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ABSTRACT Ciphertext-policy attribute-based encryption can provide fine-grained access control and secure
data sharing to the data users in cloud computing. However, the encryption/decryption efficiency of existing
schemes can be further improved when encrypting a large document collection. In this paper, we propose
a practical Ciphertext-Policy Attribute-Based Hierarchical document collection Encryption scheme named
CP-ABHE. By practical, we mean that CP-ABHE is more efficient in both computation and storage space
without sacrificing data security. In CP-ABHE, we first construct a set of integrated access trees based on the
documents’ attribute sets. We employ the greedy strategy to build the trees incrementally and grow the trees
dynamically by combining the small ones. Then, all the documents on an integrated access tree are encrypted
together. Different to existing schemes, the leaves in different access trees with the same attribute share the
same secret number, which is employed to encrypt the documents. This greatly improves the performance
of CP-ABHE. The security of our scheme is theoretically proved based on the decisional bilinear Diffie–
Hellman assumption. The simulation results illustrate that CP-ABHE performs very well in terms of security,
efficiency, and the storage size of the ciphertext.

INDEX TERMS Cloud computing, attribute-based document collection encryption, encryption/decryption
efficiency, information security.

I. INTRODUCTION
Cloud computing collects and organizes a large amount of
information technique resources to provide secure, efficient,
flexible and on demand services [29]. Attracted by these
advantages, more and more enterprise and individual users
trend to outsource the local documents to the cloud. In gen-
eral, the documents need to be encrypted before being out-
sourced to protect them against leaking. If the data owner
wants to share these documents with an authorized data user,
they can employ any searchable encryption techniques [2],
[6], [9], [14], [30], [31] or privacy-preserving multi-keyword
document search schemes [3], [5], [8], [37] to achieve this
goal. However, all these schemes cannot provide fine-grained
access control mechanisms to the encrypted documents.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zheng Yan.

Attribute-based encryption (ABE) schemes can provide
complicated systems to diversify the data users’ access
paths. In ABE schemes, each document is encrypted indi-
vidually and a data user can decrypt a document if her
attribute set matches the access structure of the document.
Existing ABE schemes can be divided into Key-Policy
ABE (KP-ABE) schemes [11], [12], [15], [16], [20],
[24], [25], [28] and Ciphertext-Policy ABE (CP-ABE)
schemes [1], [7], [10], [19], [21]–[23], [27], [34]. Com-
pared with KP-ABE schemes, CP-ABE schemes are more
flexible and suitable for general applications. In the fol-
lowing, we first analyze the existing ABE schemes in
detail and further present the novelty and innovation of
the CP-ABHE scheme proposed in this paper. For con-
venience, we choose the schemes in [1] and [11] as
typical examples of KP-ABE scheme and CP-ABE scheme,
respectively.
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LetG0 andG1 be twomultiplicative cyclic groups of prime
order p. Let g be a generator of G0 and e be a bilinear map,
e : G0 × G0 = G1. Further, let H : {0, 1}∗ → G0
be a hash function which can map an attribute string to a
random element in G0. Assume that we need to encrypt
a set of documents F = {F1,F2, · · · ,FN }. Attribute set
A = {A1,A2, · · · ,AM } is the common attribute dictionary
of both documents and data users. We further assume that
document Fi is related with a set of attributes, denoted as
att(Fi). We encrypt F in two phases. First, each document Fi
is encrypted by a proper symmetric encryption algorithmwith
a unique content key cki. Second, all the content keys ofF are
encrypted by ABE schemes. Note that, both the ciphtexts of
Fi and cki are provided to data users. In decryption process,
data users need to first decrypt cki based on their attribute-
related secret keys and then decrypt document Fi based on
cki. In this way, ciphertext of Fi can be decrypted only by
the data users who have the matched attributes with att(Fi).
Considering that the first encryption phase does not fall in
the scope of this paper, we focus on the second phase which
is strongly related to the proposed scheme.

To encrypt all the content keys of F , KP-ABE scheme
in [9] is executed as follows.

For each content key cki with attribute set att(Fi) and
access tree T , the public key is calculated as PK =

{e(g, g)α,∀j ∈ att(cki),Tj = grj} where α is a random num-
ber in Zp and rj is a number randomly chosen from Zp
for attribute j. Then the ciphertext of cki is calculated as
CTcki = {T , cki · e(g, g)αs,∀j ∈ att(Fi),Ej = T sj } where
s is a random number in Zp. The above process must be
executed for N times to encrypt all the content keys. The
total number of elements in the ciphertext can be calculated
as Ncip = N +

∑N
i=1 |att(Fi)|, where |att(Fi)| denotes the

number of attributes in att(Fi). To decrypt the ciphertext of
cki, a data user needs to store the secret key SK = {∀j ∈

att(Fi),Dj = g
qj(0)
rj }, where qj(x) is the polynomial of the

leaf node in T corresponding to attribute j. To decrypt all the
content keys, N secret keys for the N access trees need to be
stored by a data user and the number of total secret values
in the keys can be calculated as Nsk =

∑N
i=1 |att(Fi)|. It can

be observed that Nsk increases with the increasing of docu-
ments’ number and we call this as the secret key expanding
problem.

To encrypt all the content keys of F , CP-ABE scheme
in [12] is executed as follows.

For each content key cki with attribute set att(Fi) and
access tree T , the public key is calculated as PK =

{h = gβ , e(g, g)α}, where β and α are random numbers
in Zp. Then the scheme calculates the ciphertext of cki
as CTcki = {T , cki · e(g, g)αs,C = hs,∀j ∈ att(Fi),
Cj = gqj(0),C ′j = H (j)qj(0)}, where qj(x) is the poly-
nomial of the leaf node in T corresponding to attributes
j. Similar to KP-ABE, the above process is also executed
for N times to encrypt all the content keys. The total
number of elements in the ciphertext can be calculated as

Ncip = 2 ∗ N + 2 ∗
∑N

i=1 |att(Fi)|. Apparently, Ncip
greatly expands with the increasing of documents’ number.
To decrypt the ciphertext of cki, the secret key of a data

user is calculated as SK = {D = g
(α+r)
β ,∀j ∈ att(Fi),

Dj = grH (j)rj ,D′j = grj} where r is a random num-
ber in Zp and rj is a random number chosen from Zp for
attribute j.

Both the KP-ABE and CP-ABE schemes are impractical
to encrypt a large document collection because of the fol-
lowing reasons. First, the encryption process in both the two
schemes is executed N times, leading to high computation
complexity. Second, there is a tradeoff between the size of the
content keys’ ciphertext and data users’ secret keys. In KP-
ABE, the number of secret values in a data user’s secret
key is extremely large for a document collection, imposing
a heavy burden on the data user. In CP-ABE, the size of
the ciphertext is extremely large. Consequently, CP-ABE
scheme increases the data transmission amount between the
cloud server and data users, which is a huge challenge for
the network. This is reasonable considering that the access
structure of each document must be embedded into the
ciphertext or the secret keys. Third, decrypting the ciphertext
is also time-consuming considering that each document is
encrypted individually. Recently, Wang et al. [33] attempted
to improve the encryption efficiency and propose a file hierar-
chy attribute-based encryption scheme named FH-CP-ABE.
However, this scheme focused only on how to encrypt a set
of documents that share an integrated access tree and hence
it also cannot be directly employed to encrypt a document
collection.

In this paper, we design an attribute-based document
hierarchical encryption scheme named CP-ABHE which
performs well in terms of computation and storage space effi-
ciency. The scheme consists of two modules including inte-
grated access tree construction and tree encryption. We first
propose an algorithm to generate the integrated access trees
for a document collection. The most important design goal of
the algorithm is decreasing the number of integrated access
trees which can greatly improve the encryption/decryption
efficiency.

Then, the documents that share an access tree are encrypted
together. Each node in a tree is assigned with a secret number
which is used to encrypt the content keys of documents on
the node. The secret numbers of the nodes are constructed in
a bottom-up manner and it is totally different to the methods
in KP-ABE, CP-ABE, and FH-CP-ABE schemes. In this way,
the number of all the elements in content keys’ ciphertext is
smaller than 2 ∗ N and it is much smaller than that in KP-
ABE scheme and CP-ABE scheme. In addition, we decrease
the number of secret values in the keys stored by the data
users compared with KP-ABE. To decrypt all the documents
in F , only 2 ∗ |A| + 1 secret values need to be stored by
a data user, where |A| is the size of A. In conclusion, both
the encryption/decryption efficiency and storage efficiency
of CP-ABHE are very high. The security of our scheme is
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FIGURE 1. The architecture of document outsourcing and sharing.

proved theoretically and we evaluate the scheme’s efficiency
by a series of simulation.

The contributions of this paper are mainly summarized as
follows:
• An algorithm to construct the integrated access trees
incrementally for the document collection is proposed
and it can significantly decrease the number of the access
trees.

• A document collection hierarchical encryption scheme
is proposed. All the documents that share an integrated
access tree are encrypted together which can signif-
icantly improve the encryption/decryption efficiency.
Moreover, the secret key expanding problem is solved
properly.

• The security of CP-ABHE is theoretically proved and
the effectiveness of the integrated access tree construc-
tion algorithm is analyzed in detail. In addition, a thor-
ough comparison between CP-ABHE, KP-ABE, and
CP-ABE in terms of encyption/decryption efficiency
and storage space is provided.

The rest of this paper is organized as follows: We present
the systemmodel and preliminaries in Section 2. The detailed
process of access trees construction is given in Section 3 and
Section 4 discusses the scheme to encrypt the document col-
lection. We analyze the security and efficiency of our scheme
theoretically in Section 5. Section 6 evaluates the perfor-
mance of the integrated access trees and the efficiency of CP-
ABHE is analyzed and simulated in Section 7. In Section 8,
the related work is provided and this paper is concluded in
Section 9.

II. SYSTEM MODEL AND PRELIMINARIES
A. SYSTEM MODEL
Fig. 1 describes the document outsourcing and sharing system
which mainly comprises four entities: the data owner, data
user, certificate authority (CA) center and cloud server. The
entire process of querying a set of interested documents for a
data user includes 6 phases:

1© Data owner is responsible for collecting documents
and assigning a proper attribute set to each document. The
documents are encrypted in two phases. Each document is
first encrypted by a symmetric encryption algorithm with a

FIGURE 2. The flow chart of document encryption and decryption.

unique content key. Then, the content keys are encrypted by
ABE-schemes. At last, both the encrypted documents and
content keys are outsourced to the cloud server.

2© To search the interested documents in the cloud server,
a data user first needs to register herself to the CA center.
Then, the CA center assigns an attribute set to the data user
and sends an attribute-related secret key to the data user.

3© The authorized data user can send query requests to the
cloud server. In this paper, we assume that the cloud server
is trustable. Otherwise, we may need to further integrate the
secure kNN algorithm [35] into our scheme to encrypt the
document vectors and query vectors [3], [5], [8], [37].

4© Once a query request is received, the cloud server first
communicates with the CA center to check the identity of the
data user and an ID certification message is received if the
data user is authorized.

5© For an authorized query, the cloud server employs a
search engine to search the encrypted document collection
and get the related ciphertexts to the query. Note that only the
documents whose attributes match the data user are returned.

6© Having received the encrypted documents and content
keys, the data user first decrypts the content keys by her
attribute-related secret key and then decrypt the documents
based on the content keys. At last, the document retrieval
process is completed.

The whole document outsourcing and sharing system con-
tains numerous research lines. In this paper, we restrict our
attention to the document collection encryption/decryption
process and ignore the other technical challenges such as
symmetric encryption algorithms and encrypted document
search algorithms. The flowchart of encrypting/decrypting
a document collection is shown in Fig. 2. Given a set of
documents, the data owner first randomly selects a set of
content keys ck = {ck1, ck2, · · · , ckN } which are used
to encrypt the documents in F symmetrically, i.e., Ci =
Ecki (Fi), i = 1, 2, · · ·N where Ci is the ciphertext of Fi.
Then, the content keys are encrypted by the proposed scheme
CP-ABHE. Encrypting the document collection in a two-
tier manner is reasonable considering that directly encrypting
the documents based on the bilinear map is of extremely
large computation complexity and this is impractical. At last,
all the encrypted documents, hierarchical access structures
and encrypted content keys are outsourced to the cloud
server. In the decryption process, the data users first decrypt
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the content keys with their secret keys and further decrypt the
documents based on the decrypted content keys. Encrypting
the documents symmetrically by the content keys is out of this
paper’s scope and we mainly discuss how to encrypt/decrypt
the content keys in detail.

B. DEFINITIONS AND PRELIMINARY TECHNIQUES
1) MONOTONE ACCESS STRUCTURE
LetA = {A1,A2, · · · ,AM } be a set of attributes. A collection
A ⊆ 2A is monotone: Given ∀B,C, if B ∈ A and B ⊆ C ,
then C ∈ A. A monotone access structure of a document
is a monotone collection A of non-empty subsets of A, i.e.,
A ⊆ 2A\{∅}. The sets in A are called the authorized sets
and the sets not in A are called the unauthorized sets. In this
paper, we assume that the access structure of each document
is monotone.

2) BILINEAR MAPS
Let G0 and G1 be two multiplicative groups of prime order
p. Naturally, they are cyclic groups and each non-identity
element inGi(i = 0, 1) is a generator of the groupGi. Let g be
a generator ofG0 and e be a bilinear map, e : G0×G0→ G1,
with the following properties:

1) Bilinearity: For all u, v ∈ G0 and a, b ∈ Zp,
e(ua, vb) = e(u, v)ab.

2) Non-degeneracy: e(g, g) 6= 1.
3) Distributivity: For u, v,w ∈ G0 and a, b, c ∈ Zp,

e(ua, vbwc) = e(ua, vb)e(ua,wc).

In addition, G0 is a bilinear group if the group operations
in G0 and the bilinear map, e : G0 × G0 → G1, are both
efficiently computable.

3) LAGRANGE INTERPOLATION
Given a set of data points {(x1, y1), (x2, y2), · · · , (xn, yn)} and
xi 6= xj if i, j ∈ {1, 2, , n}, i 6= j, they uniquely decide a
n − 1 degree polynomial which can be constructed by
Lagrange interpolation algorithm. Specifically, the polyno-
mial can be represented as follows:

f (x) =
∑

i∈{1,2,··· ,n}

(yi
∏

j∈{1,2,··· ,n},j6=i

x − xj
xi − xj

),

where
∏

j∈{1,2,··· ,n},j6=i
x−xj
xi−xj

is the Lagrange Coefficient. For
convenience, we denote the coefficient as 1i,S for i ∈ Zp
and a set, S, of elements in Zp and it is defined as
1i,S (x) =

∏
j∈S,j6=i (x − j)/(i− j).

4) DECISIONAL BILINEAR DIFFIE-HELLMAN (BDH)
ASSUMPTION
Assume that a, b, c, t are randomly selected from Zp and g
is a generator of G0. The decisional BDH assumption is that
no probabilistic polynomial-time algorithm B can distinguish
the tuple (A = ga,B = gb,C = gc, e(g, g)abc) from the
tuple (A = ga,B = gb,C = gc, e(g, g)t ) with more than
a negligible advantage.

In addition, we say that an adversary Adv can solve the
decisional BDH problem with an advantage ε if:

|Pr[Adv(g, ga, gb, gc, e(g, g)abc) = 0]

−Pr[Adv(g, ga, gb, gc, e(g, g)z) = 0]| > ε

5) SELECTIVE-SET SECURITY GAME
In this paper, [1], [11], and [33] to prove our scheme’s secu-
rity. The game is composed of 6 phases and they are presented
as follows.
Init: The adversary declares an access tree with a set of

attributes S that he wants to be challenged upon.
Setup: The challenger runs the Setup algorithm of CP-

ABHE to generate the public parameters which are provided
to the adversary.
Query Phase 1:The adversary is allowed to issue queries to

obtain the secret keys of any access structureA∗ with attribute
set S ′, where S * S ′.
Challenge: The adversary provides two different messages

M0 andM1 with equal length to the challenger. The challenger
randomly flips a coin µ and encryptsMµ with attribute set S.
Then the encrypted message is sent to the adversary.
Query phase 2: Query Phase 1 is repeated.
Guess: Based on the obtained information, the adversary

outputs a guess µ′ of µ.
We say that our scheme is secure if all the polynomial

time adversaries have at most a negligible advantage in
the game, where the advantage of the adversary is defined
as
∣∣Pr(µ′ = µ)− 1/2

∣∣. Note that, if our scheme can resist
the Selective-set security game, it naturally resists collusion
attack which is an extremely important property for the ABE
schemes. This can be explained by the fact that the adversary
can take multiple secret key queries before and after the
challenge phase.

III. INTEGRATED ACCESS STRUCTURE OF
A DOCUMENT COLLECTION
A. ACCESS POLICY OF DOCUMENTS AND ACCESS TREES
In this paper, we assume that each document Fi is of several
attributes in att(Fi) and Fi can be accessed only by the data
users who possess all the attributes in att(Fi). As shown
in Fig. 3(a), we assume that the attribute dictionary of a
document collection includes three basic attributes including
‘‘communication’’, ‘‘computer’’ and ‘‘network’’. Each doc-
ument has at least one attribute and some documents may
have two or three attributes such as the documents in region
A, B, C and D. In this case, the documents in region A can
be accessed by the data users who own all the three roles of
communication researcher, computer researcher, and network
researcher. Apparently, the access structure of a document is
monotone. As an example, a data user who owns the attributes
of communication and computer researcher can access the
documents in region B. Meanwhile, any other data users who
have at least these two attributes can also access the docu-
ments in region B. Compared with the threshold-based access
policy proposed in [1], [11], and [33], our access policy is
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FIGURE 3. (a) Assumption of access control strategy. (b) The access tree
of the documents in region A.

FIGURE 4. Integrated access tree of Alice and Bob.

stricter andmore suitable for the documents with high privacy
requirements such as personal health records [36].

We can represent the access structure of a document by
an access tree T . Under our access policy, the leaf nodes in
the tree represent the attributes related to the document and
the root node represents an ‘‘AND’’ gate. The access tree of
a document in region A is shown in Fig. 3(b) and the tree
contains three leaf nodes representing three attributes. The
root node represents an ‘‘AND’’ gate. In this case, if the leaf
node set of an access tree is a subset of another access tree’s
leaf node set, we can combine these two trees to a new tree
which is called an integrated access tree. Apparently, each
non-leaf node in the integrated access tree also represents an
‘‘AND’’ gate. The integrated access tree of Alice, who is a
communication and computer researcher, and Bob, who is a
communication, computer, and network researcher, is shown
in Fig. 4. In a document collection, the attribute sets of the
documents are various and each document has an access tree.
How to combine these single access trees to a small number
of integrated trees is a huge challenge. To our knowledge,
given a set of single access trees, minimizing the number
of integrated access trees is an NP-hard problem and hence
we propose a greedy-strategy-based integrated access tree
construction algorithm in Section III-B.

B. ACCESS STRUCTURE OF A DOCUMENT COLLECTION
In this section, we present the process of constructing the
integrated access trees of a document collection F =

{F1,F2, · · · ,FN } with identifiers {f1, f2, · · · , fN }. Let T be
an integrated access tree of a set of documents and all the
integrated access trees compose the access structure of the
whole document collection. We first define some notations
and functions about the integrated access trees. The number

FIGURE 5. (a) Assumption of access control strategy. (b) The access tree
of the documents in region A.

of the child nodes of an internal node x is denoted as numx .
Note that, the child nodes of x means the nodes which are
derived from x and directly connected with x. Function att(x)
denotes the associated attributes with the node x, i.e., the
attributes represented by all the leaves derived from node x.
Each node x in a tree has a unique numerical identifier and
it is returned by index(x). Moreover, att(T ) returns all the
attributes in the tree.

We say that an attribute set S matches an access tree T
if and only if S exactly equals to att(T ). As an example
in Fig. 5(a), tree X matches S if and only if S = {A1,A2,A3}
and, in this time, we denotes it as S(X ) = 0. Moreover,
we say that an attribute set S covers tree X if and only if
S is a proper superset of att(X ). Apparently, S covers X if
S = {A1,A2,A3,A4}and we denote it as S(X ) = 1. Roughly
speaking, we construct ST of a document collection in an
incremental manner and ST is updated for one time once
a new document is entered. The integrated access trees in
ST grow by continuously combining the small access trees.
The pseudo-code of constructing the access structure for a
document collection F is presented in Algorithm 2.
In the initial, we sort the documents in ascent order based

on the number of their attributes. Then, the access tree of the
first document F1′ is set as the first integrated access tree
and the identifier, f1′, of F1′ is inserted to the root node of
the tree. Given a set of integrated access trees, ST , we now
discuss how to update the trees when a new document,
Fi′, arrives. The attribute set of the new document att(Fi′)
faces three cases based on its relation to the trees in ST .
Specifically, att(Fi′) can match an existing tree, cover some
trees, or att(Fi′) neither matches nor covers the existing trees.
We first orderly scan the access trees in ST to find a tree that
matches att(Fi′). If the tree exists, we insert fi′ to the root node
of the tree. Otherwise, we orderly rescan the access trees in
ST to find a tree X which is covered by att(Fi′). If the tree X
exists, we continue to search the trees to find a tree Y which
is covered by attribute set att(Fi′) \ att(X ). If the tree Y also
exists, we continue to search the trees to find a tree which is
covered by attribute set att(Fi′)\att(X )\att(Y ).We iterate the
above process until all the existing access trees are scanned.
If all the attributes of the found trees together form att(Fi′),
a larger access tree with root node r is constructed in which
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Algorithm 1 BuildingAccessStructure
Input: Document collection F = F1,F2, · · · ,FN with

attribute sets {att(F1), att(F2), · · · , att(FN )}
Output: A set of integrated access trees ST
1: Sort the files inF in ascending order based on the number

of their attributes and obtain F ′ = {F1′,F2′, · · · ,FN ′}
with identifiers {f1′, f2′, · · · , fN ′};

2: ST = {}, C = {};
3: for i = 1 : N do
4: S = att(F ′i );
5: Scan the access trees in ST in order;
6: if S matches an scanned access tree X , i.e., S(X ) = 0

then
7: Insert the identifier of F ′i into the root node of X ;
8: break;
9: end if

10: Rescan the access trees in ST in order;
11: for a scanned access tree Y in ST do
12: if S covers Y , i.e., S(Y ) = 1 then
13: C = C ∪ Y , S = S \ att(Y );
14: end if
15: end for
16: if S is empty then
17: Build a larger access tree LT with root node r and

all the access trees in C are the child nodes of r ;
18: Insert f ′i to r ;
19: Insert LT to ST and delete all the trees in C from

ST ;
20: else
21: Build a larger access tree LT with root node r and

all the access trees in C are the child nodes of r ; In
addition, all the left attributes in S are also inserted
to the root node r as leaves;

22: Insert f ′i to r ;
23: Insert LT to ST and delete all the trees in C from

ST ;
24: end if
25: end for

all the found trees act as child nodes of r and the document
identifier fi′ is inserted to r . However, if all the attributes
of the found trees together form a proper subset att(Fi′)′

of att(Fi′), all the attributes in att(Fi′) \ att(Fi′)′ are also
inserted to the root node r as leaves. As an example, there
are two integrated access trees as presented in Fig. 5(a), then
when a document with attribute set {A1,A2,A3,A4,A5,A6}
arrives, the updated access tree is shown in Fig. 5(b). It can
be observed that, though the number of documents increases,
the number of the integrated trees decreases. This is of great
meaning the process of encrypting the document collection.
At last, if att(Fi′) neither matches nor covers an existing
access trees, we just set the access tree of Fi′ as an integrated
access tree and insert the access tree of Fi′ is inserted into ST .
The above process is iterated until all the document identifiers

are inserted into the integrated access trees. All the integrated
access trees in ST compose the access structure of the whole
document collection.

At last, we discuss how to set the numerical identifiers for
the nodes in the access trees. A possible approach to construct
the identifiers is presented as follows:

1) If x is a leaf node and associated with attribute Ai, then
its numerical identifier is set as i.

2) If x is a non-leaf node and associated with a set of
attributes {Ai,Aj, · · · ,
Ak},1 6 i < j < · · · < k ≤ M , then its numerical
identifier is set as ij · · · k .

IV. DOCUMENT COLLECTION HIERARCHICAL
ENCRYPTION
In this section, we present the detailed process of encrypt-
ing a document collection F = {F1,F2, · · · ,FN } by CP-
ABHE. First, each document in F is assigned with a set of
attributes which are selected fromA and the access structure,
ST , of F is constructed based on Algorithm 1 presented in
Section III. Then, for each document Fi in F , a content key
ck i is randomly selected and we symmetrically encrypt Fi
based on ck i, i.e., Ci = Eck i (Fi), i = 1, 2, · · ·N , where Ci
is the ciphertext of Fi. We denote all the content keys as
ck = {ck1, ck2, · · · , ckN } and then all the content keys of
the documents in an individual integrated access tree can be
encrypted together. Now, we discuss how to hierarchically
encrypt the content keys as follows.
Setup. The setup algorithm chooses a bilinear group G0

of prime order p with g as a generator, a bilinear map e :
G0 × G0 → G1 and two random numbers α, β ∈ Zp. The
public key is published as:

PK = (G0, g, h = gβ , e(g, g)α),

and the master secret key is set as:

MSK = (β, gα).

Encrypt(PK, ck,ST ). We first need generate a secret
number skx is for each node x in the trees. In each tree,
these secret numbers for the nodes are chosen in a bottom-up
manner, starting from the leaves to the root node. Specifically,
we randomly select a secret number si ∈ Zp for each attribute
Ai in A and si is assigned to all the leaves with attribute Ai
in all the trees in ST . In other words, the secret number skx
of the leaf node x associated with attribute Ai is si. Then for
the internal node x with a set of child nodes Sx , the secret
number skx is computed as skx =

∑
z∈Sx skz1i,S ′x (index(x))

where i = index(z), S ′x = {index(z), z ∈ Sx}, index(x) is
the numerical identifier of node x. By treating each child
node z in Sx as a data point with coordinate (index(z), skz),
the Lagrange interpolation algorithm could be employed to
construct a |Sx | − 1 order polynomial which crosses all the
data points in Sx , where |Sx | is the number of nodes in Sx .
In this way, the secret number of node x can be calculated by
plugging index(x) into the polynomial. In theory, each child
node maintains a share of the secret number of the parent

VOLUME 7, 2019 36223



J. Fu, N. Wang: Practical Attribute-Based Document Collection Hierarchical Encryption Scheme in Cloud Computing

node. To recover the secret number of a node, the data users
need to collect all the necessary shares which are hidden in
their secret keys. By iterating the above process, each node in
the integrated access structure can be assigned with a secret
number.

Then, we encrypt the content keys by the assigned secret
numbers. Assume that the file identifiers {fm, · · · , fn} in a
node x can be returned by function file(x) and then we encrypt
all the related content keys {ckm, · · · , ckn} based on the
same secret number skx . Let Y be the set of the leaves in
an integrated tree T . All the content keys related with T
are encrypted together and the ciphertext is constructed as
follows:

CTT = (T ,∀x ∈ T , fi ∈ file(x) : C̃i = ck ie(g, g)
α·skx

,

Cx∗ = gskx ,∀y ∈ Y : Cy = hsky ,C ′y = H (att(y))sky ).

For convenience, we call the ciphertext of all the content keys
in an access tree T as the ciphertext of T . By constructing the
ciphertext for each integrated access tree in ST , we can get the
ciphertext CT of the whole document collection as follows:

CT = {∪(CTT ), ∀T ∈ ST }.

We further assume that file(T ) returns all the document
identifiers in access tree T and denote the number of nodes,
that contain document identifiers in T , as |T |. It can be
observed that the ciphertext of T contains |file(T )| + |T | +
2 ∗ |Y | elements in G0 and G1, where |∗| returns the number
of elements in ∗. When encrypting a set of access trees,
some redundant data can be deleted. Note that, Cy and C ′y
are only related with sky and the further sky is only related
with the attribute of leaf node y. As discussed previously, all
the leaf nodes with the same attribute share the same secret
number. Then, we can infer that the leaves, y1, y2, · · · , yd ,
of different access trees, T1, T2, · · · , Td , may share a same
attribute Ai and hence, Cy1 = Cy2 = · · · = Cyd = hsi ,
Cy1
′
= Cy2

′
= · · · = Cyd

′
= HAisi . Therefore, when

publishing the ciphertext of all the documents, only 2 ∗ |A|
records of Cy and C ′y need to be published. Then, the total
number of elements in CT can be theoretically calculated as
N + (

∑
T ∈ST |T |)+2∗|A|. Considering that (

∑
T∈ST |T |) is

naturally smaller than N and |A| � N , we can infer that the
number of total elements in the ciphertext is always smaller
than 2 ∗ N .

In the KP-ABE scheme [11], the number of elements in the
ciphertext is always 2 ∗ N and it has the close performance
with CP-ABHE. However, in CP-ABE and FH-CP-ABE,
each access tree is treated as a whole and the secret numbers
of the leaf nodes in different access trees are totally inde-
pendent with each other. Therefore, in these two schemes,
the ciphertext of ST is the collection of all the individual
access trees’ ciphertexts and its size is much larger than that
of CT in our scheme.
KeyGen(MSK,S). The key generation algorithm takes a

set of attributes S as input and output a secret key for a data
user who owns all the attributes in S.Wefirst choose a random

number r ∈ Zp, and then choose a random number rj ∈ Zp
for each attribute Aj ∈ S. Then the secret keys are computed
as follows:

SK = (D = gα · hr ,∀Aj ∈ S : Dj = gr · H (Aj)rj ,D′j = hrj ).

It can be observed that, for different data users, the param-
eter r and rj are different. Therefore, different data users
cannot collude with each other to decrypt a ciphertext which
cannot be decrypted by any data user alone. However, for
one data user, the secret key can be treated as a set of
fragments, i.e., D, Dj, D′j, and the fragments can be flexibly
combined to construct the secret keys for different access
trees. Namely, the secret key of a data user in CP-ABHE
is not designed for a specific access tree. The data users’
secret keys in CP-ABE and FH-CP-ABE also have similar
properties. This can be explained by the fact that all these
three schemes embed the access structure of the documents
into the ciphertext rather than the data users’ secret keys.
However, in KP-ABE, the access structure is embedded in
the secret keys and each secret key is designed for a specific
access tree. In other words, the fragments of a secret key are
meaningless unless they are employed as a whole to decrypt
a specific access tree. Therefore, our mechanism can greatly
simplify the data users’ secret keys compared with KP-ABE
scheme.

Decrypt(CTT ,SK). We employ a recursive algorithm
DecryptNode (CTT , SK , x) to decrypt the content keys
encrypted by node x in the tree T step by step. This algorithm
takes as input a ciphertext CTT , a private key SK which is
associated with a set of attributes S, and a node x from T .
If node x is a leaf node with attribute Ai and Ai ∈ S, then the
algorithm is defined as follows:

DecryptNode(CTT , SK , x) =
e(Di,Cx)
e(D′i,C

′
x)

=
e(gr · H (Ai)ri , hskx )

e(hri ,H (Ai)skx )

=
e(gr , hskx )e(H (Ai)ri , hskx )

e(hri ,H (Ai)skx )
= e(g, g)γβ·skx .

However, ifAi /∈ S, we defineDecryptNode(CTT , SK , x)=⊥.
When x is an internal node, the algorithm is operated

recursively. First, each node z ∈ Sx calls the function
DecryptNode(CTT , SK , z) and stores the output of the algo-
rithm as Fz. Here, Sx denotes the set of x’s child nodes. If at
least one Fz = ⊥, the function DecryptNode(CTT , SK , x)
returns ⊥. Otherwise, we denote i = index(z), S ′x =
{index(z), z ∈ Sx} and compute Fx as follows:

Fx =
∏
z∈Sx

F
1i,S′x

(index(x))
z

=

∏
z∈Sx

(e(g, g)rβ·skz )
1i,S′x

(index(x))

= e(g, g)rβ·
∑

z∈Sx skz·1i,S′x
(index(x))

= e(g, g)rβ·skx

36224 VOLUME 7, 2019



J. Fu, N. Wang: Practical Attribute-Based Document Collection Hierarchical Encryption Scheme in Cloud Computing

If a data user has an attribute set S which matches att(x),
the data user can calculate A = Fx = e(g, g)rβ·skx by iterating
the above process. Then each content key ck i encrypted by
node x with skx can be decrypted as follows:

C̃i/(e(Cx∗,D)/A)= C̃i/(e(gskx , gαhr )/e(g, g)rβ·skx )=ck i.

At last, all the documents encrypted by ck i can be
decrypted by the data user as:

Fi = Dck i (Ci),∀fi ∈ file(T ).

Otherwise, the data user cannot decrypt the encrypted
documents.

V. SECURITY ANALYSIS
In this section, we mainly focus our attention on analyzing
the security of CP-ABHE and other security problems in the
document retrieval system are out of scope in this paper.
Specifically, the documents are encrypted based on symmet-
ric encryption schemes and they are assumed to be secure
if the content keys are secure. Then, we mainly restrict our
attention to the security of the content keys in CP-ABHE.
Methodologically, we prove the security of CP-ABHE under
the Selective-Set Security Game based on the Decisional
BDH assumption provided in Section II-B.
Theorem 5.1: No polynomial adversary can win the

Selective-Set Security Game of CP-ABHE with a non-
negligible advantage if the Decisional BDH assumption
holds.
Proof:Wefirst assume that there is a polynomial adversary

Adv that can break through the CP-ABHE scheme with an
advantage ε. Under the above assumption, we can design a
simulator B that can play the Decisional BDH game with an
advantage ε/2.

First, the challenger randomly chooses two multiplicative
groups, G0,G1, of prime order p. Let g be a generator of G0
and let e be a bilinear map e : G0 ×G0→ G1. Four random
numbers, a, b, c, t , are chosen from Zp. Then the challenger
flips a coin v and if v = 0, the challenger generates a BDH
tuple (ga, gb, gc, e(g, g)abc); otherwise, if v = 1, it constructs
a random 4-tuple (ga, gb, gc, e(g, g)t ). At last, all the chosen
elements and the generated tuple are sent to the simulator.
Simulator B plays the game as follows:
Init: The simulator B runs adversary Adv and let Adv

submits a set of attributes S on which Adv is challenged.
Setup: The simulator sets α = ab+a′ where a′ is a random

number in Zp. Then, the simulator computes e(g, g)α =
e(g, g)abe(g, g)a

′

. It further sets h = gβ = gb = B and sends
PK = (G0, g,B, e(g, g)abe(g, g)a

′

) to Adv.
Query Phase 1: The adversary Adv can query the secret

keys SK of any access structure A∗ with a set of attributes S ′
as long as S * S ′. To respond the query of Adv, simulator B
first selects a random number r ′ ∈ Zp and sets r = r ′ − a.

Then it calculates D = gα · hr = Br
′

· g
a′

and, for each
attribute Aj ∈ S ′, the simulator randomly chooses a number

rj ∈ Zp and calculates Dj = g(r
′
−a)H (Aj)rj =

gr
′

A H (Aj)rj ,

Dj′ = Brj . At last, B sends SK = (Br
′

· ga
′

,∀Aj ∈ S ′ :
gr
′

A H (Aj)rj ,Brj ) to the adversary.
Challenge: For convenience sake, we assume that only

one content key of a file is encrypted by CP-ABHE and
the ciphertext is simplified as CTT = (T ,Cx∗, C̃i,∀y ∈
S ′ : Cy = Bsky ,C ′y = H (att(y))sky ). In the challenge
process, the adversary Adv first sends two messages M0 and
M1 with equal lengths to B. Then, simulator B flips a coin
µ ∈ {0, 1} to randomly choose a message from M0 and M1,
and the chosen message is encrypted as follows. Simulator B
calculates Cx∗ = gskx = gc = C . If v = 0, C̃i is calculated
as C̃i = Mµe(g, g)αc = e(g, g)abce(g, g)a

′c; otherwise, C̃i is
calculated as C̃i = Mµe(g, g)t which is a random element of
G1 fromAdv’s view. Moreover,Cy andC ′y are also calculated
by B. At last, the ciphertext of the chosen message is sent
to Adv.
Query phase 2: The query phase 1 is repeated.
Guess: In this process, the adversary Adv needs to make

a guess µ′ of µ based on all the obtained information and
the result is sent to the simulator B. Then, simulator makes a
guess v′ of v based on the guess result of Adv. Specifically,
ifµ′ = µ, the simulator B outputs v′ = 0 to indicates that it is
given a BDH tuple by the challenger; otherwise, it will output
v′ = 1 to indicate that it is given a random 4-tuple. Then,
we can theoretically calculate the advantage of simulator B
in playing the Decisional BDH game.

If µ = 0, the adversaryAdv sees an encryption ofMµ and
in this case Pr(µ′ = µ|v = 0) = 1/2 + ε by the initial
hypothesis. Since the simulator outputs v′ = 0 when µ′ = µ,
we can infer that Pr(v′ = v|v = 0) = 1/2+ ε.
If µ = 1, the adversary Adv gains on information about

µ and hence Pr(µ′ 6= µ|v = 1) = 1/2. Since the
simulator outputs v′ = 1 when µ′ 6= µ, we can get
Pr(v′ = v|v = 0) = 1/2.
As a consequence, the advantage ofB in playing theDBDH

game can be calculated as follows:

1
2
Pr(v′ = v|v = 0)+

1
2
Pr(v′ = v|µ = 1)−

1
2

=
1
2
(
1
2
+ ε)+

1
2
×

1
2
−

1
2
=
ε

2
Considering that the Decisional BDH assumption holds,

we can infer that ε is a negligible advantage. In other words,
the adversary cannot win the Selective-Set Security Game of
CP-ABHE with a non-negligible advantage. Consequently,
our scheme is secure.

VI. EFFECTIVENESS OF INTEGRATED ACCESS TREES
A. GENERATION OF ATTRIBUTE SETS
As discussed in Section IV, the access structure, ST , of the
document collection greatly affects the efficiency of CP-
ABHE. In this section, we analyze the properties of ST
in detail. First, we design an attribute dispatcher to assign
attributes to the documents. We assume that the attribute
dictionaryA is composed of 26 letters, i.e.,A = A,B, · · · ,Z .
In simulation, the attributes in A are divided into 4 categories,
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i.e., C1 = {A,B, · · · ,G}, C2 = {H , I , · · · ,N }, C3 =

{O,P, · · · ,T }, C4 = {U ,V , · · · ,Z }. The attributes in the
same category are assumed to be more related with each
other and we employ a parameter pr to reflect this. In this
paper, parameter pr ranges from 0.25 to 1. This is reason-
able considering that the attributes are naturally divided into
clusters in real document collections and it is likely that the
related attributes are assigned to a document together. For
example, if a document is related with attribute ‘‘computer’’,
it is natural to infer that the document is more likely to be
related with attribute ‘‘network’’ than other attributes such as
‘‘economic’’ and ‘‘finance’’.

The process of generating the attribute sets for the docu-
ments is presented in Algorithm 2. Without loss of generality,
we assume that each document has at least 1 attribute and
at most 5 attributes. In the initial, we randomly choose the
number of a document’s attributes from {1, 2, · · · , 5} and
then the first attributeAn is uniformly randomly selected from
A. For the documents with more than 1 attribute, the next
attribute is chosen by employing a random number pr ′. If the
randomly generated pr ′ is smaller than pr , the next attribute is
selected in the same category of the first attribute. Otherwise,
the next attribute is randomly selected fromA\An. We iterate
the above process until each document is assigned with an
attribute set.

Algorithm 2 AttributeDispatcher
Input: A = C1,C2,C3,C4,F , pr (0.25 ≤ pr ≤ 1)
Output: The attribute set of each document
1: for each document Fi ∈ F do
2: A 6= ∅;
3: Randomly select a number m from {1, 2, 3, 4, 5};
4: Randomly select an attribute An from A and we

assume that An ∈ Ck , k = 1, 2, 3, 4;
5: Insert An to A;
6: for i = 2 : m do
7: Randomly generate a number p′r (0 ≤ p′r ≤ 1) and

if p′r ≤ pr , randomly select an attribute Aq from
Ck \ An; otherwise, uniformly randomly select an
attribute Aq from A \ An;

8: Insert Aq to A;
9: end for

10: The attributes in A comprise the attribute set of docu-
ment Fi;

11: end for

B. NUMBER OF INTEGRATED ACCESS TREES
Considering that each integrated access tree is encrypted
as a whole, the number of trees in ST strongly affects the
encryption efficiency of CP-ABHE. Based on the assigned
attribute sets generated in Section VI-A, we analyze the
number of integrated access trees in ST . In KP-ABE and
CP-ABE schemes, we assume that the documents with the
same attribute set are encrypted together by a same secret key.

FIGURE 6. Number of access trees in KP-ABE/CP-ABE schemes.
(b) Number of integrated access trees in CP-ABHE scheme.

As shown in Fig. 6(a), the number of access trees in KP-
ABE/CP-ABE schemes is naturally smaller than that of files.
This is reasonable considering that some documents may
share a same access tree.With the increasing of the number of
files, the number of access trees also increases monotonously
though the increasing speed decreases. This can be explained
by the fact that with the increasing of the number of
access trees, it is increasingly possible that the access tree
of a new document is the same with an existing access
tree.

The value of pr also affects the number of access trees.
When the attributes of a document are totally randomly
selected from A, i.e., pr = 0.25, the attribute sets of the
documents are greatly varied. As a consequence, the number
of access trees is the largest. With the increasing of pr , more
and more documents share the same access trees and the
total number of access trees decreases. For 1000 files, when
pr = 0.25, the number of access trees is about 760 and
when pr = 1.0, the number of access trees decreases to
about 280.

The number of integrated access trees in CP-ABHE is
presented in 6(b). Similar to KP-ABE and CP-ABE, the num-
ber of integrated access trees in our scheme also gradually
increases with the increasing of the number of files and
the increasing speed decreases. In addition, the number of
integrated access trees decreases with the increasing of pr .
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FIGURE 7. (a) Number of nodes in the access trees in KP-ABE/CP-ABE
schemes. (b) Number of nodes in the integrated access trees in CP-ABHE
scheme.

For 1000 files, when pr = 0.25, the number of the integrated
access trees is about 420 and when pr = 1.0, the number of
trees decreases to about 110. By comparing 6(a) and 6(b),
we can find that the number of integrated access trees is
much smaller than that of access trees in KP-ABE and CP-
ABE schemes. Therefore, the simulation result illustrates that
Algorithm 1 proposed in Section III performs very well in
terms of decreasing the number of access trees.

C. NUMBER OF NODES IN THE TREES
As presented in Section IV, each node in the tree needs to
be assigned a secret number. Each tree contains a root node,
several intermediate nodes and a set of leaf nodes. Roughly
speaking, the total number of nodes in the trees approximately
linearly increases with the number of access trees and there-
fore it should have similar relations with the number of files
and the value of pr . As shown in Fig. 7, the number of nodes in
KP-ABE and CP-ABE schemes ranges from 1200 to 3200 for
different pr . The number of nodes in the integrated access
trees ranges from 700 to 2500. It can be observed that the
number of nodes in the integrated trees is always smaller than
that of the original access trees. In the process of encrypting
the documents, all the schemes need to construct a secret
number for each node in the trees. As a consequence, CP-
ABHE consumes much fewer computation resources com-
pared with that of KP-ABE and CP-ABE schemes.

FIGURE 8. (a) Time cost of constructing the integrated access trees.
(b) Average time cost of inserting a file identifier to the integrated access
trees.

D. TIME COST OF TREE CONSTRUCTION
The total time cost of constructing the integrated access trees
is presented in Fig. 8(a). Apparently, the time cost increases
with the increase of the number of files. For a small pr ,
the total time cost increases fast. This can be explained by
the fact that when pr is small, the attribute sets of the files
are very different and a large number of access trees need
to be scanned before a new file identifier is inserted into the
integrated access trees. On the contrary, when pr is large,
quite a number of files share the same integrated access trees
and they can be inserted to the trees faster. In the worst case,
i.e., pr = 0.25, the time consumption of constructing the
integrated access trees for 1000 documents is about 16 sec-
onds. When pr = 1, only about 4 seconds are consumed to
construct the access structure of the document collection. The
average time cost of inserting a file identifier to the trees is
presented in Fig. 8(b).

E. DISTRIBUTION OF THE DOCUMENTS IN THE TREES
In this section, the number of documents is set as 1000.
We first sort the trees in descent order based on the number
of file identifiers stored in the trees. Then, we divide the
trees into different sets and each set contains 25 trees. At last,
we count the number of file identifiers stored in each set of
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TABLE 1. Comparison of KP-ABE, CP-ABE and CP-ABHE.

FIGURE 9. File distribution in the access trees.

the trees. As shown in Fig. 9, quite a number of file identifiers
are contained in the first 50 integrated access trees and the
proportion ranges from 40% to 75% for different pr . Then
there exists a long tail for the rest of the trees. In addition,
a larger pr leads a shorter tail and when pr = 1.0, almost all
the files are stored in the first 150 integrated access trees. This
is reasonable considering that more and more files share the
same attribute sets when the value of pr increases. Though the
number of the trees are larger than 200 when pr ranges from
0.25 to 0.8 as shown in Fig. 6(a), almost all the document
identifiers are stored in the largest 200 trees. If ignoring a
small number of documents is acceptable for some applica-
tions, the number of the trees greatly decreases and hence the
efficiency of the schemes can be further improved.

VII. EFFICIENCY OF CP-ABHE
A. PERFORMANCE ANALYSIS
We theoretically compare the proposed schemewithKP-ABE
and CP-ABE schemes in terms of encryption/decryption effi-
ciency and storage space. For convenience, some basic def-
initions are presented first. We assume that Gi(i = 0, 1) is
a group or the time cost of a basic operation on the group
such as exponentiation or multiplication. Let Zp be the group
{0, 1, · · · , p− 1} and Ce be the time cost of a bilinear map
operation e. In addition, we define |∗| as the number of
elements in ∗, L∗ as the length of an element in ∗.
We assume that the data owner encrypts the content keys

ck = {ck1, ck2, · · · , ckN } by KP-ABE, CP-ABE and our
scheme, respectively. Let att(Fi) returns the attribute set ofFi,
att(T ) be the attribute set of the access tree T . We denote the
number of nodes which contain at least one document identi-
fiers in T as |T |. The time consumptions of constructing the

TABLE 2. The rank of the three schemes’ performance.

polynomials when generating the secret numbers are ignored.
We further assume that a data user needs to decrypt all the
documents. Under the above assumptions, a theoretical com-
parison between these three schemes is presented in Table 1.

By basic analysis, we can infer that |att(F1)| + · · · +
|att(FN )| � {N ,

∑
T ∈ST |T | ,

∑
T ∈ST |att(T )|} � |A| for

a large document collection. Then, we can rank the perfor-
mance of these three schemes in terms of different measure-
ments as shown in Table 2. It can be observed that the CP-
ABHE performs the best in terms of all the measurements.
The KP-ABE scheme performs better than CP-ABE in terms
of encryption/decryption efficiency and the size of CT . How-
ever, a huge disadvantage of theKP-ABE scheme is the secret
key expanding problem. The CP-ABE scheme performs
better than KP-ABE in terms of the size of PK , MSK , and
SK . However, the size of the ciphertext is much larger than
that of KP-ABE scheme. When sending the ciphertext to the
data users, the data transmission amount in CP-ABE is much
larger and it is a challenge for the networks. In addition, CP-
ABE scheme and CP-ABHE scheme are more flexible than
the KP-ABE scheme in real life. In conclusion, theoretical
analysis shows that both KP-ABE and CP-ABE have their
disadvantages and CP-ABHE always performs the best.

B. PERFORMANCE EVALUATION
To further evaluate the performance of these three document
encryption schemes, we implement the CP-ABHE scheme
based on the cpabe toolkit and the Java Pairing-Based Cryp-
tography library (JPBC) [4]. We employ a 160-bit elliptic
curve group based on the supersingular curve y2 = x3 + x
over a 512-bit finite field. In addition, the KP-ABE scheme
in [11] and the CP-ABE scheme in [1] are also implemented.
All the above schemes are simulated on a 2.60 GHZ Intel
Core processor, Windows 7 operating system with a RAM
of 4 GB. The number of documents in the collection ranges
from 100 to 1000. As presented in Section VI, the attribute
dictionary is defined as A = {A,B, · · · ,Z } and each

36228 VOLUME 7, 2019



J. Fu, N. Wang: Practical Attribute-Based Document Collection Hierarchical Encryption Scheme in Cloud Computing

FIGURE 10. Encryption time.

document is assigned with an attribute set through Algo-
rithm 2. Similar to [13] and [33], the encryption/decryption
time and the storage cost of ciphertext are employed to
measure the performance of these schemes. In addition,
we also use the secret key storage space to reflect the secret
key expanding problem. Each simulation is executed for
10 times and the average simulation results are presented in
the following.

1) ENCRYPTION EFFICIENCY
The encryption time of the three schemes with different
number of documents is presented in Fig. 10. To obtain
ck ie(g, g)αs of a document, CP-ABE needs to execute two
operations on G1. In addition, the scheme needs to execute
2 ∗ att(Fi) + 1 operations on G0 to get hs, Cj and C ′j . When
a new document arrives, all the encryption process needs to
be re-executed for one time. Therefore, the encryption time
of CP-ABE is the largest in all the three schemes. The KP-
ABE scheme also needs to encrypt each document singly.
However, the KP-ABE scheme needs to execute only att(Fi)
operations inG0 and hence it performs better than CP-ABE in
terms of encryption time. In CP-ABHE, all the ciphertexts of
the documents share the same Cy and C ′y which can greatly
decrease the computation complexity. As shown in Fig. 10,
CP-ABHE improves the encryption efficiency by about 60%
compared with CP-ABE and it also outperforms KP-ABE
scheme.

2) DECYPTION EFFICIENCY
As shown in Fig. 11, the decryption time of all the three
schemes approximately linearly increases with the expanding
of the document collection. For a constant document collec-
tion, CP-ABHE improves the decryption efficiency by about
50% compared with the CP-ABE scheme and it also out-
performs KP-ABE. To decrypt all the encrypted documents,
the KP-ABE scheme and CP-ABE scheme need to decrypt
the access trees one by one. For each access tree, they first
need to decrypt the leaf nodes and then decrypt the root node
by an iterating process. At last, the content secret key ck i
hidden in the access tree is decrypted. It can be observed that
most time is consumed in the process of decrypting the nodes
in the trees. For different access trees, the secret numbers of in

FIGURE 11. Decryption time.

the leaf nodes are independent with each other. To decrypt a
leaf node, the CP-ABE scheme needs to execute bilinear map
operation two times and a operation in G1. However, in the
KP-ABE scheme, only a bilinear map is needed to decrypt
a leaf node. Considering that the rest decryption process of
KP-ABE and CP-ABE schemes are similar to each other,
we can conclude that the KP-ABE scheme outperforms CP-
ABE scheme in terms of decryption efficiency. CP-ABHE
performs the best in all the three schemes and this can be
explained by the fact that only M (i.e., |A|) leaf nodes need
to be decrypted.

3) CIPHERTEXT STORAGE EFFICIENCY
In this section, we restrict our attention to the ciphertext of the
encrypted content keys. As shown in Fig. 12, the ciphertext in
CP-ABE scheme consumes the most storage space. For each
access tree, the ciphertext includes an element in G1 (i.e.,
ck ie(g, g)αs) and 2 ∗ |att(Fi)| + 1 elements in G0 (i.e., Cj, C ′j
and C = hs). For different access trees, their ciphertexts are
totally independent and we cannot save any storage cost by
publishing the ciphertexts together. Though the ciphertexts
of different access trees in the KP-ABE scheme are also
independent with each other, the ciphertext of an access tree
includes only an element inG1 (i.e., ck ie(g, g)αs) and |att(Fi)|
elements in G0 (i.e., Ej). Therefore, the size of ciphertext in
the KP-ABE scheme is much smaller than that of the cipher-
text in the CP-ABE scheme. CP-ABHE scheme performs the
best in all the three schemes and consumes the least storage
space. In CP-ABHE, the content keys are encrypted together
and the ciphertext of the keys includes N elements in G1
and 2 |A| +

∑
T ∈ST |T | elements in G0. As discussed in

section VII-A, the ciphertext of CP-ABHE consumes much
smaller storage space compared with that of KP-ABE scheme
and CP-ABE scheme. The simulation result demonstrates the
correctness of our theoretical analysis.

4) SECRET KEY STORAGE EFFICIENCY
The total storage cost of the secret keys is presented in Fig. 13.
In CP-ABE and CP-ABHE schemes, the secret key of a
data user is related with his attribute set only and doesn’t
expand with the increasing of the document collection.
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FIGURE 12. Ciphertext storage space.

FIGURE 13. Secret key storage space.

However, in the KP-ABE scheme, each secret key is gener-
ated for a specific access tree. With the increasing of the doc-
ument collection’s size, the number of access trees increases
and, as a consequence, the size of a data user’s secret key
is extremely large. It can be observed from Fig. 13 that the
storage space of the secret key of a data user is linearly
increasing with the document collection’s size. When the
document collection contains 1000 documents, the size of
the secret key in KP-ABE is about 300 KB which is much
larger than that of the secret keys in CP-ABE and CP-ABHE
schemes.

C. PERFORMANCE COMPARISON
In conclusion, CP-ABHE scheme always performs the best in
terms of encryption/decryption time, the secret key storage
cost and ciphertext storage cost. KP-ABE scheme per-
forms better than the CP-ABE scheme in terms of encryp-
tion/decryption time and cipher-text storage cost. However,
a huge disadvantage of the KP-ABE scheme is the secret
key expanding problem. As we step into the era of mobile
internet, more and more data users tend to access the doc-
uments through mobile devices which are of very limited
resources. In this case, storing a large number of secret keys
is impractical. Though CP-ABE scheme has a larger cost in
terms of encryption/decryption and ciphertext storage, it is
more convenient for the data owners to set the access struc-
tures and the data users need to store a small number of secret
keys.

VIII. RELATED WORK
Attribute-based encryption schemes have been widely
researched in the literatures. The fuzzy identity-based encryp-
tion (Fuzzy IBE) scheme proposed by Sahai and Waters [28]
is widely treated as the origin of attribute-based encryption
(ABE). Sahai and Waters first employ the term ‘‘attribute-
based encryption (ABE)’’ in the field of information secu-
rity. Inspired by Fuzzy IBE, many ABE schemes are
designed including KP-ABE schemes and CP-ABE schemes.
Goyal et al. extend the Fuzzy IBE scheme and propose
the key-policy attribute-based-encryption (KP-ABE) in [11].
Though KP-ABE can provide fine-grained access control,
it restricts its attention to the monotone access structure
only. In [25], Ostrovsky et al. construct a KP-ABE scheme
which allows a user’s private key can be expressed in terms
of any access formula over attributes. Further, they prove
the scheme’s security based on decisional bilinear Diffie-
Hellman assumption. Yang et al. [38] propose a scheme
which performs well in terms of both access structure
expressivity and security. CP-ABE schemes are more flex-
ible and suitable for general applications and many vari-
eties of CP-ABE schemes have been proposed in the lit-
eratures [1], [10], [34]. In CP-ABE schemes, the access
structures are embedded in the ciphertext and each data
user is assigned with a set of attributes. A data user can
decrypt a ciphertext if and only if their be matched with each
other.

Recently, ABE schemes have been widely employed
to securely store and share data in cloud computing.
Pirretti et al. [26] introduce a novel secure information man-
agement architecture based on ABE primitives. A policy sys-
tem which meets the needs of different data users is designed
and used to encrypt distributed file systems. The hierarchi-
cal ABE (HABE) scheme [32] is proposed by combining
a hierarchical IBE scheme and a CP-ABE scheme. HABE
scheme can help the enterprise users to efficiently share confi-
dential data in cloud computing by simultaneously achieving
fine-grained access control, high performance, practicability,
and scalability. Zhu et al. [39] also propose a file sharing
scheme in cloud computing based on ABE and the security
and efficiency of the scheme are evaluated. Li et al. [17]
provide a CP-ABE scheme with efficient data user revocation
for cloud storage. KSF-OABE scheme [18] integrates the
keyword search function into the ABE scheme which can
improve the search efficiency of ciphertexts. Though all the
above proposed schemes can be used in cloud computing,
they are designed for encrypting a single document. They
cannot be directly employed to encrypt a large document
collection, because the encryption/decryption efficiency is
low if we encrypt each file singly. To our knowledge, the most
related work to our scheme is FH-CP-ABE [33] and however,
this scheme can only hierarchically encrypt a set of docu-
ments together whose attribute sets need to nicely comprise
an integrated access structure. This is impractical for a large
document collection considering that the attribute sets of the
documents are random.
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IX. CONCLUSION
In this paper, we design a hierarchical document collection
encryption scheme. We first design an incremental algorithm
to construct the integrated access trees of the documents and
decrease the number of trees. Then, each integrated access
tree is encrypted together and the documents in a tree can be
decrypted at a time. Different to existing schemes, we con-
struct the secret numbers for the nodes of the trees in a
bottom-up manner. In this way, the sizes of ciphertext and
secret keys significantly decrease. At last, a thorough per-
formance evaluation is provided including security analysis,
efficiency analysis, and simulation. Results show that the pro-
posed scheme outperformsKP-ABE andCP-ABE schemes in
terms of encryption/decryption efficiency and storage space.

Our scheme can be further improved in several aspects:
First, the access policy discussed in Section III assumes that
the access trees are composed of only ‘‘AND’’ gates. Extend-
ing the flexibility and versatility of the access policy is one
of the most important research directions. Second, the docu-
ments are encrypted before outsourcing and a promising task
is how to efficiently search the interested documents over
the ciphertexts. At last, we focus our attention on the static
document collection and how to efficiently encrypt/decrypt a
dynamic document collection will be also researched in the
future.
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