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ABSTRACT Software engineering comprises several disciplines. Testing, the subject of this paper, is an
important phase which is still largely unpredictable, expensive, and ad hoc. Software testing has already been
framed as an optimization problem, i.e., to solve problems in software testing various optimization techniques
can be used. To adequately test the software, various rules called test adequacy criteria are used. In this
paper, a review of optimization techniques used in domains, test case generation, selection, minimization,
and prioritization of testing, has been presented. The review is conducted by selecting quality literature
from journals, conferences, workshops, and symposium. The state-of-the-art issues in software testing have
been addressed by analyzing the reviewed literature on the basis of the domain of testing, test adequacy
criteria, and optimization technique used. After analysis of the considered literature, authors were able to
conclude the limitations of existing work, list of traditional and recently proposed adequacy criteria as well
as combinations of adequacy criteria for multi-objective optimization and optimization techniques which
may be used in the optimization of software testing.

INDEX TERMS Optimization techniques, test case generation, selection, minimization, prioritization,
multi-objective optimization.

I. INTRODUCTION
Field of software testing is a significant phase in software life
cycle process which ensures software quality by testing a pro-
gram with intention of finding software bugs. Unfortunately,
the problem of finding all faults or proving their absence in
a program is essentially unsolvable because input space is
vast and only a few test inputs can be sampled. Beizer [1]
stated that 50% of the total software project’s effort is used
for testing. Testing is therefore always a trade-off between the
cost for further testing and undiscovered faults in a program.

To reduce cost, time and effort for developing software,
optimization techniques can be used. The use of optimization
algorithms is not new to the world of software. Work on
optimization for testing was started byMiller and Spooner [2]
in 1967. They generated test data by using various optimiza-
tion techniques. Xanthakis et al. [3] applied a meta-heuristic
algorithm for test data generation. Optimization techniques
can be of various types such as conventional techniques
(combinatorial optimization, greedy, linear programming);
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intelligent techniques (dynamic programming, evolution-
ary and stochastic algorithms); and hybrid techniques. For
optimization, various techniques such as local search, hill
climbing, fuzzy logic, machine learning, simulated anneal-
ing, genetic programming, evolutionary and meta-heuristic
algorithms can be used. Hybrid algorithms can also be
used which combines good features of two or more algo-
rithms and may solve the same problem in a better opti-
mized way. A lot of hybrid algorithms have been proposed
such as PSO-LA [44], ACO and chaos optimization algo-
rithm [45], CS-TS algorithm [46], cuckoo and genetic algo-
rithm [47], PSO-Bat algorithm [57], tabu-firefly hybrid [58],
firefly-harmony algorithm [60], bat-harmony algorithm [61]
etc. which have been used in various phases of software
engineering or some other optimization problem. As testing
is diverse and complex, it has been divided into distinct
but related topics, such as test case generation, selection,
minimization, and prioritization.

It requires various input parameters such as test criteria
specifications, source code and definitions of data structure
for generating tests. It’s not an easy task to generate realistic
test cases because of the complexity of the input parameters.
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Thus, optimization techniques can be used at this level also to
improve test data generation. A lot of work [7]–[13] etc. has
already been done in this direction.

Test execution needs lot of time and resources. Eliminating
redundant or unnecessary tests by minimization and selec-
tion of test suites can save both time and resources. In test
suite minimization redundant tests are eliminated whereas
in selection subset of tests are identified which is required
to re-test the software alterations. Further optimization tech-
niques have been used in research works such as [14]–[18] for
test case selection and [23]–[28] for test suite minimization.

Next is test case prioritization in which tests are sched-
uled in an order for execution to increase the prompt fault
detection, which will make debugging of the software faster.
Optimization work has been done in test case prioritization
also, such as Ahmed et al. [31]; Sun et al. [32]; Li et al. [33];
Joseph and Radhamani [34]; Tyagi and Malhotra [35];
Epitropakis et al. [36].

For optimization in software testing, another important
aspect is selecting the adequacy criterion based on which
optimization has to be done. Adequacy criteria are the test
obligations or rules applied to test suites to determine whether
all software bugs have been treated or not. Young [40] had
stated, ‘‘A test suite adheres to an adequacy criterion when
all the test cases in it succeed or pass’’. Adequacy criteria
may be of various types such as control flow, data flow,
and fault-based adequacy criteria. Data-flow based includes
all definitions criterion and all uses criterion. Cyclomatic
number criterion, statement, branch, path, loop and relational
operator coverage are included in control flow-based criteria.
Fault-based criterion includes mutant coverage or mutant
killing score.

Selecting adequacy criteria in testing is important because
even after testing, the extent to which errors remain in
software depends upon criteria used to test. According to
Young [40], for distinguishing adequacy criteria, empirical
approach and analytical approach can be used. In an empirical
approach, a controlled study is done which determines the
effectiveness of testing methods on basis of kind of software
being tested and kind of organization in which software is
developed. The analytical approach defines one adequacy
criterion stronger than another and subsumes relationship
between adequacy criteria is used. For e.g. branch coverage
criterion subsumes statement coverage as every test suite
sustaining branch coverage should also sustain statement
coverage. Weiss [43] has compared criteria on the bases of
satisfiability, correctness, and cost. For him there are only two
essential bases for comparing criteria, first is their efficiency
at exposing errors, and second is their cost of use. Thus,
selecting the correct adequacy criteria for optimization is
important.

Aim of this work is to present a detailed and exhaustive
review on optimization techniques in the field of software
testing. Focus should be on current state and future aspects;
thus, literature is considered from the year 2007-2018 as

lots of surveys [62]–[68] in various domains of software
testing are available for the period even before 2007. Instead
of considering a specific domain of testing and optimiza-
tion technique, all domains i.e. test case generation, selec-
tion, minimization, and prioritization and all optimization
techniques are considered. Optimization work in which
multi-criteria or hybrid optimization technique is used, are
considered for study as software testing is based on many
factors such as code coverage, requirement coverage etc.
Thus, considering one criterion would not be enough and
hybrid techniques are considered because they have good
features of many techniques.
Research Questions Addressed in the Study:
� Research Question 1: What are the traditional ade-

quacy criteria and their combinations that are widely
used in literature and what are the recent new criteria
that can be used in combination with other criteria?

� Research Question 2: What are the traditional opti-
mization techniques which have been widely used in lit-
erature and new techniques that have not been used in all
the domains of software testing i.e. test case generation,
selection, minimization and prioritization?

� Research Question 3: What are the various gaps in the
reviewed literature?

Further, paper consists of the following Sections: Section 2
presents the research methodology. Section 3 presents a liter-
ature review of previous works on successful application of
optimization techniques in the four domains of testing: test
case generation, selection, minimization and prioritization.
The analysis of existing work, as well as answers to the con-
sidered research question 1 and 2 are presented in Section 4.
In Section 5, research question 3 is answered in the form of
challenges and opportunities. The conclusion is in Section 6.

II. RESEARCH METHODOLOGY
A systematic review is a rigorous procedure in which iden-
tification, selection of appropriate research and analysis of
data are needed to be done. Review process employed in the
present work for literature selection is represented in Figure 1.
For selecting suitable research work, following keywords
are used: ‘‘optimization techniques’’, ‘‘test case generation’’,
‘‘test case selection’’, ‘‘test case minimization and prioriti-
zation’’ and ‘‘test adequacy criteria’’. To answer the consid-
ered research questions, available research work is divided
into three categories: optimization technique used in soft-
ware testing; software test adequacy criteria and optimization
techniques not widely used in software testing. Research
work belonging to these categories serves as the database
for conducting review. First category focuses on work where
optimization technique is used, in considered domains of
testing. Second category focus on finding non-traditional
adequacy criteria and their related works. Third category
focuses on finding optimization techniques that have not
been used or very less used and has a future scope in soft-
ware testing. Figure 1 represents how from these databases;
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FIGURE 1. Systematic literature review.

TABLE 1. Search strings used to gather literature.

the desired result has been achieved. For including and
excluding research work from these categories, some filter
conditions are used which have been discussed in following
text. Table 1 represents the search string used for creating
database as per the categories discussed above, no. of search
result, no. of included and excluded research work after
applying inclusion and exclusion criteria.

To limit the selection of work those are relevant to the
considered research questions, the following inclusion and
exclusion criteria are used.

Filter conditions for study related to optimization in
software testing.
• Studies from the year 2007-2018 are included.
• Studies published in conference, symposium, work-
shops, notes and journals mentioned in Table 2 are
included.

• Studies in which multi-criteria optimization is done or a
hybrid technique is used for optimization are included.

• Studies with duplicate research work in different
resources are removed.
– Studies in which a proposal is given but not imple-

mented are removed.
• Studies in which a proposal is not validated using exam-
ples or dataset are removed.

Filter conditions for non-traditional adequacy criteria
• Studies, where proposed adequacy criteria are new in
concept, different from traditional adequacy criteria1

and are scarcely used in literature as well as being pos-
sibly good criteria to use are considered.

1Traditional Adequacy criteria are criteria which have been commonly
used in literature such as statement, branch, path, requirement coverage,
execution time, fault detection rate etc.
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TABLE 2. Publication platforms.

Filter conditions for optimization techniques not used
in software testing
• Studies, where proposed optimization technique is not
used in software testing but gives better results in terms
of convergence and accuracy compared to existing tra-
ditional techniques2 are considered.

From a large pool of studies, only 36 studies for optimiza-
tion in software testing are accepted because in them multi-
objective optimization or hybrid technique is used. Analysis
of each research work in the respective domain of testing
has been done to answer the research questions addressed in
the study. Selected literature is also analyzed and compared
based on following key aspects: Method of problem formula-
tion, type of optimization technique, level of validation, data
source usage and feasibility in industrial or research projects.
These aspects are included because while review, we found
them to be important for an optimization work in software
testing. Each aspect has some value and a weight assigned
to it. Final marks are calculated by adding value of all the
aspects. Research work which has the highest score is good
in all terms. Analysis of recently proposed criteria is also done
which is represented in tabular form in Section 4.

2Traditional techniques are optimization techniques which have been
commonly used in literature such as genetic algorithm, PSO, ACO, Firefly,
and NSGA etc.

Key Aspects of evaluation:

• Method of formulating the software testing problem:
A problem can be formulated in two ways: single and
multi-objective. A multi-objective approach is better as
software testing optimization is based on many ade-
quacy criteria such as code coverage, requirement cov-
erage etc. Thus, multi-objective approach is given more
value. The values assigned are given in Table 3.

TABLE 3. Problem Formulation Paradigms.

• Type of optimization technique: Various types of
techniques can be used; conventional techniques are
non-intelligent techniques such as linear programming,
greedy etc. Intelligent techniques are dynamic program-
ming, evolutionary and stochastic algorithms. Hybrid
techniques can be a combination of any two types of
technique. A technique which is the combination of both
types will have good features of both. Thus, it is given
maximum value of 3. The values assigned are given
in Table 4.

TABLE 4. Types of Techniques for Test Case Optimization.

• Validation: Proposed test case optimization technique
needs to be validated by applying it to programs. So, that
the pros and cons of the proposed techniques can be
known. Thus, validation is important, and if it is done
then value of 1 is assigned. Values assigned are given
in Table 5.

TABLE 5. Level of Validation of Test Case Optimization Techniques.

• Data source usage:Data used for validation can be from
a benchmark repository which consists of complex and
large sized programs used for industrial purpose or from
an academic source which consists of small and student
made programs. Testing on complex and large programs
is more meaningful. So, benchmark programs are given
maximum value. Values assigned are given it Table 6.

• Feasibility: Is there a scope of using this work in
industry or research projects. Values assigned are given
in Table 7.
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TABLE 6. Types of Data Source Used for Validation.

TABLE 7. Space for Future Research.

III. LITERATURE REVIEW
This section consists of study of various optimization tech-
niques in the field of test case generation, selection, mini-
mization, and prioritization as well as the recently proposed
adequacy criteria.

A. TEST CASE GENERATION
For the generation of test data, multi-objective search algo-
rithm from pareto optimal and weighted fitness approach was
proposed by Lakhotia et al. [4]. In pareto GA, a set of front
lines is created by NSGA-II algorithm, which contains only
non-dominating solutions. Performance of random search,
weighted GA, and pareto GA is tested on five case studies.
Results depict that weighted GA is best for maximum of the
cases among all search methods.

Harman et al. [5] have used memory based, greedy based
and CDG based test data reduction techniques with genetic
algorithm to optimize oracle cost and branch coverage with
a reduced number of tests. Check isbn, clip to circle and
triangle are the programs on which study was conducted.
Results show that they were able to reduce test cases and
cyclomatic complexity without affecting branch coverage by
all the techniques.

The genetic algorithm is among widely used algorithms.
Rathore et al. [6] have modified this method by using tabu
search in mutation step. The proposed algorithm is more
effective as all nodes of the triangle classifier program are
covered with a smaller number of test cases. Also, it covers
node 8 which was uncovered in GA based algorithm.

Automated test data can be generated by path-oriented
techniques which can be static and dynamic. Various
approaches are there in dynamic techniques for optimizing
testing problems. Srivastava et al. [7] used hybrid of cuckoo
and tabu search for generating tests. Cuckoo search generates
the solution and tabu list stores test cases and its information.
This approach is used to generate test cases for triangle clas-
sifier problem. The output is generated test cases with nodes
covered by them and time required for execution. Results
depict that the proposed method uses only 467 iterations
compared to 24233 iterations by normal cuckoo and tabu
search.

Srivastava et al. [8] have modified firefly algorithm with
guidance matrix for generating optimal test paths for testing.

They have implemented the proposed method in their soft-
ware testing tool, OFTSG, which gives data flow diagram and
state diagram of a test case as result. They have compared
the proposed algorithm with ACO and results show that with
modified FA there is no recurrence in traversed path whereas
by ACO repetition is there. Proposed technique converges
faster than ACO.

Fraser and Arcuri [9] have developed whole test suites with
smaller size using their EVOSUITE tool and compared with
considering one goal at a time. It has proved to be effective
compared to approach targeting single branches, with around
188 times the branch coverage after evaluating on a total
of 1,741 classes. Test suites were smaller up to 62 percent.

Mutation based test generation is expensive as lot of
mutants are involved. Fraser and Arcuri [10] have gener-
ated test cases using genetic algorithm based on mutation
testing and branch coverage. They have removed equivalent
mutants and optimized test suites to kill higher number of
mutants. Results show that their approach helped in gener-
ating mutants-based test cases with less effort.

A black box testing approach for producing string test
cases has been proposed by Shahbazi and Miller [11]. They
have used GA and NSGA-II algorithms for generating string
test cases based on test diversity and string length distribution.
Results show proposed technique with considered string dis-
tance functions and optimization algorithms performs better
than randomly generated test cases.

Existing approaches either consider one objective or
combine all objectives into a single fitness function for
test case generation, for e.g. whole test suite generation.
Panichella et al. [12] have considered it as a multi-objective
problem in perspective of coverage of mutants, statement and
branches using Dynamic Many-Objective Sorting algorithm
(DynaMOSA). It was evaluated for 346 Java classes and
compared with the whole-suite approach and MOSA. The
outcome shows that DynaMOSA outdoes WSA in 28% and
27% of the classes aimed at branch and mutation coverage
respectively. DynaMOSA also outdoes MOSA.

Table 8 includes detail of literature for test case generation
with adequacy criteria, optimization technique used, results
and remarks.

B. TEST CASE SELECTION
A Pareto efficient approach has been proposed by Shin and
Harman [14] which takes multiple objectives by consider-
ing formulation which combines two criteria: coverage and
cost and three criteria: coverage, cost and fault history for
test case selection. These instance problems are solved by
re-formulated greedy algorithm, NSGA-II and vNSGA-II.
The study was done on print_tokens, print_tokens2, schedule,
schedule2, and space.Mixed results are there. VNSGA-II had
shown best performance for siemens programs, whereas the
weighted-sum additional greedy algorithm had given good
results with space.

Size-constrained regression test selection problem has
been solved by Mirarab et al. [15]. They have considered
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TABLE 8. Summary of Literature in domain of test case generation.

two criteria for test suite selection and prioritization based
on fault prediction of test cases: minimum sum of coverage
(max-min criterion or Dmin) and sum of coverage Dsum. Both
criteria need to be maximized. To solve the problem, they
have used linear programming and greedy approach. They
have considered coverage data for 7 test cases and 3 soft-
ware elements. Dsum is maximum for selected case T1,
T3, T5, T7. But Dmin can be increased if T5 is replaced
by T4. They have given importance to both criteria and
there is a twofold increase in Dmin for a slight decrease in
DSum. Thus, these two criteria are optimized together to the
best.

Lucia et al. [16] have optimized statement coverage and
execution time for test case selection. They have aggregated
population diversity in the attained Pareto fronts of NSGA-II.
The study was conducted on four programs from the SIR
and results show that enhanced NSGA-II has improved con-
vergence speed and non-dominated solutions with higher
diversity were obtained.

BMOPSOCDRLS andBMOPSO-CDRLS2 have been pro-
posed by Souza et al. [17] for multi-objective test case
selection. These algorithms are developed by combining
BMOPSO-CDR with forward selection, backward elimi-
nation, and the 1-opt algorithm. These mechanisms use
branch coverage and cost, for structural test case selection.
For the experiment, randomly four test suits of the space
program from the software-artifact infrastructure reposi-
tory (SIR) were used and evaluated using four matrices:
hyper-volume, generational distance, inverted generational
distance, and coverage. They have compared the proposed
algorithms with BMOPSO-CDR and NSGA-II. Results show
that BMOPSO-CDRLS and BMOPSO-CDRLS2 are better.

Zeeshan and Ahsan [18] have optimized regression test
suites using fuzzy logic with the following objectives:
requirement coverage, execution time, fault detection rate,
requirement failure impact. Results show that there is a 50 %
reduction in execution time and size of test suites by using the
proposed fuzzy technique.
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TABLE 9. Summary of Research paper in domain of test case selection.

A three-objective optimization approach for selection
of test cases using NSGA-II has been proposed by
Mondal et al. [19]. Their study shows that neither of the two
techniques is dominating each other completely, rather they
can be complementary. Test cases given by coverage-based
and diversity-based approaches have little overlap thus they
have used NSGA-II for solving a three-objective problem in
which code coverage and diversity are maximized and execu-
tion time isminimized. They have conducted the study on five
real-world SUTs (Apache Ant: 3 versions, JTopas: 1 version,
and Space: 1 version). Results show that this approach is
effective up to 25% than the bi-objective alternative and costs
less.

Hybrid of fuzzy entropy and ant colony optimization has
been used by Kumar et al. [20] for classification and selection
of test cases. It consists of three stages. First multifaceted
test cases are filtered and classified using fuzzy logic. Then
combination of fuzzy entropy and backward search strategy
is used to filter test cases. In third stage test cases are selected
from the output of second stage using ant colony optimization
with a forward search strategy. It’s applied on test suite for

Print_Tokens and Print_Tokens 2 code from Software Infras-
tructure Repository. The results show that the performance of
algorithm increases as the stages progress.

A test case selection approach based on cost mea-
sure and effectiveness measure has been proposed by
Pradhan et al. [21]. For optimization they have used Alter-
nating VariableMethod, SPEA2 and Random Search. Results
are in favor of SPEA2 algorithm.

Agrawal and Kaur [22] have used ACO and Hybrid PSO
for test case selection based on fault coverage and execution
time. Results show that hybrid PSO performs better compared
to ACO, as it is able to detect 84.2 % of faults with only 0.7 %
of tests whereas ACO required 11% of tests.

In Table 9, details of literature in the field of test case
selection have been provided in terms of adequacy criteria,
optimization technique, its results and remarks.

C. TEST SUITE MINIMIZATION
Regression testing is a complicated process which includes
multiple constraint and criteria to be tested.
Yoo and Harman [23] produced better results in test suite
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minimization in regression testing by a hybridmulti-objective
genetic and greedy approach. Test suite minimization should
be done with maximum fault detection and minimum cost.
In this work five subjects flex, grep, gzipped and space are
considered. Code coverage tells how adequate tests are and
execution time tells about the cost for testing. This approach
has helped in making a more effective testing decision.

Mala and Mohan [24] have incorporated two heuristics
RemoveSharp and LocalOPt in hybrid genetic algorithm
which has improved quality and reduced number of test cases.
HGA is compared with GA and bacterial foraging algorithm.
Test cases are reduced up to 80.6% by HGA.

In most of the work, code coverage is used as criteria
for optimization. Functional requirement coverage is also
an important criterion. So, Souza et al. [25] have proposed,
a binary multi-objective PSO and BMOPSO-CDR which
combines binary PSO with crowding distance and roulette
wheel, to maximize requirement coverage and minimize cost.
Proposed algorithms were implemented on test suites from
mobile devices background. Results were evaluated with five
metrics: hyper volume, spacing, maximum spread, coverage
and coverage difference. BMOPSO-CDR was better com-
pared to both BMOPSO and random algorithms.

Suri and Mangal [26] reduced the test cases suite by a
hybrid of bee colony optimization and genetic algorithm.
They presented a tool HBG_TCS that implements the pro-
posed approach. Comparison of the approach is done with
the ant colony optimization.

General purpose computing on graphical processing units
is expensive to use in SBSE. Yoo et al. [27] are the first
one to use GPGPU in SBSE; GPGPU has an advanced
architecture with the feature of parallelism which provides
a good platform for improving SBSE scalability. They have
presented GPGPU-based test suite minimization technique
based on requirement coverage and computation cost. The
approach was evaluated on NSGA-II, SPEA2 and two archive
algorithm. GPGPU-based optimization can attain a speed
of around 25.09 times in comparison to CPU executed
algorithm.

A combinatorial and cuckoo search-based optimization
technique has been proposed by Ahmed et al. [28] to gener-
ate tests on basis of functionality coverage. Their proposed
technique performs better than TS, GA and PSO algorithms.

Zheng et al. [29] have used various optimization tech-
niques such as greedy, NSGA-II and decomposition based
multi-objective evolutionary algorithm (MOEA/D) for min-
imizing test suites according to execution cost, statement,
branch and MC/DC coverage. Results show MOEA/D is the
most robust algorithm among all. Ahmed [30] presented a
technique using combinatorial optimization and CS to reduce
test cases in configuration-aware structural testing. First, opti-
mized test suite is generated by using combinatorial optimiza-
tion and then filtered using mutation testing. The efficacy
of technique is measured by doing an empirical study on a
software system.

D. TEST SUITE PRIORITIZATION
An approach for prioritizing tests has been presented by
Ahmed et al. [31]. The approach uses genetic algorithm to
optimize multi-criteria fitness function consisting of condi-
tion, multiple condition, and statement coverage. It uses mul-
tiple control flow coverage metrics. The average percentage
of fault detected metric was used to compare the proposed
technique with other related work. Results of the proposed
technique are close to previous work.

Sun et al. [32] have prioritized test cases for GUI applica-
tions. They have optimized fault detection capability using
event and statement coverage using additional greedy algo-
rithm. Proposed strategy is better in terms of performance
compared to single-objective strategies.

GPU-based parallel MOEAs are proposed by Li et al. [33]
to increase execution efficiency of test case prioritization.
Parallel crossover calculation outlines centered on ordinal
and sequential illustrations have also been used. The study
was done on eight benchmarks which show a speed-up
of 120 times.

Technique formed by the integration of artificial bee
colony, fuzzy C-Means, and PSO, is proposed by Joseph
and Radhamani [34]. ABC-FCM iterates till the number of
paths and faults covered is maximized. Then PSO is given
individuals obtained from the ABC-FCM as the input for fur-
ther optimization. Proposed method is better as it improved
quality and reduced complexity of test cases compared with
other optimization techniques.

A 3-phase approach has been proposed by Tyagi
and Malhotra [35] for prioritizing tests. In first phase, they
have removed redundant test cases. Then reduced test set
covering all faults is formed using MOPSO. In the third
phase, a ratio of fault coverage to the execution time is
calculated to prioritize the test cases. The MOPSO approach
outdid no reverse and random ordering techniques in terms
of average percentage of fault detected.

Epitropakis et al. [36] have proposed prioritization tech-
nique considering coverage of code and changed code. For
evaluation, they have used NSGA-II, two archive evolution-
ary algorithm, and additional greedy algorithm. Five subjects
taken from the SIR are flex, grep, gzip, make, and the sixth
subject program is MySQL. They have also introduced a
coverage compaction algorithm that reduces coverage data
size, and execution time of all the algorithms used.

Marchetto et al. [37] have used NSGA-II for maximizing
the number of discovered faults by optimizing development
cost, code, and requirement coverage. It consists of: recov-
ering traceability links, computing metrics and estimating
maintainability indexes. MOTCP+ is the proposed prototype
which has been compared with random prioritization, code
coverage, and additional code coverage-based prioritization
on 21 java application. Based on median of APFD values,
MOTCP+ outperforms mostly all techniques. APFD in each
MOTCP+, AddCodeCov and NSGAIIdim2 is 80%, 66.6%
and 62% respective.
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A resource aware test prioritization technique has been
proposed by Wang et al. [38] for software developed
for Videoconferencing Systems at Cisco. They have used
weighted GA, NSGA-II, SPEA-II, PSO and hybrid of GA
and differential evolution for optimizing total execution time,
test resource usage and fault detection capability. Random
weighted genetic algorithm is best among all algorithms for
optimizing all criteria together.

A multi-objective approach named graphite for optimizing
Code coverage, Test dissimilarity and execution time has
been proposed byAzizi andDo [39]. Graphite performs better
for considered time constraint (25%, 50%, and 75% in terms
of APFD compared to other greedy based techniques.

Details of literature for test case minimization and prioriti-
zation in terms of adequacy criteria, optimization techniques,
result and a remark has been provided in Table 10.

E. RECENTLY PROPOSED ADEQUACY CRITERIA
• Behavioral adequacy: Fraser and Walkinshaw [41]
have proposed behavioral adequacy criterion which con-
siders, ‘‘test set is considered suitable if its tests cover all
characteristics of computation done by the program’’.
It states that the program’s input and output have a
relationship between them which is considered as the
behavior of a program. Thus, from a program’s behavior
according to the test sets, it may be possible to deduce a
model which will help in guessing the outputs for inputs
that haven’t been encountered.

• Fuzzy Entropy value of test cases: It’s been proposed
by Kumar et al. [20] which measures ambiguousness of
test cases. It can be applied in the fitness, classification,
and selection of test cases to measure the ambiguity.
FEFI system based on statement, branch coverage, fault
detection capability and execution time has been built
which measures ambiguity in the suitability of test case
using fuzzy entropy.

• Distinguishing mutation adequacy: Distinguishing
mutation adequacy criterion has been proposed by
Shin et al. [42] which contain the idea of diversity in
mutant killing, i.e. mutants can be differentiated from
each other by the set of tests that kill them. Twomutant’s
mx andmy generated from program po are distinguished
by a test t only if they hold the following condition:

d(t, po,mx) 6= d(t, po,my), for a differentiator d

• Maximizing the minimum sum of coverage: This cri-
terion is proposed by Mirarab et al. [15] with the aim of
maximizing the minimum coverage through all software
elements. Dmin is the function proposed by themwith the
following equation.

Dmin (S) = min
am∈A

Wmdm(S) (1)

where dm(S) denotes fault detection capability of Swhen
applied to am and wm is used to assign weights to
software elements

• Operational coverage: A profile-based testing crite-
rion called operational coverage has been proposed by
Miranda and Bertolino [75]. It identifies various entities
such as branch, function etc. in code and then group them
conferring to usage frequency in reference to the fre-
quently used operations of software. Then, operational
coverage is calculated by using formula:

operational coverage =

∑n
i=1 wixi∑n
i=1 wi

.100% (2)

where, n is the number of important groups; xi denotes
the rate of entities covered from group i. wi is weight
assigned to group i.

IV. ANALYSIS
This section consists of analysis of reviewed literature and
answer the considered research question.

A. ANALYSIS FOR TEST CASE GENERATION
Analysis of literature in test case generation in terms of
aspects defined in Section 2 has been presented in Table 11.
Paper having highest score indicates the more acceptability
and suitability in terms of usage. After evaluation of work for
test case generation, it may be concluded:

1) Though multi-criteria optimization is done in most of
the researchwork, only Panichella et al. [12] have usedmulti-
objective algorithm DynaMOSA for optimization.

2) Mostly structural coverage-based adequacy criteria
branch and path coverage are considered for optimization.
There is a lack of research work considering functional
testing-based adequacy criterion for test case generation.
Gay et al. [48] have also concentrated on the disadvantage
of creating tests based on only coverage. They have eval-
uated the efficiency of test suites based on four coverage
criteria (condition, decision, modified condition/decision and
observableMC/DC). Counter example-based and random test
generation approaches were used on seven case examples and
concluded that using coverage criterion alone for fault finding
is almost equivalent to producing random test suites of equal
sizes. Thus, target should not be structural coverage. Instead,
it should be used as a supplement with randomly generated
test suites. With this approach, there is an increase of up to
13.5 percentage more fault detection.

3) It may also be concluded that half of the studies in test
case generation considered academic programs as subjects.

B. ANALYSIS FOR TEST CASE SELECTION
Literature in test case selection has been analyzed according
to key aspects defined in Section 2 and the analysis is avail-
able in Table 12.

For test case selection, it may be concluded that:
(1) Themost common techniques used for optimization are

genetic and greedy algorithms with their variants.
(2) Adequacy criterion of almost all types: code coverage,

requirement coverage and fault coverage have been used for
optimization, but mutation-based testing is scarcely used in
test case selection.
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TABLE 10. Summary of Research paper in domain of test case minimization and prioritization.

(3) In most of the experiments, the tests are con-
ducted on small scale software, which are mostly
freely available or are from Software Infrastructure
Repository.

C. ANALYSIS FOR TEST CASE MINIMIZATION
AND PRIORITIZATION
Table 13 and Table 14 include the value of aspects based
on which papers have been evaluated for minimization and
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TABLE 11. Final score calculation for literature in test case generation.

TABLE 12. Final score calculation for literature in test case selection.

TABLE 13. Final score calculation for literature in test case minimization.

TABLE 14. Final score calculation for literature in test case prioritization.

prioritization respectively. For minimization and prioritiza-
tion of test cases it may be concluded:

1) Genetic algorithms and greedy algorithm are again the
most commonly used technique;

2) For test case minimization and prioritization all types
I.e. Structural, Functional, Mutation, and Fault based criteria
have been used. Among non-functional criteria execution
time or cost is mainly considered, usability, security criteria
are left out while optimizing test cases.

3) General purpose computing on graphical processing
units (GPGPU) based technique has been used in both
the domains for optimization. Marchetto et al. [37] pro-
posed technique for multi-objective prioritization in which
they have considered cost, code and requirement cover-
age together. They have used Information Retrieval tech-
nique LSI (Latent Semantic Analysis) for recovering the
traceability links between requirements and code. Further,
research in this direction, considering both requirements

and code coverage together in optimization may be a good
possibility.

D. ANALYSIS FOR RESEARCH QUESTION 1
For software testing optimization, selecting adequacy crite-
ria is one of the key steps. One of the research questions
is to find out the traditional and non-traditional adequacy
criteria as well as their combinations which have been used
or possible combinations which can be used together for
multi-criteria optimization. Considered literature is analyzed
and is represented in Figure 2. Test adequacy criteria or
obligations are of various types such as Structural (state-
ment, branch, condition, path, multiple condition), Functional
(requirement coverage), Model-based, Fault-based (mutation
analysis, fault detection rate) and Non-functional such as
execution time, security, usability and safety. From the study,
it can be concluded that structural criteria such as statement,
branch and multiple condition coverage; fault-based criteria
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FIGURE 2. No. of publications where considered adequacy criteria is used.

such as mutation analysis and fault coverage; non-functional
criterion execution cost or time have mostly been consid-
ered for optimization in various testing domains. Functional
and model-based criteria, as well as non-functional proper-
ties such as security and usability, are less considered for
optimization. Test diversity, dynamic memory consumption,
mean priority and test resource usage are some of the least
used criteria for testing. Data flow criteria for optimization
are choice of fewer researchers compared to control flow
criteria.

From review, it may also be seen that code coverage has
been the choice of many researchers in all the four consid-
ered domains: test case generation, selection, minimization
and prioritization. Zhu et al. [72] have suggested that, code
coverage is not boundlessly appropriate as it may happen
that some part of code is infeasible I.e. dead or not cover-
able. Thus, no test will be able to cover that part of code.
Almulla et al. [71] have also analyzed nine faults of guava
project from which they were able to detect only three faults
on basis of branch coverage-based test suites. They found that
coverage is not enough for detecting all faults. Other factors
such as Input values, data types of input, complex data types
and order of function call play an important role in triggering
and detecting fault. Thus, code coverage should not be the
main criterion for testing.

For the combination of adequacy criteria which have been
used together Table 8, Table 9 and Table 10 should be con-
sidered for domain test case generation, selection, minimiza-
tion, and prioritization respectively. Among all combinations,
the most used combinations are statement and branch cov-
erage, branch and mutation coverage, code coverage and
execution time, code coverage and fault detection capabil-
ity, requirement coverage and execution time. Combinations
which are least used are code coverage and test diversity,
event coverage and fault coverage, path and fault coverage,
code coverage and requirement coverage.

During literature various recently proposed adequacy cri-
teria were identified such as behavioral adequacy [41], fuzzy
entropy of test cases [20], maximizing minimum sum of cov-
erage [15], diversity aware mutation adequacy criteria [42],
and operational coverage [75] which has already been dis-
cussed in Section 4.5.

Branch, path and mutation coverage are the popular ade-
quacy criteria. But when these criteria are used, a gap between
the syntax of the code and observable program behavior is
easily visible. These criteria mislead about the level to which
program behavior has been inspected. Almulla et al. [71]
have also suggested that input values, data types of input
are important factors to be looked for detecting faults as
they may be the cause for triggering the fault. Behavioral
adequacy criterion [41] fills this gap. It takes care of both
code coverage and input. Authors stated that if a test set is
behavioral adequate then it would be possible to know the
behavior of the program and it could foresee the output for
input that has not been considered. The proposed approach
can further be improved by using better coverage criteria such
as multiple condition coverage or studied in terms of black
box coverage also.

Diversity aware mutation criterion [42] has improved
mutation testing, by distinguishingmutants based on their kill
information. Though it takes more computation cost but in
terms of fault detection it’s better than traditional kill-only
mutation adequacy criterion. Thus, it subsumes the existing
kill-only criteria. With branch coverage-based test cases the
results are more improved. Thus, if fault detection and soft-
ware quality is important and there is more budget for testing
then stronger diversity aware criterion can be used.

Ambiguity based classification of test cases for test case
selection has been done only by Kumar et al. [20]. They have
used fuzzy entropy-based technique to select low ambiguity
test cases and then tested the software under test. As classifi-
cation of tests for selection is a new method, a lot of existing
classification techniques such as neural network, K-mean
classification etc. can be used. Results show that with fewer
test cases they were able to get better results.

Operational coverage criterion [75] considers various enti-
ties such as statement, function, branch etc. and assigns
weight to them based on their importance with usage profile.
It acts as a good discontinuing rule for operational profile
based testing. Results show that it performs better than tradi-
tional coverage in terms of fault-finding capability with fewer
test cases for test case selection.

Maximizingminimum sum of coverage [15] considers idea
that test cases should be selected such that it is maximizing
the minimum coverage of element in a program. If three
elements are there in a program, then the selected test cases
should be such that the minimum coverage from among these
three elements should be the maximum achieved minimum
coverage by the selected test cases. It provides even coverage
through all the software elements, and thus fault detection
capability is also increased. It can be studied not only in terms
code but other coverage also such as requirement coverage.
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TABLE 15. Analysis of recently proposed criteria identified in literature.

These criteria may also be optimized and used in combi-
nation with other criteria such as diversity aware mutation
adequacy may be used with code coverage or execution time
or cost. Maximizing minimum sum of coverage may be
used for requirement coverage or any other coverage-based
criteria. Behavioral criterion is considered in terms of code
coverage, other syntactic coverage-based criteria can also be
tried. It may also be further improved by using support vector
machine or state machine inference algorithms. Analysis of
these criteria is represented in Table 15, which is done based
on domain or category for it, No. of publications for given
criterion, Usability in domains of testing, Optimization tech-
nique used, Validation and Future aspects.

Thus, adequacy criteria are the basis for software testing
and there is a need to choose them wisely to improve testing
and find maximum faults.

E. ANALYSIS FOR RESEARCH QUESTION 2
Second research question is to find out optimization tech-
niques that have already been used and which can be used
in software testing. Considered literature is analyzed and
number of publications in which optimization technique is
used are counted and represented in Figure 3.

Software testing is anNP complete problem and for solving
it meta-heuristic algorithms such as PSO is a better choice
compared to deterministic algorithm such as linear program-
ming. From review it may be concluded that optimization
techniques such as greedy technique, fuzzy logic, PSO, tabu

FIGURE 3. No. of publications where considered optimization technique
is used.

search, genetic algorithm, random search etc. all have been
used either separately or in combination with other tech-
niques in software testing. Genetic algorithm & its variants
are the first, greedy and PSOwith their variants are the second
choice of researchers. In case of multi-objective algorithms,
NSGA-II was the choice of many researchers. In many cases
to evaluate proposed technique, it was compared with random
search. These techniques have their own pros and cons.

So, it’s more beneficial to use a hybrid technique which
has good quality of many techniques. Researchers have
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used hybrid techniques also. After analysis of literature,
few algorithms such as PSO-Bat algorithm (PSO-BA) [57],
Bat-Harmony algorithm (BA-HS) [61], Firefly-harmony
algorithm (HS-FA) [60], Tabu-firefly hybrid (TSFF I
and TSFF II) [58] and multi-objective bat algorithm
(MOBA) [59], Dragonfly Algorithm [73] have been identi-
fied and to the best of our knowledge they are scarcely or not
used in software testing.

PSO-BAT algorithm [57] is communication strategy
between Particle Swarm Optimization (PSO) and Bat Algo-
rithm (BA) where PSO’s worst particles will be switched
with the top individuals in BA and vice-versa. PSO-BA has
additional convergence and accuracy of up to 3% and 47%
respectively compared to BA and PSO.

Bat algorithm may get caught into local optima. So, in HS
pitch tuning operation is added which acts as a mutation oper-
ator while updating bat for next iteration and BA-HS hybrid
is developed. According toWang and Guo [61], ‘‘It can speed
up the global convergence rate without losing the strong
robustness of the basic BA.’’ Results suggest that HSBA
produces improved solutions in comparison to the traditional
population-based algorithms.

To overcome trapping of fireflies in local optima in
HSFA [60], exploration and exploitation of HS and FA
respectively are completely used. Thus, convergence speed of
HS-FA has increased. Evaluation of benchmark test problems
shows that HS-FA finds better values compared to other
algorithms by making use of the useful knowledge more
efficiently.

TSFF I and TSFF II are meta-heuristic algorithms pro-
posed by Rohaninejad et al. [58] to solve job shop scheduling
problem which take less computational time compared to GA
algorithm. These algorithms also reduce the excess cost of
procedures by effective use of the operation’s slack.

Bat Algorithm is more desirable compared to other meta-
heuristic algorithms as it can automatically zoom into a region
where favorable solutions are found. It converges quickly and
takes less time by swapping from exploration to exploitation.
MOBA algorithm [59] also converges exponentially as well
can deal with diverse Pareto optimal sets and higher nonlinear
problems with complex constraints.

Meta-heuristic algorithm called dragonfly (DA) has been
developed by Seyedali [73] which is based on swarming
behaviors of dragonflies. It can be used to solve discrete,
single and multi-objective problems as its various variants
such as binary DA and multi-objective DA are also avail-
able. Its performance has been evaluated on various uni-
modal and multimodal test functions. Results show that
DA algorithm performs better than PSO and GA. A diver-
sity element in dragonfly algorithm has been introduced
by Sugave et al. [74] and they have used it for test suite
minimization.

In Table 16, we have summarized the advantages of
PSOBA, BA-HS, HS-FA, TSFF I, TSFF II and MOBA
meta-heuristic algorithms. These algorithms perform better
in terms of convergence and accuracy than standard PSO,

TABLE 16. Advantages of suggested algorithms.

GA, Firefly algorithms which are widely used meta-heuristic
algorithms in software testing. Thus, suggested algorithms
are good candidate for resolving NP complete optimization
problems in software testing.

TABLE 17. Adequacy Criteria Identified in Literature.

Conclusion from analysis can be summed up in Table 17
and Table 18. These tables depict the adequacy criteria
and optimization techniques encountered during the review
respectively. A, B, C, D represents the domains of testing:
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TABLE 18. Techniques identified in literature for Test Case Optimization.

test generation, selection, minimization and prioritization.
The domains in which they have been used are ticked (X).
So, from these tables research question 1 and 2 can be
answered very well.

V. CHALLENGES AND OPPORTUNITIES
Research question 3 is to find limitations in existing work.
From analysis of Literature Review, it can be determined
that there are many gaps in the existing work. Limitation of
research work considered in the review has been provided as
remarks in Table 8, 9 and 10. General limitations observed in
literature review which provide us with further opportunities
are:

A. PARADIGM SHIFT OF CONSIDERING NONFUNCTIONAL
CRITERIA WITH FUNCTIONAL CRITERIA
IN SOFTWARE TESTING
To date, researchers have mostly focused on testing soft-
ware for functional correctness. But apart from functional
correctness, there are other properties such as runtime, energy
or battery use, quality of service, security, usability, perfor-
mance of system etc. which tester needs to test. Sometimes
it’s difficult to present non-functional properties in the form
of fitness function, but if they can be then techniques can
be used to further optimize them. Work has been done in

this direction also, but the number of publications is less
compared to publications for SBST considering functional
properties. Afzal et al. [49] have presented a review of opti-
mization of non-functional properties of software and consid-
ered research work from 1996-2007. They were able to find
only 35 research work in total: execution cost (15), service
quality (2), safety (4), security (7) and usability (7). Thus,
a lot of work can still be done in this direction.

B. DANGER OF CODE COVERAGE DIRECTED
TEST CASE OPTIMIZATION
Test adequacy in literature as well as in industry is widely
considered in terms of syntactic concept i.e. Code coverage
which consists of all control and data flow coverage cri-
teria. Gay et al. [48] have also concentrated on the disad-
vantage of generating tests based on only coverage. They
have emphasized that target should not be structural cover-
age. Instead, it should be used as a supplement with ran-
domly generated test suites. A study on industrial work,
NoiseGen has been done by Nardo et al. [70] for coverage-
based test case selection, minimization and prioritization.
For prioritization, results of their study show that industry
studies produce less optimistic outcomes about the efficacy of
coverage-based techniques. For minimization they concluded
that with coverage-based minimization there is reduction in
execution cost but with reduction in fault detecting capability
also. Thus, it may be used only for noncritical systems.
Hemmati [50] has also conducted study on five projects
of Defects4j repository to know fault detection capability
of control and data flow coverage criteria and concluded
that: statement coverage is able to detect 10% of the faults;
control-flow coverage combined together detects 28% of
fault; basic du-pair coverage can find 79% of unobserved
faults by control-flow coverage; about 15% of the faults
might not be discovered by any of the coverage criteria
considered. Thus, it’s not necessary that if 100% coverage
is achieved then all the faults will be detected. From litera-
ture review it may be concluded that code coverage is used
often. So, researchers should use other criteria such as fault
coverage, mutation testing and behavioral coverage with code
coverage to achieve better fault detection.

C. FINDING LINKS BETWEEN VARIOUS
SOFTWARE ARTIFACTS
Testing is done on basis of various adequacy criteria which
are based on software pieces e.g. source code and require-
ments. Optimization techniques in software testing generally
consider one aspect either coverage of code or requirements
and assume that all software artifacts are equally relevant.
This will not help in revealing the faults related to coding
and faults related to the misinterpretation of requirements
simultaneously. So, finding links among many software arti-
facts such as code, requirements, test cases etc. is impor-
tant because it will give information about part of code
related to a requirement and which test cases are covering
that code and requirement and will help in discovering both
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types of faults with minimum test cases. Thus, it will cover
structural, functional and application requirements; and cost
dimensions. It will help in regression testing also as if it’s
known prior to changes in software about the linkage between
code, requirements and tests then test cases can be selected
that are appropriate for a fragment of the application or for
implemented changes. Various data gathering methods such
as Latent Semantic Indexing, vector space modeling can be
used to find links between software artifacts.

D. TESTING IN A WAY THAT HELPS DEBUGGING
Optimizing tests only with the aim of testing will not help
in proper software development. After testing debugging is
done which also requires a lot of efforts. For debugging, engi-
neers need to locate the statements which are causing fault.
Quality of test cases should be such that the fault localization
efficiency of the test suites is not conceded. Many existing
testing methods prevent adequate assimilation with the use
of suitable test suites to allocate precedence to test cases
which are used for fault localization. In present scenario, fault
detection and fault localization are treated separately. Thus,
if test cases are generated, selected or prioritized along these
terms that they will help in early fault localization also then
it will take less time for debugging.

E. USE OF RECENTLY PROPOSED ADEQUACY CRITERIA
AND BETTER ALGORITHMS
New adequacy criteria such as Behavioral adequacy, distin-
guishing mutation adequacy and maximizing minimum sum
of coverage have been reviewed in this paper. They have not
been used with optimization techniques or in multi-criteria
optimization in software testing. A new combination of
these and other criteria may be made and tried in soft-
ware testing. Various hybrid algorithms such as PSO-Bat
algorithm, Bat-Harmony algorithm, Firefly-harmony algo-
rithm, Tabu-firefly hybrid and multi-objective bat algorithm
etc. which have been discussed in the review are not used
in search-based software testing. They may provide better
results compared to other algorithms in less computation time

VI. CONCLUSION
This paper presents a review on optimization techniques used
in all domains of software testing. Main aim was to identify
the adequacy criteria and optimization techniques which have
been used a lot and which have further scope to be used. This
aim has been fulfilled by answering the considered research
questions. After analysis of the literature, it may be concluded
that all types of optimization techniques are widely used
in all domains of testing, but mostly intelligent and hybrid
techniques are used in the time period of 2007-2018. There
is a paradigm shift from single objective to multi-objective
optimization as many objectives or criterion in software test-
ing like coverage of client requirements and code, number
of defects detected, test efforts/cost, mutant killing scores
have been considered together. Though researchers have
started considering multiple criteria together, they aggregate

all criteria in a single objective function by assigning a weight
for each criterion and then use single objective optimization
technique. Multi-objective algorithms may give better results
by finding pareto optimal solutions. In multi-objective algo-
rithms, non-simulated genetic algorithm was the choice of
most of researchers. Various gaps have been identified which
can be considered as suggestions for future development in
field of optimization in software testing. Some appropriate
areas for future works are:

1) Most studies have focused on structural coverage, and
there is limited evidence of the application of optimization
techniques to other testing phases and types of coverage.
Thus, a combination of criteria such as code coverage and
requirement coverage should be tried.

2) Using optimization techniques with recently identified
criteria such as behavioral adequacy, distinguishing mutation
adequacy, max-min criterion and operational coverage etc.

3) Using new, hybrid and multi-objective algorithms such
as PSO-Bat Algorithm, Bat-Harmony Algorithm, Firefly-
harmony Algorithm, Tabu-firefly hybrid, multi-objective bat
algorithm (MOBA) and Dragonfly algorithm etc. which have
not been used in the field of software testing.
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