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ABSTRACT The Kalman-type filtering techniques including cubature Kalman filter (CKF) does not
work well in non-Gaussian environments, especially in the presence of outliers. To solve this problem,
Huber’s M-estimation-based robust CKF (RCKF) is proposed for synchronous machines by combining
the Huber’s M-estimation theory with the classical CKF, which is capable of coping with the deterioration
in performance and discretization of tracking curves when measurement noise statistics deviate from the
prior noise statistics. The proposed RCKF algorithm has good adaptability to unknown measurement noise
statistics characteristics including non-Gaussian measurement noise and outliers. The simulation results on
the WSCC 3-machine 9-bus system and New England 16-machine 68-bus system verify the effectiveness of
the proposed method and its advantage over the classical CKF.

INDEX TERMS Dynamic state estimation, cubature Kalman filter, synchronous machines, M-estimation
theory, unknown noise statistics, non-Gaussian noise, outliers, PMU data.

I. INTRODUCTION
A. MOTIVATION
Accurate and reliable dynamic state information of
synchronous machines plays a crucial role in real-time mon-
itoring, protection, and control of power systems [1], [2].
In addition, the emerging application of situational awareness
puts forward higher requirements for the status information
acquisition as the system states evolve more complexly and
quickly due to increasing cyber attacks [3] and high pene-
trations of renewable generations [4], [5]. However, some
important synchronous machine state variables cannot be
directly obtained. The successful industrial application of
wide-area measurement system has recently made possible
the estimation of all the state variables of a synchronous
machine through the use of dynamic state estimations
(DSE) [6]. Meanwhile, there is a higher-level requirement
on DSE to ensure the safe and economic operation of a
modern power system since its operation is increasingly close
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to the limits due to growing electricity demands and lim-
ited investments. Therefore, it is a pressing and challenging
task to develop an effective DSE approach for synchronous
generators.

B. LITERATURE REVIEW
The term ‘‘dynamic state estimation’’ was first used in the
1970s [7], in which a Kalman filter technique was utilized
to improve the performance of conventional quasi-static state
estimation for power systems. In recent years, the studies
on state estimators began to focus on a synchronous gen-
erator and its electromechanical transient model [8]–[10].
In essence, this is a typical nonlinear filter problem. Up to
now, there has been a significantly amount of studies on
DSE of synchronous machines by using particle filters
(PF) [11], [12] and various Kalman-type filtering algo-
rithms, such as extended Kalman filter (EKF) [13]–[17],
unscented Kalman filter (UKF) [18]–[24], and Cubature
Kalman Filter (CKF) [3], [25], [26]. The EKF is a classi-
cal nonlinear Kalman filter; the unscented transform-based
UKF provides reasonable filtering performance, but its
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convergence is dependent on the sampling methods of Sigma
points [18], [19]; the CKF based on the spherical-radial
cubature rule is an emerging nonlinear filter, which can give
a systematic solution for high-dimensional nonlinear filter-
ing issues. Extensive comparisons of all these Kalman-type
estimators have been made from different perspectives, such
as convergence, numerical stability, and computational com-
plexity in [3] and [16].

C. LIMITATIONS AND CONTRIBUTIONS
The Kalman-type filtering techniques perform well under the
Gaussian assumption [3], [5], [27]. However, the distribution
of the measurement noise may not obey this assumption
in practical applications. Recent research findings in [28]
demonstrate that the errors in PMU measurements such as
voltage phasors tend to follow non-Gaussian distributions
with long tails such as Laplace distribution and often con-
tain high-intensity noise realizations, called outliers, which
could deteriorate the performance of the Kalman-type fil-
tering approaches. Furthermore, the received measurements
may be biased because of multiple reasons such as false
data injection (FDI) attacks [3], [29]. Therefore, there is
sustainable motivation for developing a robust filter that can
work well in non-Gaussian environments and in the presence
of outliers. In order to achieve such a goal, the work in [30]
proposes a Generalized-Maximum Likelihood (GM)-UKF,
in which a batch-mode regressing form is obtained via the
statistical linearization to enhance the data redundancy, and
thereby the form enables the GM-estimator to identify bad
data and filter out unknown noises. However, when using
the UKF, it is an essential but challenging task to generate
Sigma points by using a scaled symmetric sampling strategy
in case the state vector dimension is greater than 3, since there
are three mutually influential parameters needed to be tuned
in this step, while there is currently no consensus about the
corresponding parameter selection principles.

In this work, a robust CKF (RCKF) based distributed DSE
approach is developed to estimate themachine dynamic states
by integrating the Huber’sM-estimation theory with the CKF.
Different from the GM-type estimator in [30], the proposed
RCKF uses the robust M-estimation to detect outliers in mea-
surements and then eliminates them by revising measurement
noise variance matrix.

The main contributions of this work are as follows.
(1) A novel DSE algorithm, called RCKF, is pro-

posed for synchronous machines by combining the Huber’s
M-estimation theory with the classical CKF, which has the
ability to cope with the deterioration in performance and
discretization of tracking curves when measurement noise
statistics deviate from the prior noise statistics.

(2) The simulation results on the WSCC 3-machine 9-bus
system and New England 16-machine 68-bus system demon-
strate that the proposed approach is capable of addressing the
DSE of synchronous machines under unknown measurement
noise statistics.

(3) By sacrificing computational efficiency slightly,
the proposed algorithm outperforms the conventional CKF
under all the used noise conditions, including non-Gaussian
measurement noise and outliers.

D. PAPER ORGANIZATION
The remainder of this paper is structured as follows. The used
estimation models are introduced in Section II. Section III
presents the proposed RCKF in detail. Section IV gives
case studies to examine the proposed approach. And finally,
the conclusions are drawn in Section V.

II. ESTIMATION MODELS
A. SYNCHRONOUS MACHINE MODEL
Fourth-order transient model is a well-known generator
model that has been extensively studied in previous litera-
ture [1], [9], [10], [21]. Its mathematical model is

•
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where δ and ω are respectively the rotor angle and speed;
E
′

q and E
′

d are the q-axis and d-axis transient voltages; Tm
is the mechanical torque; Teis the electromagnetic torque;
D is damping coefficient; T

′

d0 and T
′

q0 are respectively the
d- and q- axes transient time constants; Ef is the field voltage;
Xq and X

′

q are q-axis synchronous and transient reactance; Xd
and X

′

d are the d-axis synchronous and transient reactance;
Ut and φ are the magnitude and phase angle of the generator
terminal voltage, respectively; Id and Iq are the d-axis and
q-axis generator output currents.

The measurement equations are given by

ωz = ω

δz = δ

Pze =
U2
t

2
sin(2δ − 2φ)(

1
X ′q
−

1

X
′

d

)+

U2
t sin(δ − φ)E

′

q

X
′

d

−
U2
t cos(δ − φ)E

′

d

X ′q

(3)

where δz and ωz are the PMU measurements of rotor angle
and rotor speed [31], and Pze is the active power measurement.

The covariance of measurement noise Rk+1 is

Rk+1 = diag
(
σ 2
δz
, σ 2
ωz
, σ 2

Pez

)
(4)
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where σ 2
δz
and σ 2

ωz
are themeasurement variance of rotor angle

and speed, and σ 2
Pez

is the variance of active power.

P2ez =
(
∂Pe
∂U

)2

σ 2
U +

(
∂Pe
∂φ

)2

σ 2
φ (5)

where σu = 0.2%, σφ = 0.2o.
For ease of description, (1) is transformed the following

continuous-time state space model [1], [16]:{
ẋ = FC (x, u)+ vC
z = HC (x, u)+ wC

x =
[
δ, ω,E

′

d ,E
′

q

]T
z =

[
δz, ωz,Pze

]T
u =

[
Tm,Ef ,Ut , φ

]T (6)

where x is the state vector, u is the input vector, and
z is the measurement vector; the subscript ‘‘C’’ denotes
the continuous-time model; F (·) and H (·) are respectively
the state transition and output functions; vC and wC are the
process and output noise.

B. PROBLEM FORMULATION
With a sampling interval 1t , a real-time DSE can be
described as the following filtering problem: given inputs
such as Tm(j1t),Ef (j1t),Ut (j1t), ϕ(j1t) for j = 1, 2, · · · , k
we want to estimate the states of synchronous machines
including δ(k1t), 1ω(k1t).

To perform state estimation via the discrete measurements,
the continuous-timemodel in (6) is discretized into a discrete-
time one as follows:{

xk+1 = F (xk , uk)+ vk
zk+1 = H (xk+1, uk+1)+ wk+1

(7)

where the subscript ‘‘k’’ is the moment at k1t; vk and wk+1
are the system process and measurement noises, and their
covariance are denoted by Qk and Rk+1. In this study, the
process noise vk is assumed to follow a Gaussian distribution,
while the distribution of the measurement noise may not be
Gaussian.

III. ROBUST CUBATURE KALMAN FILTER
A. CUBATURE KALMAN FILTER
The classical CKF was originally proposed in [32], which
can be divided into two parts: time prediction and mea-
surement update. In time prediction, CKF obtains a set
of equally weighted state cubature points according to the
spherical-radical rule. It can obtain predicted state variable
and error variance matrix. In measurement update, the pre-
dicted state variable is updated by using measurements in
order to improve estimation accuracy. The detailed process
of the CKF is given as follows:

1) Time Prediction

Suppose that the estimation error covariance at time step k
is Pk|k and its square-rooting matrix is Sk|k .

Pk|k = Sk|k STk|k (8)

N cubature points of state variable are calculated.

Xi,k|k = Sk|k ζi + x̂k|k (9)

where x̂k|k is the state estimatied valve at time step k . Xi,k|k
is the cubature point of x̂k|k , ζi =

√
n, i = 1, 2, ...2 n, n is the

state vector dimension.
Through the state equations, the predicted values of the

cubature points are obtained by

X∗i,k|k = f
(
Xi,k|k , uk

)
(10)

where X∗i,k+1|k is the predicted value of Xi,k|k
The predicted values of state variable by weighted summa-

tion are obtained:

_xk+1|k =
1
2n

2n∑
i=1

X∗i,k+1|k (11)

where _xk+1|k is the predicted value of state variable.
The predicted error variance matrix of the state variable is

Pk+1|k =
1
2n

2n∑
i=1

X∗i,k+1|k X
∗T
i,k+1|k −

_xk+1|k
_x
T
k+1|k + Qk

(12)

where Pk+1|k is the predicted error variance matrix of state
variable. Qk is the covariance of process noise.
2) Measurement Update
The square-rooting matrix of predicted error covariance is

calculated according to

Pk+1|k = Sk+1|k STk+1|k (13)

where Sk+1|k is its square-rooting matrix.
N Cubature points of _xk+1|k are calculated by

Xi,k+1|k = Sk+1|k ζi +
_xk+1|k (14)

where Xi,k+1|k is the cubature point of _xk+1k .
N Cubature points of predicted measurement are

Zi,k+1|k = h
(
Xi,k+1|k , uk

)
(15)

where Zi,k+1|k is the cubature point of predicted measure-
ment.

The predicted measurement by weighted summation are

_zk+1|k =
1
2n

2n∑
i=1

Zi,k+1|k (16)

where _zk+1|k is the predicted measurement.
The innovation covariance matrix of measurement error is

given by

Pzz,k+1|k =
1
2n

2n∑
i=1

Zi,k+1|k ZTi,k+1|k

−
_zk+1|k

_z
T
k+1|k + Rk+1 (17)
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where Pzz,k+1|k is the innovation covariance matrix. Rk+1 is
the covariance of measurement noise.

The cross-covariance matrix Pxz,k+1|k is obtained by

Pxz,k+1|k =
1
2n

2n∑
i=1

Xi,k+1|k ZTi,k+1|k −
_xk+1|k

_z
T
k+1|k (18)

where Pxz,k+1|k is the cross-covariance matrix.
The filter gain W is obtained by

Wk+1 = Pxz,k+1|k P
−1
zz,k+1|k (19)

The estimated values of state variable are obtained by:

x̂k+1|k+1 =
_xk+1|k +Wk+1

(
zk+1 −

_zk+1|k
)

(20)

where Wk+1 is the filter gain. x̂k+1|k+1 is the state estimated
valve at time step k + 1.
The estimation error covariance Pk+1|k+1 is updated for

the next time step:

Pk+1|k+1 = Pk+1|k −Wk+1Pzz,k+1|kW T
k+1 (21)

B. ROBUST CUBATURE KALMAN FILTER
As a nonlinear filtering technique, the conventional CKF
needs an accurate system model and noise statistical char-
acteristics to work well. However, the measurement noise
may not obey the Gaussian assumption in the actual scene.
More importantly, the noise statistical characteristics might
change due to the influence resulted from internal or exter-
nal unknown factors during the estimation process. When
outliers occur in PMU measurements, the covariance matrix
of measurement noises R will not consist with actual errors,
and thereby the covariance matrix Pzz in (17) is unavailable
to reflect the deviation of predicted value, which eventu-
ally leads to an inaccurate estimation. These above factors,
to a certain extent, limits the usefulness and practicality of
the CKF in actual applications.

The robust M-estimation theory is an effective tool
for addressing robust estimation against unknown noise
statistics [33]. Through robust M-estimation, we can detect
the outliers on state estimation and update the statistical
characteristics of the measurement noise in real time, which
makes CKF capable of adapting to the statistical charac-
teristics of measurement noises. By combining the Huber’s
M-estimation theory with the classical CKF, the proposed
RCKF can obtain the accurate DSE of synchronous gener-
ators with unknown measurement noise statistics.

The RCKF uses the Huber’s M-estimation approach to
obtain a revised covariance matrix of measurement noises
Pzz in (17). The corrected matrix R̄k+1 is substituted for the
covariance of measurement noise in (17) as

R̄k+1 = P̄−1 (22)

where the Huber’s algorithm is utilized to calculate the
equally weighted matrix P̄.

Huber’s M-estimation minimizes the cost function as

J (xk) =
2n∑
i=1

ρ
(
r
′

i

)
(23)

where r
′

i refers the ith component of the residual vector

r
′

i = ri/σri (24)

The ri and its standard deviation σri are calculated by
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_zk+1|k )i (25)

σri = (Pzz,k+1|k )i,i (26)

And the ‘score function’ ρ (·) is defined as
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where c is a constant and is chosen as 1.5 in this paper.
Setting the partial derivative of (23) to be zero gives
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where xk,i is the ith component of state vector. Denoting
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, i = 1, 2, ..2n (29)

The formulation can be obtained

wi =


1,

∣∣∣r ′i ∣∣∣ ≤ c
c∣∣r ′i ∣∣ ,

∣∣∣r ′i ∣∣∣ > c
(30)

Based on the above formulation, the equally weighted
matrix P̄ can be obtained as

p̄ {i, i} =


1
σi,i
, (

∣∣∣∣ riσri
∣∣∣∣ = ∣∣∣r ′i ∣∣∣ ≤ c)

c

σi,i
∣∣ri,i∣∣ , (

∣∣∣r ′i ∣∣∣ > c)
(31)

p̄ {i, j} =


1
σi,j
, (

∣∣∣r ′i ∣∣∣ ≤ c, ∣∣∣r ′i ∣∣∣ ≤ c)
c

σi,jmax(
∣∣r ′i ∣∣ , ∣∣∣r ′j ∣∣∣) , (

∣∣∣r ′i ∣∣∣ > c,
∣∣∣r ′j ∣∣∣ > c)

(32)

where p̄ {i, i} and p̄ {i, j} are diagonal and off-diagonal ele-
ments of matrix P̄; σi,i and σi,j are diagonal and off-diagonal
elements in measurement noise matrix Rk+1. Since the mea-
surement noise covariance matrix is a diagonal matrix, σi,j
is zero. ri is the residual of measurement, r

′

i is the standard
residual error, σri is the mean variance of ri.
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IV. CASE STUDIES
The proposed approach is tested on two systems, which are
extracted from Power System Toolbox (PST) [34], and is
compared with the original CKF in [25]. All the simulations
are carried out on a PC with Intel Core i3-2330 2.20 GHz
processor and 4 GB RAM.

The detailed simulation settings are listed as follow: 1) The
simulation time step is set to 0.02 s; 2) The standard devia-
tions of the rotor speed (p.u.) and rotor angle (◦) are set to
0.001 p.u. and 2◦; 3) The standard deviations of the amplitude
and phase angle of the output voltage are taken as 0.1%
and 0.1◦; 4) Each generator is equipped with a PMU at its
terminal; 5) PMU measurements are assumed to be sampled
at 50 samples/s.

A. NOISE MODEL
We consider four types of noise: Gaussian white noise,
Gaussian noise, Laplace noise, and Cauchy noise, which are
respectively called noises 1-4.

1) GAUSSIAN WHITE NOISE AND GAUSSIAN NOISE

Gaussiannoiseisobtainedby

f (x) =
1

σ
√
2π

e−
(l−µ)2

2σ2 (33)

where µ and σ are, respectively, the mean value and standard
deviation of noise. When µ = 0 and σ 2 is constant, we can
obtain Gaussian white noise. If µ 6= 0, we can obtain
Gaussian noise.

2) LAPLACE NOISE
Laplace noise with scale s and mean µ is modeled as [3]

rLaplace = µ− s× sgn(U1) ln(1− |U1|) (34)

where s is the scale parameter (s is taken as σ
/√

2) and U1

is a random parameter that obeys uniform distribution in the
sampling interval.

3) CAUCHY NOISE
Cauchy noise is generated by [3]

rCauchy = a+ b tan (π (U2 − 0.5)) (35)

where a and b are the location and scale parameters, andU2 is
a random parameter that follows uniform distribution in the
sampling interval. Here, a and b are respectively chosen as
10σ and σ . The parameters are given in Table 1.
Two widely-used classical indicators proposed in [35] are

here utilized to evaluate the performance of the estimation.

ε1 =

√√√√√√√√
SM∑
i=1

(
x̂i − x ti

)2
SM∑
i=1

(
xzi − x

t
i

)2 (36)

ε2 =

√√√√ 1
SM

SM∑
i=1

(
x̂i − x ti
x ti

)2

(37)

TABLE 1. Noise types and parameters.

FIGURE 1. Rotor angle in Gaussian white noise.

where x̂i, x ti , x
z
i are the estimation value, true value, and the

measurement value of the sampling point i, and SM is the
number of time steps.

B. CASE 1: WSCC 3-MACHINE 9-BUS SYSTEM
A three-phase short-circuit permanent fault is applied at bus
5 to generate dynamic responses at t = 1.2s. Then, the fault
is cleared within the typical clearing time (5 cycles). The
stimulation lasts for 20s. In real-world applications, bad
PMU data must inevitably occur because of various causes
such as impulsive noise, communication failures and poten-
tial/current transformer saturations, which leads to the severe
deviation from the assumption that measurement noises
obey the Gaussian distribution. To test the robustness of
the proposed approach, two outlier scenarios are considered
and tested, where a single outlier and a group of succes-
sive outliers are respectively added in the following two
manners:
Manner 1: supposing that the rotor speed measurements

are corrupted with 10% errors at the 6th second;
Manner 2: supposing that the rotor speed measurements

are corrupted with 10% errors from t = 2s to t = 3s.
Taking generator 1 as an example, the estimation results

under different types of noises are demonstrated in Figs. 1-8.
From Figs. 1-8, it can be seen that the filtering performance

the RCKF is superior to that of the CKF in the following two
aspects. 1) Concerning the same noise: the RCKF has good
robustness in the presence of outliers; 2) Regarding various
measurement noises, the RCKF shows good tracking and
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FIGURE 2. Rotor speed in Gaussian white noise.

FIGURE 3. Rotor angle in Gaussian noise.

FIGURE 4. Rotor speed in Gaussian noise.

convergence performance; while the performance of the CKF
declines markedly. This is because the RCKF can detect out-
liers and update the statistical characteristics of the measure-
ment noises via the Huber’s M-estimation theory. By doing
so, the estimated values of the RCKF can always converge to
the true values accurately.

The quantitative comparison results of the two algorithms
are demonstrated in Table 2.

From the above table, it can be observed that our approach
outperforms the original CKF in the following two aspects.

FIGURE 5. Rotor angle in Laplace noise.

FIGURE 6. Rotor speed in Laplace noise.

FIGURE 7. Rotor angle in Cauchy noise.

(1) Regarding the indicator ε1: in the case of noise 1, the indi-
cator values of the RCKF are respectively increased by 52.7%
and 60.9% compared with those of the CKF for rotor angle
and rotor speed; in term of noise 2, they are increased by
65.6% and 69.5%; with noise 3, they are increased by 62.5%
and 69.3%; with noise 4, they are increased by 51.7% and
64.4%. (2) In terms of the indicator ε2: it can be seen that the
filtering performance of the CKF significantly decreases in
the case of non-Gaussian white noises (noises 2-4); while that
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FIGURE 8. Rotor speed in Cauchy noise.

TABLE 2. Dynamic state estimation indexes of generator 2.

of the RCKF has remained almost unchanged for all noises.
This suggests that the RCKF can maintain good tracking
performances under different noises.

It’s worth noting that, as can be seen from (36), the indi-
cator ε1 of generator rotor angle δ in Noise 1 is signifi-
cantly greater than those in other noises since the variance of
measurement errors is much less than other types of noises,
as shown in (36). Therefore, the RCKF has good adaptability
to unknown measurement noise statistics, and it can detect
and eliminate the outliers in the measurements.

C. CASE 2: NEW ENGLAND 16-MACHINE 68-BUS SYSTEM
This system includes 16 synchronous generators and
68 buses [3], [23]. A three-phase short-circuit fault is applied
at bus 6 to generate a dynamic response at t = 1s. The
fault will be cleared at near and remote ends after 0.05s and
0.1s. The simulation lasts for 10s. One single outlier is super-
imposed on the 6th second, and 10 continuous outliers are
superimposed from the third second. As the same in Case 1,
two outlier scenarios are considered and tested, where a single

FIGURE 9. Rotor angle in Gaussian white noise.

FIGURE 10. Rotor speed in Gaussian white noise.

outlier and a group of successive outliers are respectively
added in the following two manners:
Manner 1: supposing that the rotor speed measurements

are corrupted with 10% errors at the 6th second;
Manner 2: supposing that the rotor speed measurements

are corrupted with 10% errors from t = 2s to t = 3s.
Taking generator 1 as an instance, the dynamic state esti-

mation results on the NewEngland 68-bus system are demon-
strated as Figs. 9-16 and Table 3.

From Figs. 9-16, it can be observed that: the RCKF has
better filtering performance than that of the CKF under var-
ious noises. Especially, in the case of non-Gaussian noises,
the performance of the CKF becomes clearly poor while
the RCKF can still maintain good estimation accuracy and
convergence.

From TABLE 3, it can be seen that: (1) Regarding indicator
ε1: the indicator value of the RCKF are respectively increased
by 88.5% and 82.7% compared with those of the CKF for
rotor angle and rotor speed under noise 1; they are increased
by 89.4% and 84.9% under noise 2; they are increased by
90.0% and 73.7% under noise 3; they are increased by 88.7%
and 83.8% under noise 4. (2) Concerning indicator ε2: it
can be observed that the performance of the CKF clearly
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FIGURE 11. Rotor angle in Gaussian noise.

FIGURE 12. Rotor speed in Gaussian noisel.

FIGURE 13. Rotor angle in Laplace noise.

deteriorates under non-Gaussian white noises; while that of
the RCKF has remained almost unchanged over all noises.
Based on these results, a conclusion can be drawn that the
proposed approach also manages to perform the DSE of
synchronous machines for a larger power system.

D. COMPUTATIONAL EFFICIENCY
In order to properly evaluate the computational efficiencies
of the proposed RCKF, the computation time for a single

FIGURE 14. Rotor speed in Laplace noise.

FIGURE 15. Rotor angle in Cauchy noise.

FIGURE 16. Rotor speed in Cauchy noise.

generator by using the CKF and RCKF in the above two cases
are demonstrated in Table 4.

The results in Table 4 show that the required computation
times of the both algorithms are comparative, and the times
are far less than a PMU sampling interval. This suggests that
our approach is efficient enough to track the dynamic states
of synchronous machines in real time, which is especially
valuable for real-time applications such as emergency con-
trol. The computation time of the RCKF is only slightly more
than that of the CKF. This is because additional computation
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TABLE 3. Estimation results of generator 1 in16 machines system.

TABLE 4. Calculating times of the CKF and RCKF.

is needed for the robust M-estimation to detect outliers and
gross error in measurements and for eliminating them by
revising the measurement noise covariance matrix.

V. CONCLUSIONS
To resolve the lack of adaptability to unknown measure-
ment noises usingKalman-type filtering techniques, a RCKF-
based DSE approach for synchronous machines is proposed
in this paper. By combing with the Huber’s M-estimation
theory and the original CKF, the proposed RCKF can detect
outliers and gross errors, and thereby eliminate them by
revising measurement noise variance matrix, which yields a
more stable robust estimation. Finally, the simulation results
of the WSCC 3-machine 9-bus system and New England 16-
machine 68-bus system show that the presented approach
has good robustness with outliers and good adaptability with
unknownmeasure noises. More importantly, the filtering per-
formances of the RCKF are far superior to those of the CKF
against all types of noises used in this work.

Our future work will focus on extending this study to
extensive potential applications in a whole power system.
In addition, more realistic modeling techniques such as
model uncertainties [36] and unknown inputs [37] will be
incorporated to improve the practicality of our approach.
Another interesting topic is to use the proposed algorithm for

solving other estimation problems in engineering, such as
state of charge estimation of battery storage [38], [39] and
state estimation in combined heat and power networks [40].
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