio
signal strength prediction software [178], [179], using very
detailed information of the 3-D geographical topology [180]
together with accurate information of the cell plan, tower
locations, tower heights, antenna directions, antenna tilting,
antenna patterns, and transmission power [1], [181]. To obtain
a desired accuracy, it may be needed to complement utilized
prediction software with surveying [182]. Alternatively, rely-
ing entirely on surveying is possible. However, this approach
is considered to be of highest cost for typical sized cellular
networks. The resolution of the geographical grid of the
RF map will impose a bound on the positioning accuracy [1].
Other unaccounted for effects can add 10 dB of uncertainty
which will affect positioning technology deploying RSSmea-
surements. Time measurements may be less sensitive [10].
Averaging or using relative signal strength in addition to
signal processing techniques relying on aspects of the signal
strength can alleviate these effects [1], [156].

b: AECID
Adaptive enhanced cell ID (AECID) is another way to
enhance fingerprinting positioning performance [160], [183]
by extending the number of radio properties that are
used [1]. For instance, in LTE, at least CIDs, TA [184], and
AOA are suitable in addition to RSSs [1], [157]. Unfortu-
nately, the geographical radio map then becomes much more
difficult to generate [177], [180]. Moreover, using multiple
radio properties requires analysis in-terms of estimated posi-
tion accuracy [160] and to associate a confidence value. The
AECID positioning method [1], [160] addresses the above
problems [172]. It fuses geographical cell descriptions (cor-
responding to CIDs), received signal strengths, and TA, and
can be extended to include AOA information. The method
replaces the radio property prediction software and the sur-
veying by self-learning mechanisms [1], [150], [160].

4) OTDOA
Observed time difference of arrival (OTDOA) is a down-
link (DL) positioning method that exploits time difference
measurements conducted on DL reference signals received
from multiple locations [1], [151], [152].

When OTDOA operates in UMTS networks, the OTDOA
location server estimates the position of a mobile device by
referencing signal reception time at the UE from a mini-
mum of three Node B stations [161]. The mobiles position
is at the intersection of at least two hyperbolas defined by
the OTDOAs of the UMTS frames from multiple Node B
stations.

In LTE, an OTDOA measurement, reference signal time
difference (RSTD), is defined as the relative timing difference

between two cells, the reference and a measured cell. It is
calculated as the smallest time difference between two sub-
frames received from the different cells [1]. Geographically
separated BSs that have proper geometry are used to obtain
at least three timing measurements to solve for two coordi-
nates of the UE. No two branches of the distinct hyperbolas
intersect twice so that a unique solution can be found which
defines a good geometry for this purpose. A larger number of
measurements, typically at least six to seven, is desirable in
practice [1]. The position calculation is based on the multi-
lateration approach by which an intersection of hyperbolas is
found. A hyperbola for a pair of cells corresponds to a set of
points with the same RSTD for the two cells. The advantage
of OTDOA is that synchronization between the eNodeBs and
the UE is not required. Similar to techniques applied for
solving TDOA equations [185], many approaches exist for
solving the system of equations of OTDOA, where most of
them involve linearization of nonlinear least squares prob-
lems. Alternatively, with the common Taylor series-based
approach, the UE coordinates are found iteratively starting
from an initial UE position estimate.

5) E-OTD
Enhanced Observed Time Difference (E-OTD) technology
has been deployed by Cambridge Position Systems [161].
E-OTD operates only on GSM and GPRS networks [10]. The
cell phone sends a signal to the surrounding cell emitters,
and the nearest one sends back a signal. The time taken
between sending and receiving the wave is analyzed by an
external server, which calculates the cell phone position in the
network [161], [186]. This method includes new technology
in the handset to assist in locating the mobile in a network.
Mobile units in an EOTD system are set up to support
positioning in a network where BSs are asynchronous.
Theoretically, it takes about 5 seconds to locate a mobile unit
using the E-OTD technique and the accuracy is about 30-50m.
Real-world tests have yielded less accurate measurements of
about 50-125 meters [161].

6) U-TDOA
In uplink time difference of arrival (U-TDOA), the position
calculation principle is the same as that in OTDOA [187],
however, the major conceptual difference between the two
is that OTDOA requires multiple transmit points, while
U-TDOA utilizes multiple receive points at different loca-
tions [1]. To facilitate performing of U-TDOA timing mea-
surements, sounding reference signals (SRSs) [188] have
been selected for U-TDOA measurements [1]. For U-TDOA
positioning, periodically transmitted SRSs are scheduled in
a non-dynamic way to allow a sufficiently long time for
the measurements. The main disadvantage with U-TDOA,
as compared to OTDOA, is a hearability problem due to the
power control of the UE transmissions [1]. UEs close to their
own BS transmit at a low power level to avoid creation of
unnecessarily high levels of interference – this is denoted as
the near-far problem. The consequence is that such signals
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TABLE 2. Typical characteristics of different positioning methods in LTE [1].

TABLE 3. Typical accuracy of different positioning methods available in LTE, subject to restrictions of Table 2 [1].

may not be strong enough to reach the required UL signal
strength for U-TDOA measurements at neighbor sites.

At the end of this section, we chose to highlight main
expected performance characteristics of the different posi-
tioning methods in LTE as the current state-of-the-art cellular
systems, which is expected to be the prevailing standard for
the next decade.We adapted from [1, Tables 2 and 3] that con-
ducts side-by-side comparisons of the available standardized
positioning methods in LTE systems.

IV. LOCALIZATION AND TRACKING ALGORITHMS
WITH MOVING RECEIVERS
In this part, we review a collection of algorithms from the
technical literature that deal with wireless networks deploy-
ing mobile receivers and use different measurements such
as RSS, AOA, TOA, TDOA, FDOA, and their combination.
This is departing from the traditional assumption of fixed
infrastructure (BSs, Sensors, etc.) in the wireless networks.
It is assumed that receivers are free to move in an arbitrary
(but known) fashion. Thus, the wireless network topology
may change rapidly. There exist a number of implementa-
tions of various levels of complexity and required number
of receivers (sensors or BSs) to enable tracking of target(s)
(or MT(s)). They range from one single mobile receiver (e.g.,
measurement from the closest neighboring BS), to a few, or
even tens in a single configuration. This offered ‘‘proposed’’
flexibility in the positioning with mobile receivers can elim-
inate the need to sample with many receivers (e.g., six fixed
BSs or more as in previous GSM cellular systems).

A. ALGORITHMS BASED ON RSS
Pathirana et al. [189]–[191] presented an algorithm that
provides geolocation and velocity estimation for a variant
of a traditional cellular ‘‘GSM’’ network in which base

stations and users (MTs) are both mobile. They proposed
using Robust Extended Kalman Filter (REKF) equations, that
were derived from the system state estimation and the corre-
sponding Riccati differential equation to utilize the RSSI’s to
obtain an estimate of the MTs current location and velocity.
The analysis demonstrates that the proposed algorithm can
successfully track themobile users with less system complex-
ity, as it requires measurements from only one or two closest
mobile BSs.

In addition, the technique is robust against system uncer-
tainties caused by the inherent deterministic nature of the
mobility model. Through simulations, they demonstrate the
accuracy of their prediction algorithm and the simplicity of its
implementation. In a 70 minutes simulations, the 15×40km
suburban service area with a mobile-user in a three car
coverage area was set-up. The network is assumed to have
location and acceleration information of the mobile BSs via
GPS, as shown in Fig. 7. The mobile user does not have
access to location and acceleration information. The closest
(1 or 2) car(s) is/are measuring the forward-link signal in the
GSM system and track(s) the MTs location and predicts
the velocity. Fig. 8 shows the attained location accuracy in
the two scenarios: when using a single car (mobile BS), and
two cars. Considering the distance between the MT and the
mobile BSs, the error in position estimation is from a few
meters to about 500 meters in a properly configured system.

In [192], a network of small unmanned aerial vehi-
cles (SUAVs) for localization of RF emitters has been
designed. Because of better incidence angles near the tar-
get than large dedicated manned surveillance platforms, an
unmanned aerial vehicle (UAV) is preferred. To provide local
mean distance estimation based on RSSI, a set ofN electronic
surveillance (ES) sensors is utilised by each small UAV.

VOLUME 4, 2016 6661



A. Tahat et al.: Look at the Recent Wireless Positioning Techniques With a Focus on Algorithms

FIGURE 7. Trajectories of the cars and the mobile user with dual base
station measurements [189].

FIGURE 8. Error in location estimation for single and dual car
measurements [189].

Based on UAV triangulation, a fusion center will estimate the
location of the target. This method employs the RSS position-
ing parameter and relies on an empirical path-loss and log-
normal shadowing model to offer an effective solution. The
performance degradation between UAVs and fusion center
is also accounted for through the effect of modulation order
and wireless fading channel. The analysis of the geolocation
error is shown in Fig. 9 based on the proposed system.
It is indicated that robust performance is achieved for high
frequency RF emitters.

In [193], an RSS-based Monte Carlo (MC) localization
scheme to sequentially estimate the location of mobile nodes
in a WSN using the log-normal statistical model of RSS
measurements, is proposed. The RSSmeasurement is consid-
ered as the observation model in MC method and the nodes
mobility feature as the transition model. It is mentioned that
this method is widely applicable because the RSS function is
easy to implement on nodes, and the mathematical model for
mobile nodes may have no closed forms. Their simulation
results depict that localisation accuracy is better than other
methods.

The techniques based on RSS have the advantage that there
is no synchronization requirement betweenMT-BS as well as

FIGURE 9. Upper bound of geolocation area mean square error for a three
UAV network (where σ2 is the variance of log-normal shadowing) [192].

among BSs. This will make the use of RSS easy in practice.
However, due to themultipath andNLOS effects, it is difficult
to use an accurate propagation model to relate the distance to
the unknown location. Therefore, RSS measurements, when
employed in a range-based technique, usually have lower
accuracy in indoor and multipath areas. The RSS techniques
are usually preferred in fingerprinting techniques but to the
knowledge of authors fingerprinting using mobile receivers
has not been considered before. How to extend the finger-
printing techniques to systems with mobile BSs remains an
open and interesting problem to be considered.

B. ALGORITHMS BASED ON TDOA
In [194] and [195], a TDOA algorithm for geolocation based
on delay estimation of two correlated wireless channels is
proposed. The assumed set-up described a passive receiver
that is on-board a small flying UAV, while the (static or
mobile) transmitter is on the ground surface. It is indicated
that a Rician flat fading model should be used since it was
assumed that there exists a LOS between transmitter and
receiver. Block phase estimation (BPE) is used for each wire-
less channel estimation to estimate the delay of two correlated
channels. Then the two estimated channels are compared
to get the time delay corresponding to the strongest path.
Also, a comparison of their approach is conducted against
a cross-correlation-based TDOA algorithm. The simulation
results show that the TDOA algorithm performs much better
(10 times) than the cross-correlation-based TDOA algo-
rithm with a lower level of TDOA error and Root-Mean-
Square-Error (RMSE). Four different groups of Rician fading
channels are evaluated as shown in Fig. 10 and Fig. 11.
Conclusions are drawn for the proposed TDOA algorithm
and the cross-correlation-based TDOA algorithm that larger
Doppler shift fd (500 Hz versus 200Hz) and lower Rician
fading factor K (9dB versus 12dB) cause TDOA performance
degradation.

Sathyan et al. [196] presented an algorithm for the geolo-
cation and tracking of an unknown number of ground emit-
ters using TDOA measurements in practical surveillance
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FIGURE 10. The average TDOA error versus SNR for four different Rician
fading channels with 1.07ms (100-symbol) time delay ‘‘Proposed TDOA
system’’ [195].

FIGURE 11. The average TDOA error versus SNR for four different Rician
fading channels with 1.07ms (100-symbol) time delay ‘‘Correlation
method system’’ [195].

region scenarios. The focus is on tackling the issue of data
association (i.e., deciding from which target a measurement
originated). An assignment algorithm is introduced that per-
forms the data association in one step which substantially
reduces the computational cost while preserving the accuracy
of tracking. The non-linear TDOA equations were set-up
in the form of an optimization problem which were solved
using SolvOpt (a non-linear optimization solver). The inter-
acting multiple-model (IMM) estimator in conjunction with
the unscented Kalman filter (UKF) to track the geolocated
emitters is also employed. The scenarios of UAVs, used as
sensor platforms, fly at a constant altitude of 6000 m. The
UAVs move at a constant velocity of 100m/s, then make a
180 degrees coordinated turn with a turn rate of 2 rad/s,
and proceed with constant velocity for the remaining time.
It is assumed that the UAV positions are known exactly
at each time step (i.e., there is no process noise in their
motion model). Further, it is assumed that each UAV can
cover the whole surveillance region. There are five sources:
a stationary source, three constant velocity sources, and

a manoeuvring source that performs a coordinated turn.
Fig. 12 shows the simulated true positions and tracks of
the five targets, while Fig. 13 depicts the position RMSE,
averaged over 50 Monte Carlo runs with measurement noise
standard deviation of 1 ns.

FIGURE 12. Simulation of true target motion in surveillance region [196].

FIGURE 13. Position RMSE, averaged over 50 Monte Carlo runs [196].

Qu and Xie [197], [198] discussed two recursive algo-
rithms for TDOA-based source localization usingmobile sen-
sors with location uncertainty. A comparative analysis on the
two recursive localization algorithms is presented. The first
algorithm is called recursive localization algorithm, which
uses the current estimate (using constrained weighted least
squares (CWLS)) of source position to form a new measure-
ment equation of the unknown source position. The second
algorithm firstly estimates an auxiliary variable (using WLS)
and then rearranges the non-linear TDOA equation into a
linear measurement equation. To tackle the non-linearity of
TDOA at each sampling time, each of the two localization
algorithms performs reorganization to rearrange the TDOA
equations. In the improved recursive localization algorithm,
the principal difference is in the advance estimation of the
auxiliary variable before using the TDOA equations to update
the source location. However, in the recursive localization
algorithm, the auxiliary variable is regarded as a completely
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unknown variable when updating the source location. It is
shown that the second algorithm performs better than the first
one as depicted in Fig. 14.

FIGURE 14. Comparison of the localization accuracy of the proposed
recursive localization algorithms [198].

Okello et al. [199], [200] and Fletcher [201] performed a
comparative analysis of three non-linear filters for estimation
of the location and velocity of a moving emitter, using TDOA
measurements collected by two UAVs as they fly over the
area of surveillance. The three suggested algorithms employ
a Gaussian mixture (GM) representation of the posterior pdf.
The comparison considers the following non-linear filters:
a Gaussian mixture measurement integrated track splitting
filter (GMM-ITSF), a multiple-model filter (MMF) with
UKFs and an MMF with extended Kalman filters (EKFs).
The CRLB of estimation errors is derived and used as the
benchmark in performance analysis. While UKFB had a little
better performance, the RMSE in estimation was close to the
CRLB for all algorithms as shown in Fig. 15. On the other
hand, GMM-ITSF had a smaller number of diverged tracks.
As all algorithms presented are compatible with the real time
requirements, the priorities of individual applications should
determine the choice.

FIGURE 15. RMS errors of combined estimate [199].

The TDOA-based methods are suitable for target tracking
since there is no need for synchronization between target and

reference nodes. The accuracy of TDOA-based techniques
will be deteriorated in NLOS environments since the TDOA
measurements will become biased. One way to mitigate the
NLOS error is to use Kalman filters on the measured TDOAs
to make the measurements smooth, as done for cellular sys-
tems in the past [202]. These techniques as well more recent
ones can be extended to next generation systems with moving
receivers.

C. ALGORITHMS BASED ON FOA
In this section, we explore location tracking systems and
algorithms that utilize FOA in conjugationwith various signal
processing prediction and tracking filters.

In [203] and [204] particle filter (PF) is used with a single
moving sensor for Doppler geolocation of non-cooperative
RF emitters. This proposed recursive approach based on PFs
tracks the non-stationary carrier drift. It discretely represents
the multi-modal state space of the emitter through time, and
ultimately converges to the true emitter location. The new
approach is compared to Newton optimization and extended
EKF based solutions in Fig. 16. Unlike existing Doppler-
based geolocation techniques, this approach does not assume
that the unknown emitter’s carrier frequency is stable during
triangulation interval. This assumption is frequently violated
considering manufacturing tolerances that allow significant
carrier drift.

FIGURE 16. RMS geolocation comparison of Gauss-Newton (GN)
iterative descent (given initial state truth) with proposed particle
filter solution [203].

Witzgall [205] reported the performance of a recently
developed PF technique to locate a stationary push-to-
talk (PTT) radio using the Doppler-shifted signal as observed
by a single moving ground vehicle. Because of the strong
dependence of a solution on the target’s unknown origi-
nal carrier frequency, this is considered to be a principal
difficulty for single-sensor Doppler-based localization. This
uncertainty permits several potential location estimates to be
mappedwith the observations. Also, over short time intervals,
the PTT carrier drifts substantially. This creates a dynamic,
multimodal objective function and prompts the application
of the PF solution. The performance of the technique was
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verified on real data gathered by a slow-moving (10-40 mph)
ground vehicle over a relatively short 0.5 km range. The loca-
tion estimation errors achieved are compared to the theoreti-
cal FOACRLB andwith themore common two sensor FDOA
solution as shown in Fig. 17. These results indicate that the
single sensor FOA method achieved the same performance
as the two sensor FDOA solution on targets with significant
carrier drift during the collection interval. The results also
indicate that even at fairly slow speeds, Doppler geolocation
methods can be applied and still obtain reasonable geoloca-
tion accuracy.

FIGURE 17. Comparison of FOA solution with FDOA bias corrected and
FOA [205].

The FOA-based techniques like TOA-based ones require
accurate synchronization and therefore it might have limita-
tions in some applications. The performance of FOA-based
can be severely degraded in the presence of NLOS and multi-
path, where the doppler frequency will change dramatically.
Therefore, FOA-based techniques that are robust against mul-
tipath and NLOS need to be developed so they can be used in
the next generation of cellular networks.

D. ALGORITHMS BASED ON AOA FOR
POSITIONING AND TRACKING
The authors of [206] investigated the problem of manoeu-
vring target tracking using angular measurements. The tar-
get dynamics is modelled by multiple models, while the
measurements are collected asynchronously from possibly
multiple moving platforms. First a theoretical lower bound
on the performance error is derived. The theoretical bound
is conservative, being derived under the assumption that the
model history is known. Then three tracking algorithms are
proposed and compared to the theoretical bound. The pro-
posed algorithms include: (i) the IMM algorithm with EKF,
(ii) the IMMwith UKFs and (iii) the multi-mode PF. All three
filters are suboptimal but their performances show remark-
able agreement with the theoretical bound. Fig. 18 illustrates
the performed comparisons.

In [207] a new approach for single sensor tracking
using measurements with passive bearings only is proposed.

FIGURE 18. Comparison of error performance of the the three algorithms
against the theoretical bound [206].

A single moving sensor measures direction of target emis-
sions at known random times. GMM presentation, together
with a track splitting algorithm (GMM-ITS) filter, allow
space-time integration of the target position uncertainty with
a simple algorithm. The bearings-only measurements are
incorporated into track as they arrive using a dynamic bank
of linear KFs. The focus of [207] is on the target trajec-
tory estimation using associated measurements. A simulation
study demonstrates the benefits of this approach. Near the
end of the simulation interval, the target observability criteria
are satisfied, and CRB and estimation errors fall sharply.
GMM-ITS and particle filter in this environment have small-
est estimation errors of the filters considered, falling to
within 10% of the CRB as can be seen in Fig. 19. Other pre-
sented techniques follow with increasing estimation errors.

FIGURE 19. Comparison of error performance against the theoretical
bound [207].

In [208] an efficient target tracking technique is proposed
with the help of beam steering enabled directional sensors
mounted on the nodes. At every step of beam steering, the
sensor node updates the location of the target to the nearest
cluster head or BS. Each sensor will continuously monitor the
target until it crosses the field of view (FoV) or sensing range
of the passive sensor. The performance of the algorithm was
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studied for various mobilities using directional sensors and
ensured continuous tracking of the target. Using the proposed
approach, the system was able to track the target speeds up
to 8 m/sec with 60 deg FoV angle, 6 m/sec with 45 deg
FoV angle and 3 m/sec with 30 deg FoV angle for all the
mobilities. The accuracy of the target location is dependent
on the FoV of the radiation pattern. The average location error
of the target is high for larger FoV angles. It was also seen that
the location accuracy of the target was mainly dependent on
the FoV angle and FoV sensing radius of the sensor. Fig. 20
depicts a sample random mobility tracking performance with
the proposed algorithm.

FIGURE 20. Random Mobility (passive sensor); FoV angle = 60 deg; Target
speed = 2 m/sec [208].

In [209] a method is proposed for tracking a manoeu-
vring target by employing multiple asynchronous sensors
with uncertain position. Asynchronous target position trian-
gulation is achieved. GMMpresentation, together with a track
splitting algorithm allow space/time integration of the target
position uncertainty with a simple algorithm. Gaussian mix-
ture measurement presentation incorporates sensor position
uncertainty, as well as the spatial uncertainty brought by bear-
ings only measurement. Each sensor detects the target emis-
sions independently, and the measurements are incorporated
into track as they arrive. Measurements by arbitrary number
of sensors can be incorporated, provided that the triangulation
observability criterion is satisfied. The approach is verified
by a single target, two moving sensors, two-dimensional
surveillance simulation experiment.

The salient advantage of AOA measurements is that like
RSS measurements, there is no requirement for synchro-
nization. Furthermore, the number of AOA measurements
required to localize a target is less than the number of RSS,
TOA, or TDOA measurements. However, the AOA measure-
ments can be severely degraded in NLOS environments, in
which case these measurements are often useless and dis-
carded. Therefore, there might be limitations of available
LOS AOA measurements, making it impossible to find the
location of target. Therefore, AOA measurements are usu-
ally combined with other sets of measurements, e.g., TOA,
or TDOA.

FIGURE 21. The RMSE of location estimates versus number of time
instants for the TOA-based model with noise-free velocity
measurements [210].

FIGURE 22. The RMSE of location estimates versus number of time
instants for the RSS-based model with noise-free velocity
measurements [210].

E. ALGORITHMS BASED ON TOA/RSS
Salari et al. [210] considered the problem of exploiting sensor
mobility information in the process of sensor localization
under two range measurement models, namely the TOA
model and the RSS model, is studied. For each model, first
the maximum likelihood (ML) location estimator for the
case of error-free velocity measurements is derived. As the
corresponding optimization problems are non-convex, they
resort to semi-definite relaxation (SDR) techniques to find
approximate solutions to each problem using semi-definite
programming (SDP). Then, they extend their results to the
cases where the velocity measurements are subject to mea-
surement errors. Their simulation results show that exploit-
ing the mobility information in the localization process can
significantly improve the performance of the sensor local-
ization using TOA and RSS measurements as shown in
Fig. 21 and Fig. 22, respectively. Moreover, mobility-aided
localization has the potential to address some of typical posi-
tioning problems, such as sensitivity to the ranging measure-
ment errors and the requirement on the number of the anchors
needed to uniquely localize the sensor nodes.
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As mentioned earlier, RSS methods will perform poorly
in multipath and NLOS areas. However, accurate TOA mea-
surements can be obtained using high resolution wideband
systems in LOS systems. The ultra-wide-band (UWB) which
is allowed by FCC to operates in the unlicensed 3.1-10.6GHz
band is a great technology for ranging. In the presence of
NLOS the TOA measurements become positively biased,
however, unlike other types of measurements, TOAmeasure-
ments aremore suitable in NLOS situations since the problem
can be mitigated using several geometric and optimization
techniques. For a survey of TOA-based NLOS identification
and mitigation techniques see in [44]. In order to obtain TOA
measurements, either the target and reference nodes have
to be precisely synchronized, or two-way ranging (TWR)
techniques can be used to remove the clock errors from the
measurements.

F. ALGORITHMS BASED ON TDOA/AOA
In [211] the problem of localization and tracking of ground
moving targets (GMTs) based on measurements of TDOA
and direction of arrival (DOA) is considered. The associ-
ated measurement noises are assumed to be independent
and identically distributed (i.i.d.). By utilising the pseudo-
measurement model that imposes a quadratic constraint on
the state vector associated with the GMT dynamics from
the existing literature, the problem of the constrained linear
MMSE estimation is formulated. It is suggested to replace the
hard constraint by its expectation because of the the random-
ization of the state vector for the GMTprocess. A solution to a
similar quadratically constrained MMSE estimation problem
is first derived by the authors. The constrained KF (CKF)
is then developed for those estimation problems involving
quadratic constraints, applicable to localization and tracking
of GMTs based on TDOA and DOA measurements. More-
over, the CKF permits a recursive solution which is simple,
with complexity comparable to that of the conventional KF.
A simulation example is used to illustrate their proposed
CKF in localization and tracking of GMTs as depicted in
Fig. 23 and Fig. 24.

The AOA measurements, when combined with TDOA
measurements can form a reliable system for asynchronous
localization with low number of required LOS BSs. In the
presence of NLOS measurements the AOA measurements
can be discarded and NLOS mitigation can be applied on
TDOA measurements [202].

G. ALGORITHMS BASED ON TDOA/FDOA
In [212] and [213], an algebraic solution for the estimation of
the position and velocity of amoving source using the TDOAs
and FDOAs of a signal received at a number of receivers, is
proposed. The method does not require initial guesses, and
obtains a location estimate by solving severalWLS problems.
Contrary to the conventional linear iterative methods, it does
not require initialization and local convergence problem. The
estimated accuracy of the source position and velocity is
shown to achieve the CRLB for Gaussian TDOA and FDOA

FIGURE 23. Trajectories of two UAV and GMT [211].

FIGURE 24. RMS error for location estimate [211].

FIGURE 25. Location geometry of sensors (receivers) and target in the
simulation [212].

noise at moderate noise level before the thresholding effect
occurs. Simulations of the location geometry of the target
and receivers depicted in Fig. 25 examine the algorithm’s
performance and compare it with the Taylor-series iterative
method as shown in Fig. 26.

In [214], the authors performed analysis and developed a
solution for locating a moving emitter via TDOA and FDOA
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FIGURE 26. Comparison of RMSE of the proposed method (Dashed) with
the Taylor-series (Dash-dot) linearization method and the CRLB (Solid).
The accuracy is shown in log scale as the noise power increases [212].

measurements in the presence of random errors in the receiver
locations. Error in the receivers’ locations greatly affects the
accuracy of a source location estimate. The CRLB is derived
by assuming correct receiver locations while they have errors
as depicted in Fig. 27. A solution is then proposed that takes
the receiver error into account to reduce the estimation error.
It is shown that the proposed technique was able to achieve
the CRLB accuracy for far-field sources It is indicated
that the proposed solution is closed form, and does not pos-
sess the divergence problem of the iterative techniques.

FIGURE 27. Location geometry in the presence of receiver location
errors [214].

In [215] and [216], an efficient constrained WLS (CWLS)
algorithm is proposed for estimating the position and veloc-
ity of a moving source by utilizing the TDOA and FDOA
measurements of the signals received at a number of moving
receivers as shown in Fig. 28. The proposed algorithm takes
advantage of the known relation between the intermediate
variable and the source location coordinates in an explicit
manner. Based on Newton’s method, a numerical iterative
solution can be attained ensuring global convergence and per-
mitting a real-time implementation. For the near-field source
position and velocity estimations, simulation results show

FIGURE 28. Location geometry in the presence of receiver location
errors [216].

that the two-step WLS method departs from the CRLB at a
noise power about 6 dB, while the proposed estimator gives
inaccurate estimate at the noise power of about 16 dB. The
threshold effect of the proposed method occurs at a noise
power that is about 10 dB, which is larger than that of the
two-step WLS method as the noise power increases. Also,
for a far-field moving source with the same velocity, the
proposed estimator is superior to the two-step WLS method
in terms of estimation bias and RMSE for estimating the
position and velocity of the far-fieldmoving source. The price
of the better performance for the developed approach is that
its computational complexity is a bit higher than that of the
two-stepWLSmethod, but can still be implemented in a real-
time system as the two-step WLS method.

A solution for locating a moving source using TDOA
and FDOA measurements employing a calibration emitter, is
proposed in [217]. The results show that the high sensitivity
of the source localization accuracy to the error in sensor
location. In this scenario, they derived the CRLB for source
location estimate using a Gaussian random signal model.
Then, the commonly used technique in GPS of differential
calibration was analysed. It is indicated that, in most cases,
the differential calibration is not capable of reaching the
CRLB accuracy. They proposed a closed-form solution that
employs a calibration emitter to reduce the error in sensor
location. Analytically, they demonstrated that their approach
reaches the CRLB for different calibration source scenarios.
For the position estimate, compared with the differential cali-
bration technique, the improvements of the proposed method
are 14 dB and 8.2 dB with the algorithm without using a
calibration emitter when the sensor position error variance
is 10−3. The improvements are 11.5 dB and 5.7 dB, respec-
tively, for velocity estimate.

In [218] recursive tracking of one mobile emitter using a
series of TDOA and FDOA pairs of measurements collected
via a pair of sensors, is considered. Each TDOAmeasurement
establishes a region of potential emitter locations around a
distinctive hyperbola. This likelihood function is approxi-
mated by a GM, which leads to a dynamic bank of KFs
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tracking algorithm. The FDOAmeasurements update relative
probabilities and estimates of individual KFs. This approach
shows a better result in tracking the state probability density
function approximation, and the tracking result reaches the
CRLB. The performance of the proposed GM approach is
evaluated using a simulation study, and compared with a bank
of EKF filters and the CRLB. The performance nears the
theoretical optimum of the CRLB curve as shown in Fig. 29.
The RMS estimation errors of 3.8m and 10.5m for the case
of minimal and increased measurement errors, respectively,
in this scenario (with the emitter more than 15km away).

FIGURE 29. Minimal measurement errorsoutput rms errors [218].

FIGURE 30. RMSE for TDOA, TDOA and AOA, and TDOA and FDOA [219].

In [219] emitter tracking using a combination of TDOA
measurements and other types of measurements is consid-
ered. The measurements are gained by exploiting the signal
impinging from an unknown moving emitter. First, a com-
bined set of TDOA and AOA measurements is processed
using theMLE. Then, a GMfilter is used to solve the tracking
problem based on TDOA and FDOAmeasurements. Through
MC simulations for the mobile emitter scenario, the superior
performance of the combined methods in contrast to the sin-
gle TDOA approach is shown and compared with the CRLB
in Fig. 30.

In [220] the problem of locating multiple disjoint mov-
ing sources using TDOAs and FDOAs in the presence of

sensor position and velocity errors, is considered. The authors
developed an algebraic solution to this problem through
non-linearly transforming the measurements and convert-
ing them with respect to the inaccurate sensor locations.
A set of pseudo-linear equations from TDOA and FDOA
measurements is established with respect to the erroneous
sensor locations and they are solved by the two-stage
approach. The solution is shown analytically to achieve the
CRLB performance over small noise region and does not
require joint estimation with sensor locations as shown in
Fig. 31. The approach used is not to obtain the source loca-
tions individually, which is possible because we have separate
measurements for different sources, but rather to estimate all
the source locations together simultaneously. Previous work
was applied to one source only with suboptimum perfor-
mance for near source, or requires joint estimation of the
source and sensor locations that could be computationally
demanding.

FIGURE 31. Performance comparison with two sources: 1 (near) and
2 (far): The smaller MSE curve is for 1 and the other is for 2 [220].

FIGURE 32. Concept of target location using TDOA and FDOA
measurements [221].

In [221] an algorithm for tracking amoving target using the
measurement signals of TDOA and the FDOA is proposed
as shown in Fig. 32. The TDOA and FDOA measurement
signals are employed jointly to estimate the location and the
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velocity of a target at discrete times pointing that the conven-
tional target tracking using an TDOA measurement alone is
not accurate enough to estimate the target location. It is men-
tioned that although the KF shows remarkable performance in
calculation and location estimation, the estimation error can
be large when the priori noise covariances are assumed with
improper values. Then they suggest an adaptive EKF (AEKF)
to update the noise covariance at each measurement and
estimation process. The simulation results of a manoeuvring
UAV as shown in Fig. 33 show that the algorithm efficiently
reduces the position error and it also greatly improves the
accuracy of target tracking as shown in Fig. 34.

FIGURE 33. Position estimation of a sinusoidal movement [221].

FIGURE 34. Norm of position error for sinusoidal movement [221].

In [222]–[224] a conditional (or a signal-specific) CRB is
derived, which models the signal as a deterministic unknown
as opposed to classical derivation of the associated CRB that
relies on a stochastic, stationary Gaussian signal-model. They
explain that the assumptions in the classical derivation lead
to a diagonal Fisher information matrix (FIM) with respect
to the TDOA and FDOA. They stated that this diagonality
implies that (under asymptotic conditions) the respective esti-
mation errors are uncorrelated. However, for some specific
(non-stationary, non-Gaussian) signals, especially chirp-like
signals, these errors can be strongly correlated. On the other

hand, they explain that given any particular signal, their CRB
reflects the possible signal-induced correlation between the
TDOA and FDOA estimates. They pointed that in addition to
the theoretical value of this derived CRB, the resulting CRB
can be used for optimal weighting of TDOA-FDOA pairs
estimated over different signal-intervals, when combined for
estimating the target location. Accounting for the
TDOA-FDOA correlation in the weighting enables to take
advantage of the diversities in chirp structures (increasing/
decreasing frequencies) between intervals, so as to attain
significant improvement in the localization accuracy. In their
simulation examples with chirp-like signals, the use of proper
weighting reduced the scatter area of the localization results
by a factor of 25 under good SNR conditions.

In [225] the localization of a stationary transmitter using
receivers mounted on fast moving platforms is considered.
It is assumed that the transmitted radio signal is random with
known statistics. They advocate a direct position determina-
tion (DPD) approach that is more computationally efficient
and more precise for weak signals than the conventional two-
step approach. The direct method is a single-step method that
uses the same signals as the two-step approach but searches
directly for the emitter position without first estimating inter-
mediate parameters such as Doppler frequency and the time
delay. They also include a secondary result which is a deriva-
tion of closed-form and compact expressions of the CRLB.
Results for the simulated sensors and target locations scenario
of Fig. 35 are shown in Fig. 36.

FIGURE 35. Receivers track and emitter location [225].

In [226] distributed tracking in clutter environments, with
particular emphasis on the situationwhere (at least some) sen-
sors take non-linear measurements, is considered. The non-
linearity is assumed severe enough that the measurements can
not be linearised. Due to the presence of clutter and target
non-detections, both true and false tracks are initialized. The
false track discrimination (FTD) recognizes and confirms
true tracks, and terminates false tracks, and is an essen-
tial functionality in this environment. They state that with
non-linear/non-observable sensors they may locally track
the measurement state. They show that increasing the local
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FIGURE 36. RMSE of the DPD method (single step), the two-step method,
and the CRLB versus SNR [225].

measurement state derivative (partially) compensates the
non-linearity of the local measurement state propagation.
Given a uniform target motion, one should also track the
measurement state acceleration. In addition, they also sim-
plify the distributed fusion by avoiding the explicit track-to-
track (T2T) association. The equivalent measurements (EMs)
are used to both update all existing and initialize new global
tracks. This approach allows distributed false track discrim-
ination (FTD) and trajectory estimation. They apply this
material to distributed tracking in clutter using the
TDOA-FDOA (TFDOA) sensors. Fig. 37 depicts a sample
surveillance scenario for two sensors mounted on each of the
two UAV configuration used for tracking a moving target and
the corresponding simulation results in Fig. 38.

FIGURE 37. Simulated surveillance scenario [226].

The benefits and disadvantages of TDOA measurements
were mentioned before. Accurate FDOA measurements can
be obtained in LOS scenarios only when the relative veloc-
ity between the target and receivers is large enough so the
frequency measurement error is outweighed. The receivers
also need to measure the frequency with more resolution than
the smallest frequency shift, otherwise the FDOA is unde-
tectable below the noise. In addition, NLOS measurements

FIGURE 38. Position RMS estimation errors over time [226].

can severely degrade the FDOA measurements due to the
lack of direct path and change in doppler frequency. Due to
these limitations, FDOA measurements may not be suitable
for indoor areas where the devices are moving slowly and
there are a lot of NLOS and multipaths.

V. COMPARISON OF DIFFERENT TECHNIQUES
AND FUTURE DIRECTIONS
We have considered and reviewed a collection of algorithms
from the technical literature that deal with wireless networks
deploying mobile receivers (sensors or BSs) departing from
the traditional assumption of fixed infrastructure in the wire-
less networks.

In Table 4, we list and summarize the reported details of
the subclass of algorithms from the ones reviewed in this
section that are suitable to be utilized and deployed in network
scenarios where the receivers are also moving and it is desired
to track the location of a moving target. Thus, the over-
all wireless network topology may change rapidly enabling
greater versatility in the network. Note that these methods are
tested in outdoor environments where the distances between
transmitter and receiver are in the order of kilometers. For
indoor areas, the distances are shorter and hence the errors
will be smaller accordingly.

The mobility of the receivers greatly enhances the perfor-
mance of the geolocation and tracking system, but it also
brings in certain design issues that will be briefly mentioned
below:
• One of such issues is how to efficiently choose a min-
imum set of mobile receivers (sensors or BSs) [227],
and how to do the placement and motion coordination
strategies of mobile receivers [228] to achieve optimal
coverage performance and tracking [229], [230]. For
example, in [229], the authors combined the perfor-
mance metrics of sensing quality, communication qual-
ity, and area coverage in a cost function to adjust mobile
sensors’ positions accordingly.

• Another interesting topic to consider is how can the
system provide a reasonably low geometric delusion of
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TABLE 4. Summary of algorithms’ specifications and parameters.

precision (GDOP) when localizing the mobile target,
and hence improve the positioning accuracy by directing
the receiver to certain positions.

• Moreover, due to the constraint on transmit power in
cellular networks [231], [232], further design challenges
may need to be re-considered at every step when moving
BSs (anchors) are deployed.

• Another aspect is how the receiver should move to cover
a certain area efficiently and avoid getting too far from
or loosing the LOS connection of a target.

• Another critical problem is the NLOS error, which can
severely degrade the performance of localization sys-
tems, and to the knowledge of the authors it has been
rarely considered for roving receiver applications, while
studied extensively for applications with fixed receivers.

• How the receivers should move to efficiently localize
multiple targets in a cooperative manner is also another
interesting topic to consider.

VI. CONCLUSIONS AND FUTURE WORK
Different types of measurements and technologies that are
currently deployed for localization in both indoor and out-
door scenarios have been discussed in this paper. Also a
discussion regarding the current research articles related to
position location systems for wireless systems deploying
moving receivers (anchors or BSs) has been given, where the
main challenge is in the ad-hoc nature of the network. The
collection of various proposed state-of-the-art algorithms rely
in their cores on variant forms of KF, EKF, UKF, or GMM
for state estimation to deal with the random mobile nature of
the infrastructure and/or mobile targets. The various proposed
methods vary significantly in their suggested approaches for
tackling this problem, however, in most cases, the achieved
estimation accuracy reached the CRLB closely. Selecting an
appropriate algorithm for efficient localization of the target
is dependent upon the desired deployment environment and
application scenario, therefore, direct comparison might not
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be reliable. There are several potential research directions
that can be considered in the future work, e.g., the NLOS
problem, receiver location uncertainty, receiver movement
scheme, sensor fusion (GPS, WiFi, BLE, cellular, etc.), the
receiver movement scheme to reduce the GDOP, and cooper-
ative localization.

GLOSSARY
2-D Two Dimensional
3-D Three Dimensional
2G 2nd Generation Cellular Radio System
3G 3rd Generation Cellular Radio System
3GPP Third Generation Partnership Project
4G 4th Generation Cellular Radio System
5G 5th Generation Cellular System
AECID Adaptive Enhanced Cell-ID
AEKF Adaptive Extended Kalman Filter
A-GPS Assisted Global Positioning System
A-GNSS Network-assisted GNSS
AOA Angle-of-Arrival
AP Access Point
AWGN Additive White Gaussian Noise
BTS Base Transceiver Station
BPE Block Phase Estimation
BS Base Station
CDF Cumulative Distribution Function
Cell-ID Cell Identification
CKF Constrained Kalman Filtering
CN Core Network
COST European Cooperation in Science and

Technology
CRB Cramer-Rao Lower Bound
CRLB Cramer-Rao Lower Bound
CSI Channel State Information
CWLS Constrained Weighted Least Squares
DF Data Fusion
DC Data Center
DCM Database Correlation Method
DL Down Link
DOA Direction of Arrival
DPD Direct Position Determination
E-911 Emergency positioning requirements in

the USA
E-CID Enhanced Cell ID
EKF Extended Kalaman Filter
EGNOS European Geostationary Navigation

Overlay Service
EMs Equivalent Measurements
eNode B Evolved UMTS terminology for Base Station
E-OTD Enhanced Observed Time Difference
ES Electronic Surveillance
E-SMLC Evolved SMLC
E-UTRAN Evolved UMTS Terrestrial RAN
FTD False Track Discrimination
FCC Federal Communication Commission
FDD Frequency-Division Duplexing

FDOA Frequency Difference of Arrival
FOA Frequency of Arrival
FoV Field of View
FIM Fisher Information Matrix
GALE Geometry-Assisted Location Estimation
GAGAN GPS Aided Geo Augmented Navigation

GAGAN
GCC Generalized Cross-Correlation
GDOP Geometric Dilution Of Precision
GERAN GSM EDGE RAN
GMM Gaussian Mixture Model
GMTs Ground Moving Targets
GNSS Global Navigation Satellite System
GPRS General Packet Radio Service
GPS Global Positioning System
GSM Global System for Mobile communications
ICT Information and Communication

Technology
ILBS Indoor Location Based Services
INS Inertial Navigation System
IMM Interacting Multiple Model
IoT Internet of Things
IPDL Idle Period DownLink
ITS Intelligent Transportation System
ITSF Integrated Track Splitting Filter
KF Kalman Filter
k-NN k-Nearest Neighbour
LCS Location Services
LBS Location-Based Services
LMU Location Measurement Unite
LOB Line-of-Bearing
LOS Line-Of-Sight
LS Least Squares
LTE Long Term Evolution
MAP Maximum a Posteriori
MC Monte Carlo
MF Matched Filter
MLE Maximum Likelihood Estimation
MMSE Minimum Mean Squared Error
MS Mobile Station
MSAS Multi-functional Satellite Augmentation

System
MSE Mean Square Error
MT Mobile Terminal
MUSIC Multiple Signal Identification
NLOS Non-Line-Of-Sight
NLS Non-linear Least Sqaures
Node B UMTS terminology for Base Station
OSM OpenStreetMap
OTD Observed Time Difference
OTDOA Observed Time Difference Of Arrival
OVSF Orthogonal Variable Spreading Factor
PMI Precoder Matrix Indices
P-CPICH Primary Common Pilot Channel
PF Particle Filter
PN Pseudo-Noise
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PTT Push-to-Talk
PV Probe Vehicle
QoS Quality of Service
RAN Radio Access Network
RF Radio Frequency
RFID Radio Frequency Identification
RIPS Radio Interferometric Positioning System
REKF Robust Extended Kalman Filter
RMS Root Mean Square
RMSE Root Mean Square Error
RSS Received Signal Strength
RSSI Received Signal Strength Indicator
RSE Root Square Error
RSTD Reference Signal Time Difference
RTD Real Time Difference
RTLS Real Time Location System
RTT Round Trip Time
SBAS Satellite-based Augmentation Systems
SDP Semi-Definite Programming
SDR Semi-Definite Relaxation
SFN System Frame Number
SMLC Serving Mobile Location Center
SNR Signal-to-Noise Ratio
SRS Sounding Reference Signals
SUAV Small Unmanned Aerial Vehicles
SUMO Simulation of Urban Mobility
SVM Support Vector Machine
T2T Track-to-Track
TA Timing Advance
TACS Traffic Alert and Collision Avoidance

Systems
TDOA Time Difference Of Arrival
TFDOA Time/Frequency Difference of Arrival
TIS Traffic Information System
TOA Time Of Arrival
TTFF Time-To-First-Fix
UAV Unmanned Airial Vehicle
UE User Equipment
UGV Unmanned Ground Vehicle
UKF Unscented Kalman Filter
UL Up Link
ULA Uniform Linear Array
UMTS Universal Mobile Telecommunications

System
U-TDOA Uplink Time Difference of Arrival
UTM Universal Transverse Mercator
UTRAN UMTS Terrestrial RAN
WAAS Wide Area Augmentation System
WCDMA Wide-band Code Division Multiple Access
WGS84 World Geodetic Standard 1984
WiFi Wireless Fidelity
WLAN Wireless Local Area Network
WLPS Wireless Local Positioning Systems
WLS Weighted Least Squares
WPAN Wireless Personal Area Network
WSN Wireless Sensor Network.
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