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ABSTRACT In the literature, researchers have been studying theminimum initial marking (MIM) estimation
problem in the labeled Petri nets with observable transitions. This paper extends the results to labeled Petri
nets with unobservable transitions (with certain special structure) and proposes algorithms for the MIM
estimation (MIM-UT). In particular, we assume that the Petri net structure is given and the unobservable
transitions in the net are contact-free. Based on the observation of a sequence of labels, our objective is to
find the set of MIM(s) that is(are) able to produce this sequence and has(have) the smallest total number
of tokens. An algorithm is developed to find the set of MIM(s) with polynomial complexity in the length
of the observed label sequence. Two heuristic algorithms are also proposed to reduce the computational
complexity. An illustrative example is also provided to demonstrate the proposed algorithms and compare
their performance.

INDEX TERMS Labeled Petri nets, initial marking estimation, unobservable transitions, algorithmic
complexity.

I. INTRODUCTION
Petri nets (PNs) is a useful tool for the modeling and analysis
of complex systems [1], [2]. In literature, Petri nets have been
used quite widely in a variety of practical systems including
microgrid systems, traffic systems, among others [3]–[7]. For
the studies of Petri nets, the marking/state estimation is a
fundamental problem, which aims at estimating the state of
the system model given a PN structure along with some
observations. Qin et al. [8] proposed an application of Petri
net deadlock prevention involving unobservable transitions.
Bonhomme [9] studied the problem of marking estimation
in an unlabeled P-time Petri net with unobservable transi-
tions. The proposed approach was based on state observer
under partial observation. The work in [10] also used the
observer techniques to estimate both the markings and the
firing vectors. Corona et al. [11], [12] presented a technique
of estimating Petri net markings based on an observation
of transition labels, which does not depend on the obser-
vation length under some assumptions. Cabasino et al. [13]
proposed an approach for marking estimation in a probabilis-
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tic setting. Initial marking or a finite set of initial markings
were assumed to be known with a priori probabilities, then
conditional probabilities of marking estimates given the label
observations are obtained.

The aforementioned works contributed significantly in the
research area of marking/state estimation in Petri nets. How-
ever, they assume that the initial marking of the system is
known or partially known. In the MIM problem we study
in this paper, we have a different objective, i.e., we aim at
estimating the initial marking(s) based on the observation
of a sequence of labels that is produced by the system’s
underlying transition activities. Moreover, the system has
some transitions that are unobservable (e.g., their firings
can occur without being observed). This is inspired by the
initial resource allocation problem in manufacturing sys-
tems, where the minimum number of resources need to be
planned/scheduled in order to complete a set of pre-assigned
processes/tasks [14].

Several researchers have been studying the topic related
to the MIM estimation problem. For instance, Yamauchi
and Watanabe [15] proposed a heuristic method for MIM
estimation in Petri nets. In this study, the structure and firings
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of transitions were assumed to be fully known, but with
limited firing times of each transition. The objective is to find
the unknown initial marking that has the least total number of
tokens. Li and Hadjicostis [16] studied the MIM estimation
problem in labeled Petri nets with observable transitions and
proposed algorithms to obtain the MIM estimates.

In this paper, we aim at extending the results in [16] to
labeled Petri nets with unobservable transitions, that is, min-
imum initial marking estimation in labeled Petri nets with
unobservable transitions (MIM-UT). The existence of unob-
servable transitions makes this problem a challenging task.
We show that, under some assumptions on the structure of
unobservable subnet, we are able to develop an algorithm
that can find the set of MIM-UT estimates with complex-
ity that is polynomial in the length of the label observa-
tions. In addition, two heuristic algorithms are proposed to
reduce the computational complexity. An example is also pro-
vided to illustrate the proposed algorithms and compare their
performance.

II. PETRI NET PRELIMINARIES
In this section, we talk about the notation and terminology
that are used in this paper briefly. More specific information
about Petri nets is provided in [1] and [2].

A Petri net NP = (Places,Transitions,Arcs,Weights) is a
graph with directed arcs connecting from places to transitions
(and transitions to places), where Places = {p1, p2, . . . , pn}
represents the set of places (shown as empty circles) with a
finite size n, Transitions = {t1, t2, . . . , tm} represents the set
of transitions (shown as empty or solid bars) with a finite
size m, Arcs is a set of arcs that connecting Places and
Transitions, and Weights : Arcs → {1, 2, 3, . . .} represents
the weighting function of the arcs.

Notation I is used to represent the incident matrix of the
Petri net and I is defined as I = Iout − I in, where Iout

is called the output incident matrix of the Petri net and I in

is called the input incident matrix of the Petri net. Each
entry Ioutij , which is at the ith row, jth column position of
matrix Iout , denotes the weight of the arc from transition tj
to place pi; Similarly, each element I inij in matrix I in denotes
the weight of the arc that starts at place pi and ends up at
transition tj, where i ∈ [1, n] and j ∈ [1, m]. Note that
all the weights on the arcs should be non-negative integer
numbers and the value of Ioutij (or I inij ) is set to be zero if
there is no arc connecting place pi and transition tj. Hence,
we can also use Np = (Places,Transitions, Iout , I in) to rep-
resent a Petri net. Then we introduce →p (→t) as the input
transitions (places) set of place p (transition t) and p→ (t→)
as the output transitions (places) set of place p (transition t).
Furthermore, notation →p→ =

→p
⋃

p→ (→t→ =
→

t
⋃

t→) represents the input and output transitions (places)
set of place p (transition t).
M : Places→ Z+0 is a vector used to denote the marking,

which assigns a non-negative integer number of tokens into
each place of the Petri net. The tokens are represented as
black dots. The total number of tokens in all places is denoted

as |M | (i.e., |M | =
∑n

i=1M (pi)). The enabling condition
of a transition t is that when each of its input place pin has
no less than I in(pin, t) tokens, where I in(pin, t) represents
the arc weight from place pin to transition t . M [t〉 is used
to represent that transition t is enabled at marking M . The
enabled transition t can fire. When transition t fires, I in(p, t)
tokens should be removed from all of its input places, while
all of its output places should be deposited Iout (p, t) tokens.
These will yield to a newmarking, denoted asM ′ that satisfies
M ′ = M + I (:, t), where I (:, t) denotes the column in
the incident matrix I of the Petri net that corresponds to
transition t .
A labeled Petri net structure NPL = (NP,Labels, 6) is

a Petri net with each of its transition assigned with a label,
which is an element in 6 (or empty label ε for an unob-
servable transition) and Labels : Transitions → 6 ∪ {ε}

represents the assigning function. Note that the same label
could be assigned to two or more different transitions. Tl is
used to denote the transition set with label l ∈ 6 while |Tl |
represents the number of transitions associated with label l.

In this paper, we consider the case when unobservable
transitions exist in the labeled Petri net. Hence, we divide the
transition set Transition into two separated sets To and Tu,
such that Transition = To ∪ Tu and To ∩ Tu = ∅, where To is
the set of observable transitions (representedwith empty bars)
and Tu is the set of unobservable transitions (represented with
solid bars).
Definition 1: Given a labeled Petri net with unobserv-

able transition subset Tu ⊆ Transitions. The unobservable
subnet of the given labeled Petri net is defined as the net
NPu = (Places,Tu, I inu , I

out
u ), where I inu and Ioutu consist of

the columns that correspond to unobservable transitions in the
input and output incident matrices I in and Iout .
In this paper, we assume all unobservable transitions in the

net are contact-free.
Definition 2 [17]:Contact-free for two transitions ti and tj

is defined as follows:→t→i
⋂
→ t→j = ∅,

→ti
⋂
t→i = ∅, and

→tj ∩ t→j = ∅, i.e., the two transitions don’t have common
input or output places and don’t have self-loops.
An example Petri net with unobservable subset can be

found in Figure 1.(a) while Figure 1.(b) shows its unob-
servable subnet. Note that the two unobservable transitions
t5 and t6 are contact-free.

III. PROBLEM FORMULATION
A. PETRI NETS WITH OBSERVABLE TRANSITIONS
We first consider the case where we are given a labeled
Petri net with observable transitions only. Given a Petri
net structure with labeling function Labels, NPL =

(Places,Transitions,Arcs,Weights,Labels, 6) and an label
observation sequence ω = l1 l2 . . . lk (where lj ∈ 6, j ∈
{1, 2, . . . , k}) that has been generated by underlying transi-
tion activities, Li and Hadjicostis [16] proposed amethod that
could find the MIM estimate set with polynomial computa-
tional complexity with respect to the length of ω. Here we

VOLUME 7, 2019 19233



K. Ruan et al.: MIM Estimation in Labeled PNs With Unobservable Transitions

FIGURE 1. A labeled Petri net with unobservable subnet (a), and its unobservable subnet (b).

present some necessary definitions proposed in [16], which
are used later to deal with nets with unobservable transitions.
Definition 3 [16]: Given a label observation sequence ω,

three quantities are defined with respect to ω: 1) The initial
marking estimates set E(ω), 2) The minimal initial marking
estimates set Eminimal(ω), and 3) The minimum initial mark-
ing estimates Eminimum(ω), where:

E(ω) = {M ∈ (Z+0 )n | ∃σ ∈ Transitions∗ : M [σ 〉

and Labels(σ ) = ω},

Eminimal(ω) = {M ∈ E(ω) | @M ′ ∈ E(ω) :
M ′ ≤ M and M ′ 6= M},

Eminimum(ω) = {M ∈ Eminimal(ω) | |M |

≤ |M ′| for allM ′ ∈ Eminimal(ω)}.

In [16], the minimal initial marking is calculated using
Equation (1) below.

M j+1
0 = max{M j

0 + I · yj−1, I
in(:, tij )} − I · yj−1, (1)

where j = 1, 2, . . . , k , yj−1 represents the firing vector at the
(j− 1)-th stage of the transition firing sequence ti1 ti2 . . . tij−1 .
M1

0 is an n-dimensional vector with all entries equal to zero
(i.e., E0n), and y0 is an m-dimensional vector with all entries
equal to zero (i.e., E0m). Note that M j

0 (M j+1
0 ) represents the

initial marking estimate before (after) transition tij fires.
The trellis diagramwas then introduced in [16] to calculate

the set of minimal initial marking estimates. After all labels
are considered, the minimum initial marking set can be found
by choosing from these markings, the ones where the sum of
the total number of tokens in all places is the minimum.

B. PETRI NETS WITH UNOBSERVABLE SUBNET
Note that in the case of Petri nets with unobservable sub-
net, the amount of firing sequences that generated from one
label observation sequence can grow exponentially, and in
the worst case, infinitely. To make our calculations simpler,
in this paper we have the following assumptions.
(A1)The unobservable subnet is contact-free.
(A2) For each label observation, one and only one unobserv-
able transition can fire before the observable transition that
corresponds to the label.
Based on assumption (A2), after label lj is observed,
the potential firing sequences we need to consider are in the

form of t or tut , where t ∈ To and Labels(t) = lj, and tu ∈ Tu.
Equation (1) can be applied to these sequences after each
label observation to obtain the corresponding firing vectors
y as well as the associated MIM estimates.
Example 1: Consider the labeled Petri net with unobserv-

able subnet shown in Figure 1.(a). Our objective is to obtain
theMIM estimates after label sequenceω = {aa} is observed.

TABLE 1. List of minimal initial marking estimates calculated in
example 1.

If we only consider observable transitions, it is not dif-
ficult to see that the minimum initial marking estimate
after observing label sequence aa is [2 0 0 0 0 0]T (by
transition firing sequence t1t1 with firing vector y =

[2 0 0 0 0 0 0]T ). When unobservable transitions exist,
however, there can be a significantly larger number of tran-
sition firing sequences to consider. For instance, for each
label observation a, we need to consider all possible fir-
ing sequences {t1, t4, t5t1, t6t1, t5t4, t6t4}. By applying Equa-
tion (1) to these firing sequences, we can find the minimal
initial marking estimate set, and from which, we can obtain
the minimum initial marking estimate(s). The set of minimal
initial marking estimates and their associated firing vectors
are shown in Table 1. Note that due to space considerations,
Table 1 do not include all transition firing sequences we con-
sidered since those marking estimates that are not minimal
were removed.
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It is not difficult to see that, the MIM estimate after
observing label sequence aa is [1 0 0 0 0 0]T via transition
firing sequence t1t5t4. This MIM estimate has a smaller total
number of tokens compared to the MIM estimate obtained by
considering only observable transitions.

IV. DESCRIPTIONS OF PROPOSED ALGORITHMS
A. MAIN ALGORITHM
In this section, a recursive algorithm has been proposed as the
method of generating the minimum initial marking set based
on an length k label observation sequence ω = l1 l2 . . . lk in
labeled Petri nets with unobservable subnet.

In Algorithm 1, during each label observation, we consider
observable transitions that are related to the observed label,
as well as the sequences of exactly one unobservable transi-
tion followed by the observable transition (based on assump-
tion A2). The firing vectors and their corresponding minimal
initial marking estimate sets are calculated recursively. Flag
is the indicator of the current transition under consideration,
i.e., Flag == TRUE if it is an observable transition and
Flag == FALSE if it is an unobservable transition.
According to [16], the number of firing vectors at the

j-th stage is given by nj = jb where b is a structural
parameter of the given Petri net. For unobservable transitions,
we can fire one and only one unobservable transition when
each label is observed. Hence the total number of different
unobservable firing vectors is mu, where mu is the num-
ber of unobservable transitions. Combining the observable
and unobservable firing vectors, at the j-th stage, there are
nj = (muj)b different firing vectors. At the (j − 1)-th stage,
each firing vector can generate atmostmu×mo different firing
vectors, where mo is the number of observable transitions.
So at j-th stage, the number of new generated firing vectors is
given by mu × mo × nj−1 = O(momu(muj)b). The maximum
number of the comparisons decide the uniqueness for each of
these firing vectors is represented by nj and each comparison
has a complexity of O(mu + mo) = O(m). If it is not
unique, the maximum number of comparisons that we need
to compare each current marking estimate with the existing
minimal initial marking estimates is represented by qj, while
the complexity for each comparison is O(n).
Parameter qj is used to represent the number of minimal

initial marking estimates associated with each firing vector at
stage j.We are trying to findmarkings that are not comparable
with the same firing vector. For observable cases, we know
that the qj is bounded by O(jn). For unobservable cases, since
each unobservable transition can fire at most once, the firing
sequence under consideration is with length 2j. Thus, qj in
our case is bounded by O((2j)n) = O(jn).
From analysis above, it is not difficult to see the total

computational complexity of Algorithm 1 is
∑k

j=1[O(nj−1 ×
mo×mu×(m×nj+qj−1×qj×n))] =

∑k
j=1[O(momu(muj)

b
×

[mmu(muj)b + jn × n × jn])], which can be simplified
as O(momm2b+2

u k2b+1 + monmb+1u k2n+b+1) = O(k2b+1 +
k2n+b+1). Clearly, Algorithm 1 has complexity that is

Algorithm 1 MIM Estimation in Labeled Petri Nets With
Contact-Free Unobservable Transitions
Require: A labeled Petri net with contact-free unobserv-

able transitions and an label observation sequence
ω = l1 l2 . . . lk of length k .

Ensure: Minimum initial marking estimate(s).
1: M1

0 =
E0n, y0 = E0m, Flag == TRUE .

2: nodes = (M1
0 , y0,Flag)

3: for i = 1 to k do
4: Search nodes to find all nodes with ti ∈ Tli .
5: for each node in nodes(:, i) with ti ∈ Tli do
6: for each transition t ∈ Tli ∪ Tu do
7: Update M i+1

0 using Equation (1) from informa-
tion M i

0 and yj−1 stored in node.
8: Update firing vector yi using yi−1 and the current

transition t .
9: if yi has already appeared then
10: Compare M i+1

0 with its minimal initial mark-
ing estimatesMminimal

11: if M0
i+1 is not comparable withMminimal then

12: Store node in nodes(:, i)
13: else ifM i+1

0 ≤ Mminimal then
14: Store node in nodes(:, i) and delete the orig-

inal node in Mminimal
15: end if
16: end if
17: if t ∈ Tu then
18: Set Flag == FALSE
19: else
20: Set Flag == TRUE
21: end if
22: if Flag == FALSE then
23: for each t ∈ Tli do
24: Goto 7
25: end for
26: end if
27: end for
28: end for
29: end for
30: Output the minimum initial marking estimate set

polynomial in k , which is the length of the observed label
sequence. However, Algorithm 1 has exponential complex-
ity on some structural parameters of the Petri net (such as
n and b).

B. HEURISTIC METHODS
In some cases, we can further reduce the complexity of solv-
ing the MIM estimation problem when high accuracy is not
required. We propose two heuristic methods in this section
that can improve the calculation speed, while only a subset or
an approximation of MIM estimates could be found.

The first heuristic algorithm we propose is that, after our
calculation of minimal initial marking estimate set in each
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iteration, only the marking(s) that has (have) the smallest
token sum will be kept for further calculations. The second
heuristic algorithm is to only consider observable transitions,
namely, all unobservable transitions are ignored during our
calculations.

We will show the performance of these three algorithms in
the following illustrative example.

V. ILLUSTRATIVE EXAMPLE
In this section, we illustrate our algorithm with a manufac-
turing system example modeled by Petri nets. Consider the
labeled Petri net model shown in Figure 2, which has 10 dif-
ferent places Places = {p1, p2, . . . , p10} and 12 different
transitions Transitions = {t1, t2, . . . , t12}. The labeling func-
tion is shown as: Labels(t3) = Labels(t5) = a, Labels(t6) =
b, Labels(t7) = Labels(t8) = c, Labels(t9) = d , Labels(t1) =
e, Labels(t2) = f , Labels(t11) = g, Labels(t12) = h and
Labels(t4) = Labels(t10) = ε. Note that two unobservable
transitions t4 and t10 are contact-free.

FIGURE 2. Petri net model of the illustrative example.

We use the sequence of labels

ω = efabcdcbgh

of length 10 as our observation. We run Algorithm 1 and
two heuristic algorithms on this example. Performance are
compared with respect to: 1) The number of minimal initial
marking estimates calculated from each label observation,
and 2) The minimum initial marking estimate(s) obtained
after each observation iteration.

Table 2 summarizes the amount of minimal initial marking
estimates calculated by three algorithms for each label obser-
vation, where Main stands for Algorithm 1, HM1 stands for
Heuristic Method 1, and HM1 stands for Heuristic Method 2.
It is clear that the amount of minimal initial marking calcu-
lated by Algorithm 1 is much larger than HM1 and HM2.
Figure 3 shows the amount of minimal initial marking esti-
mates calculated to the length of label observations for
Algorithm 1, HM1, and HM2, respectively. To see that

TABLE 2. Number of minimal initial markings calculated by three
algorithms.

FIGURE 3. Number of minimal initial marking estimates calculated by
three algorithms.

FIGURE 4. Number of minimal initial Marking estimates calculated by
three algorithms compared with a polynomial function of k4.

the algorithmic complexity is polynomial in the length of
the label observations, we also added the function O(k4)
in Figure 4 for comparisons. Clearly, we can see that the num-
ber of minimal initial marking considered by three algorithms
are bounded by O(k4), which is a polynomial function in the
length of label observations k .

In Table 3, we show the set of minimum initial marking
estimate(s) after this label sequence is observed. As expected,
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TABLE 3. Minimum initial marking estimates obtained by three
algorithms.

we see that althoughAlgorithm 1 considersmoreminimal ini-
tial marking estimates during its calculation, it is able to find
a complete set of three minimum initial marking estimate(s)
that have a token sum of 13. HM1 and HM2 might consider
a less number of minimal initial markings (so the calculation
time is faster), while only a subset or an approximation of the
final minimum initial marking estimates could be found. For
instance, HM1 is able to find a subset of true MIM estimates
(one marking that has a token sum of 13) and HM2 can only
find an approximation of true MIM estimates (one marking
that has a token sum of 24). Thus, Algorithm 1 is able to
obtain a complete set of MIM estimates with a higher compu-
tational cost. Two heuristic methods are able to find a partial
or an approximation of the set of MIM estimates with a lower
computational cost.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we studied the problem of minimum initial
marking estimation in labeled Petri nets with contact-free
unobservable transitions. An algorithmwas developed to find
the set of minimum initial markings with the complexity that
is polynomial in the length of the observed label sequence.
In addition, we proposed two heuristic algorithms that are
able to find a partial/approximated set of solutions, but with
a lower computational cost.

One of the future research direction is to further reduce the
complexity of the proposed algorithms by considering special
structures of the unobservable sub-net. It is also interesting to
generalize the results into a stochastic or timed setting.
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