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ABSTRACT This paper concerns the detection of abnormal data usage and unauthorized access in large-scale
critical networks, specifically healthcare infrastructures. Hospitals in the U.K. are now connecting their
traditionally isolated equipment on a large scale to Internet-enabled networks to enable remote data access.
This step-change makes sensitive data accessible to a broader spectrum of users. The focus of this paper is
on the safeguarding of electronic patient record (EPR) systems in particular. With over 83% of hospitals
adopting EPRs, access to this healthcare data needs to be proactively monitored for malicious activity.
Hospitals must maintain patient trust and ensure that the information security principles of integrity,
availability, and confidentiality are applied to EPR data. Access to EPR is often heavily audited within
healthcare infrastructures. However, this data is regularly left untouched in a data silo and only ever accessed
on an ad hoc basis. Without proactive monitoring of audit records, data breaches may go undetected.
In addition, external threats, such as phishing or social engineering techniques to acquire a clinician’s logon
credentials, need to be identified. Data behavior within healthcare infrastructures, therefore, needs to be
proactively monitored for malicious, erratic, or unusual activity. This paper presents a system that employs
a density-based local outlier detection model. The system is intended to add to the defense-in-depth of
healthcare infrastructures. Patterns in EPR data are extracted to profile user behavior and device interactions
in order to detect and visualize anomalous activities. The system is able to detect 144 anomalous behaviors
in an unlabeled dataset of 1,007,727 audit logs. This includes 0.66% of the users on the system, 0.17% of
patient record accesses, 0.74% of routine accesses, and 0.53% of the devices used in a specialist Liverpool
(U.K.) hospital.

INDEX TERMS Data analysis, electronic patient records, healthcare infrastructures, information security,
patient privacy, visualisation.

I. INTRODUCTION
The health sector consistently receives the highest number of
reported data security incidents [1], as the EPR data within
represents some of the most sensitive and valuable data
available. At the time of writing this paper, patient privacy
within EPR systems is typically enforced through corrective
mechanisms, managed through role-based access [2]. How-
ever, once a user has been authenticated, they are essentially
afforded unhindered access. The wealth of personal informa-
tion held is intrinsically valuable on the black market, often
used for committing identity fraud.

There is also a tendency for organisational complacency
within healthcare towards patient privacy violations [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Bo Jin.

Recent attacks, such as the WannaCry campaign [4], have
further reduced the levels of public trust in security leading to
widespread concern about the health sector’s ability to main-
tain the privacy of patient data. Bell-LaPadula [5], and Fair-
Warning [6], are the staple access control systems employed
but are i) inflexible, presenting issues when considering the
dynamic boundaries of many modern healthcare networks
and ii) do not compensate for an attacker who has acquired
the logon credentials of an approved clinician (e.g. through
phishing or social engineering). This has been a challenge
for security experts for many years, referred to as a plain
recognition problem [7], Information Security Officers and
IT Managers need to interpret disparate data behaviours to
preserve privacy and safeguard EPR data [8]. They constantly
balance privacy with a need for more intuitive security solu-
tions. Therefore, confidentiality and patient privacy within
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EPR systems is typically managed through an agreed and
signed code of practice between the organisation and its
users [9].

Patients need to be assured of three crucial security princi-
ples 1) the data stored is trustworthy and accurate. 2) Data
can be reliably accessed by healthcare professionals when
needed. 3) Only authorised healthcare professionals have
access to the data, and only access it when it is appropri-
ate to do so. Issues also surround data being exchanged
across multiple countries that have different laws and regula-
tions concerning data traversal, protection requirements, and
privacy laws.

TheUK, specifically, is a significant contributor to data pri-
vacy and cyber security research with the establishment of 14
cyber-security Centres of Excellence from 2011 to 2017 [10],
in addition to the formation of the Malvern Cyber Security
Cluster in 2011 [11] and the North West Cyber Security
Cluster in 2014 [12], as examples. The UK government does
invest into cyber-security schemes, such as the £1.9billion
investment into the national cyber security strategy, aiming to
make the UK one of the safest places in the world to do busi-
ness [13]. Yet within healthcare infrastructure, privacy and
security are still seen as a secondary consideration, though
the importance to establish data access regulations is immi-
nent due to the geographical requirements for healthcare data
being stored. Compliance with NHS guidelines, the Informa-
tion Governance Toolkit, internal audit processes and infor-
mation security standards (e.g. ISO27001 and ISO27002) is
an additional concern to adhere to.

The research presented in this paper demonstrates a system
that utilises density-based outlier detection techniques and
an advanced visualisation approach to safeguard patient pri-
vacywithin EPR systems. Density-based outlier detection can
identify when a user’s behaviour has changed, by comparing
behaviours, such as the type of actions being taken and the
patients they are viewing. In this way, potentially illegitimate
access to patient records can be highlighted and investigated.

The remainder of this paper is as follows. Section II
presents background research on patient privacy within EPR
systems, the complexity of EPR data and the network struc-
tures in a typical UK hospital. Section III outlines themethod-
ology and systematic approach. Section IV discusses our
results and a case study. Section V outlines our conclusions
and the future work to be done.

II. BACKGROUND
Machine learning algorithms observe and learn data patterns
and profile users’ behaviour, which can then be denoted.
Combined with cloud infrastructure and data visualisation,
the way large datasets are understood is being transformed,
allowing extraction of otherwise unobtainable meaning from
vast quantities of information. This is now a proven approach
for detecting zero day attacks and uncovering unknown
threats [14]. There is a large volume of literature con-
cerning big-data-based privacy-preserving machine learning
algorithms. Genetics-based machine learning (GBML) [15],

clustering fuzzy rule-based classifiers [16] and Linear Sup-
port Vector Machines (SVMs) [17] are examples of the gen-
eral conventional means of choice for researchers. Further
to this, DarkTrace [18], based in the UK, is among the
world’s most advanced machine learning technologies for
cyber defence and an advocate for using AI for safeguarding
critical systems. Their Enterprise Immune System demon-
strates the effectiveness of switching the security perimeter
from an external ‘wall’ to an internal-facing adaptive model
to improve security systems, threat detection and enhances
the levels of data privacy.

DarkTrace is testament to the fact that cyber-security tech-
niques are trending towards the use of reactive/proactive
systems rather than passive detection in order to deter attacks.
Machine learning and data visualisation techniques are the
technique of choice for establishing this security evolution.
The concept is that security systems should respond to
unknown intrusions, much like an organic-immune system.

A. HOSPITAL NETWORKS
Introducing complexmachine learning algorithms to interpret
patterns of behaviour in hospital networks is a consider-
able challenge. With healthcare networks, devices (medi-
cal, clinical and personal) are connected to global networks
for convenient access using platforms, such as HomeLinks.
Typically, modern healthcare networks are overly complex
systems, with hospitals having their own unique structure.
As an example, Figure 1 displays the data connections for
the Active Directory Domain Controller (DC), Electronic
Prescribing (EP) and Patient Administration System (PAS)
at a Liverpool-based hospital.

FIGURE 1. Data connections for DC, EP and PAS systems at a Liverpool
(UK) specialist hospital depicted by the Yifan Hu algorithm.

In Figure 1, a layout algorithm displays the data con-
nections for DC, EP and PAS within a Liverpool Hospital
network, demonstrating the complexity of the network data
being analysed existing security applications (such as the
IDS). In this case theYifanHu algorithm [19] is used tomodel
the data connections. This is an approach typically used
to present network data movement [20]. However, the data
collected is only a snapshot of the network infrastructure
using the network statistics (netstat) command-line in order
to capture incoming and outgoing Transmission Control Pro-
tocol (TCP) Data. The DC data comprises 590 established
connections of 5688 total ports. The EP data comprises
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TABLE 1. EPR audit sample data.

18 established connections of 88 total ports. The PAS data
comprises 93 established connections of 173 total ports. The
level of nodes and connectivity patterns demonstrate the
challenge involved for data auditing and uncovering zero-day
attacks, network weakness/flaws and emerging threats. The
problem of enabling non-expert users to trust that the systems
they use are secure when they do not have the technical
capability to assess it themselves is not an easy problem to
solve.

B. EPR DATA IN HOSPITAL NETWORKS
A sample of EPR data is presented in Table 1. The full dataset
contains 1,007,727 rows of audit logs.

The data used in this research is from a specialist hospital.
A large teaching hospital would have approximately 4 times
the number of staff and would therefore have a proportional
increase in data quantity. The task of navigating this data for
anomalous activity is therefore considerable.

The dataset presented consists of the following fields.
1) Date & Time: The date/time the patient record was
accessed; 2) Device (Tokenised): The name of the device
the patient record was accessed on; 3) User ID (Tokenised):
A tokenised representation of the User who accessed the
patient record; 4) Routine: The routine performed whilst
accessing the patient record (was the record updated, was a
letter printed etc.); 5) Patient ID (Tokenised): A tokenised rep-
resentation of the patient record that was accessed; 6) Dura-
tion: The number of seconds the patient record is accessed for
(this number counts for as long as the record is on the screen,
so may not always be an accurate reflection of how long the
User was actively interacting with the data); 7) Latest Adm
Date: The date the patient is last admitted to the hospital and
8) Latest Dis Date: The date the patient is last discharged from
the hospital.

From datasets such as this, usage patterns of the data access
can be derived. For example, Figure 2 displays a comparison
of the durations of routine activity for each user. The graph
is extracted from a dataset of 1,515 unique User IDs and
72,878 unique Patient IDs. The visualisation is constructed
using a logarithmic algorithm, outlined in (6).

f (x) = logb (x) (1)

FIGURE 2. Heat-maps (logarithmic) comparing 1million rows of ID data to
the duration of the patient record access.

where the base b logarithm of x is equal to f (x). In this sense,
a logarithmic heat-map is appropriate as the log scales enable
a significant range of coefficients to be displayed.

Lower-scale values are not compressed down into the con-
gested section of the graph where the unique values would be
challenging to identify.

The graph shows a consistent point density of up to
47,341 patient records in the first row of thematrix, indicating
that the majority of patient records are only accessed for
fewer than 300 seconds (5 minutes). This would represent
normal (expected) behaviour within the hospital (as revealed
in consultation with the hospital). Whereas, 6 clusters (A-F)
require investigation, as they represent users performing rou-
tines for over 16,000 seconds (4.44 hours), which would be
classed as abnormal (unexpected) behaviour. This observa-
tion was identified by the Information Security Manager at
the hospital that provided the dataset.

Representing the data as a logarithmic heat-map is a clear
approach for identifying data points of interest. However,
the density of the dataset prohibits valuable insights from
being derived, and a real-time graph would be inefficient.
The quantity of data prohibits all the data points from being
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visualised. In the following section, data normalisation, fea-
ture extraction and machine learning algorithms are applied
to the dataset to detect abnormal EPR access. Once the dataset
has been administered by these algorithms, visualisation tech-
niques are applied. In doing so, the situational awareness of
a patient privacy officer is enhanced.

III. METHODOLOGY
The research is timely due to i) a fundamental switch in
the technology being used by beneficiaries within health
care infrastructures; [21] ii) the increased need for 24-hour
data access; iii) GPs increasingly using Virtual Private Net-
works (VPN) and 3G connections; iv) Most UK hospi-
tals have/are upgrading online EMIS-web, EMIS Health is
used by over half of GP practices across the country and
EMIS-Web allows hospitals access to primary care, sec-
ondary care and mental health data vi) more patient remote
monitoring is taking security outside hospitals. Such trends
reduce security levels and increases access to hospital net-
works and exposed APIs.

The contribution of this research, (the novelty is further
outlined in [4] and [22]) involves the use of Local Outlier
Factor (LOF)-based data analytics techniques, an analyst-in-
the-loop and visualisation to safeguard EPR data. The system
provides contextual awareness to detect anomalous behaviour
within EPR audit activity, using the following multi-stage
process:

A. DATA PRE-PROCESSING
In order to provide ameaningful visualisation, the dataset first
undertakes a pre-processing phase. The audit data is stored by
the EPR and captures every user interaction. Data is extracted
into comma separated values format and stored in a database.

1) FEATURE EXTRACTION
Features of the EPR audit data are extracted for the LOF
classification process. During the pre-processing stage, a sta-
tistical features based approach is implemented [23]. Four
measures of central tendency’ are calculated through the
Frequency, Mean, Median and Mode feature extraction pro-
cess. Five measures of variability are calculated through
the Standard Deviation, Minimum, Maximum, 1st Quartile
and 3rd Quartile features. Finally, two measures of position
are calculated through the 5th Percentile and 95th Percentile
features.

The resulting eleven features are extracted from the
dataset for each ID (User, Patient, Device and Routine).
Table 2 displays the features selected, with an accompanying
description.

The mean (µ) is calculated using the equation outlined
in (7).

µ =
1
m

m∑
i=1

xi (2)

TABLE 2. Dataset feature names and descriptions.

From this, the standard deviation (σ ) is calculated using
the equation outlined in (8):

σ =

√√√√ 1
m

m∑
i=1

(xi − µ)2 (3)

The remaining frequency, mode, median, minimum, max-
imum, 5th percentile, 95th percentile, 1st quartile and 3rd

quartile are calculated using sort functions. For example,
the mode employs the computation outlined in the following
pseudo code (9).

X = sort(x);

indices = find(diff ([X; realmax]) > 0);

[modeL, i] = max(diff ([0; indices]));

mode = X (indices(i)); (4)

2) DATA CLEANSING
Once the features are extracted, missing or null values (repre-
sented by an N/A in the dataset) are replaced with a 0 then the
Median value for that feature class. However, within the raw
EPR dataset used in this research, no null values are present.

3) FEATURE SCALING
At this stage of the pre-processing, an example of the pre-
scaled features dataset is displayed in Table 3. In order to
ensure the data conforms to a common scale for the classi-
fication, the features are scaled.

The Min-Max approach scales the data to a fixed range,
between 0-1. The normalised value is obtained using the
method outlined in (10) and presented in Figure 3(a).

MM (xij) =
xij − xmin
xmax − xmin

(5)

Having a bounded range results in lower standard devia-
tions and suppresses the effect of outliers. Decimal scaling
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TABLE 3. LOF (Mean) anomaly scores for user ID.

FIGURE 3. (a) Min-Max scaling (b) Z-score normalisation.

normalises bymoving the decimal point of values of featurex.
Therefore, a DS(x) value is obtained using the method out-
lined in (11).

DS(xij) =
xij
10c

(6)

where max[\(DS
(
Xij
)
)\] < 1 and c is the smallest integer.

The Z-score normalisation approach rescales features so that
they have the properties of a standard normalisation. The
Z-score approach scales the data to a standard normal dis-
tribution. The scaled value is obtained using the method
outlined in (12) and presented in Figure 3(b).

xij = Z (xij) =
xij − x j
σj

(7)

where x j and σj are the sample mean and standard deviation
of the jth attribute respectively [24].

B. MACHINE LEARNING
Typically, for the analytic process a machine learning
approach is considered. Machine learning emphasises the
design of self-monitoring systems, which self-diagnose
and self-repair [24]. The technique is commonly used in
web search algorithms, spam filters, recommender sys-
tems, ad placement, credit scoring, fraud detection, stock
trading, drug design and a number of other real-world
applications [25].

Machine learning techniques principally consist of com-
binations of three components, Representation, Evaluation
and Optimisation [25] where the data is modelled as a set of

variables [26]. The following metrics are employed, a par-
ticular task T , a performance metric P, and a type of expe-
rience E . If a system reliably improves its performance P at
task T , following experience E , then it can be said to have
‘learned’ [24].

LOCAL OUTLIER FACTOR
The system employs a density-based Local Outlier Factor
algorithm. The Local Outlier Factor (LOF) process involves
five stages [27]:

i) k-distance computation: The Euclidian distance of the
k-th nearest object from an object p is calculated and defined
as k-distance, where parameter k is the number of nearest
neighbours.

ii) k-nearest neighbour set construction for p: Set kNN(p)
is constructed by objects within k-distance from p.

iii) A reachability distance computation forp:Reachability
distanceof p to an object o in kNN(p) is defined as follows:

reach− distk(p, o) = max{k − distance(o), d(p, o)} (8)

where d(p,o) is Euclidian distance of p to o.
iv) lrd computation for p: Local reachability density (lrd)

of p, defined as follows:

lrdk (p) =
k∑

0∈kNN (p) reach− distk(p, o)
(9)

v) LOF computation for p: LOF of p is computed defined
as follows:

LOF(p) =
1
k

∑
o∈kNN (p) lrdk (o)

lrdk (p)
(10)

The LOF process exposes anomalous data points by mea-
suring the local deviation. In other words, patterns in data that
do not conform to the expected behaviour are revealed. In the
case of EPR data, employing a LOF process is effective in that
it recognises points, which are outliers from similar/related
points in one area of the dataset. Therefore, the algorithm
is particularly applicable to a dataset, where multiple job
types/roles are present. It considers the relative density of
points and can detect data in biased datasets. This means
that it is advantageous over proximity-based clustering. LOF
employs the relative-density of a coefficient against its neigh-
bours as the indicator of the degree of the object being an
outlier [28].

If a global outlier is employed, the detection of irregular
behaviours would not be possible without correlating the
different hospital roles (as demonstrated in Table 1) with each
other, adding an extra stage to the detection process – one
which might not be possible. This is due to the process that a
global outlier detection process undertakes in identifying data
points that are far from other points in the dataset.

C. FEATURE TESTING
Given the mean expressed in (7), the scatter matrix is the
m-by-m positive semi-definite matrix. Where T denotes
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FIGURE 4. (a) Scatter Matrix of extracted features for UserID, (b) Scatter Matrix of extracted features for DeviceID,
(c) Scatter Matrix of extracted features for PatientID, (d) Scatter Matrix of extracted features for Routine.

matrix transpose, and multiplication is with regards to the
outer product [29], as expressed in (16).

S =
m∑
i=1

(xi − µ) (xi − µ)T =
m∑
i=1

(xi − µ)⊗ (xi − µ)T

=

(
m∑
i=1

xixTi

)
− mµµT (11)

The scatter matrix, displayed in Figure 4 (all features have
been abbreviated in the graph labels) visualises the relation-
ship between the features to predict the most appropriate for
the LOF classification.

The scatter matrix displays the positive and negative cor-
relation between the features. In this case, from the visual
inspection, the majority of features have a positive correla-
tion. However, based on Figure 4, the consideration would
be to remove the feature Frequency for each Unique Identi-
fier (FUID) for the UserID, Routine and Device Interaction
classification but retain it for PatientID.

Referring to the Routine and Device Interaction, the data
collected relates predominately to unique routine combina-
tions, so logically the FUID feature is less significant, as con-
firmed by the scatter matrix.

IV. EXPERIMENT AND RESULTS
A case study of actual EPR audit data is presented as an
evaluation of the system methodology. This rich dataset con-
tains 1,007,727 rows of audit logs of every user and their
EPR activity in a single UK specialist hospital over a period
of 18 months (28-02-16 – 21-08-17). The dataset contains
four distinct ID types, User, Patient, Device and Routine.
Each User ID, Patient ID and Device ID is tokenised by
isolating the unique entries and assigning each value an
incrementing number. This is done to anonymise the dataset.
The Routine ID was not tokenised as it denotes the tasks
performed by the User on the EPR for the interaction. For
example, in the first row of Table 1, User 865 accesses
the ‘Pharmacy Orders’ function of the EPR on Patient
58991 whilst using Device 362.
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For every value of each of the four IDs, a LOF anomaly
score was calculated. The LOF anomaly score measures the
local deviation of density through determining how isolated
the value given by k-nearest neighbours (k is set to 5). A LOF
anomaly score of 1 indicates that an object is comparable
to its neighbours and represents an inlier. A value below
1 indicates a dense region, and would therefore also be an
inlier. A value significantly above 1 therefore indicates an
outlier (anomaly). As all values within the range 0-1 are
classified as inliers, values within the range 1-2 were also
classified as inliers. Any value above 2 was considered to
indicate an outlier for the purposes of this experiment.

TABLE 4. LOF (Mean) anomaly scores for patient ID.

A LOF anomaly score is calculated by taking the number
of variants according to the mathematical combination and
is calculated using the equation in (17). As there are ten
features, 45 LOF scores are calculated to account for all the
feature combinations for every ID in the dataset. There are
90,385 unique IDs in the dataset in total (for user, patient,
device and routine combined), and a LOF score is calculated
for the 45 combinations (of the 10 features) for each of
the unique IDs in the dataset. Therefore 4,067,325 unique
LOF scores are calculated in total. Data cleaning is then
performed on the LOF scores in order to convert the ‘NaN’
and ‘Inf’ values. A NaN value indicates that a point has
many neighbours in the same location, therefore the ratio
of densities is undefined, and the points are not outliers.
An Inf value occurs when a point is next to several identical
points, but is not itself a member of that cluster, they are
therefore ‘infinite’ and can be classified as anomalous. The
NaN values are therefore assigned a value of 1, to indicate
it is not anomalous, and the Inf values are assigned a value
of 2, to indicate they are anomalous. The mean LOF scores
for each ID is then calculated and the highest anomaly scores
are presented in Table 3 and 4.(n

k

)
=
n (n− 1) . . . (n− k + 1)

k (k − 1) . . . 1
(12)

A. USER, PATIENT AND DEVICE ID
There are 1,515 unique User IDs, 72,878 unique Patient IDs
and 2,270 unique Devices within the dataset. In Table 3, 4,
and 5 LOF identifies anomalous User IDs, Patient IDs and
Device IDs. The neighbourhood radius is defined in stage 3 of
the LOF algorithm (Section B, 1), the density score is defined

TABLE 5. LOF (Mean) anomaly scores for device ID.

in stage 4, and the anomaly score is the final LOF value,
as defined in stage 5.

Within the User ID range, the most notable ID is #685,
with an anomaly score of 4.36. There are 10 User IDs with
an anomaly score above 2. Therefore LOF has indicated that
0.66% of the User IDs are anomalous.

Similarly, the most notable Patient ID is #35888, with an
anomaly score of 9.41. There are 122 Patient IDs with an
anomaly score above 2, indicating 0.17% of the Patient IDs
are anomalous.

Finally, the most notable Device ID is #2258, with an
anomaly score of 4.86. There are 12 Device IDs with an
anomaly score above 2, indicating that 0.53% of the Device
IDs are irregular. Overall therefore, LOF identifies 0.45% of
IDs as anomalous, which would be highlighted to a patient
privacy officer for investigation.

Examples of audit log data classified as inlier, outlier and
abnormal data for User ID is presented in Table 6. Audit
log data classified as an inlier within the dense region (<1)
is User ID 571, with a LOF score of 0.95. Audit log data
classified as an outlier within the normal region (>1 and<2)
is User ID 1486, with a LOF score of 1.12. Audit log data
classified as an outlier within the abnormal region (>2) is
User ID 707, with a LOF score of 2.28.

The results presented here demonstrate a technique for
uncovering anomalous or irregular behavioural patterns from
a complex dataset that would otherwise not be possible from
either a visual inspection/visualisation of the whole dataset
(such as the heatmap presented in Figure 2).

B. ROUTINE ID
However, the LOF technique cannot be applied as effectively
to the Routine ID. Table 7 presents a sample of the highest
LOF anomaly scores for the Routine ID dataset.

The EPR audit logs calculate a string of routines performed
on the same patient as a unique Routine ID. The differing
routines are delimited with a pipe (|). Therefore there are
13,722 Routine IDs in the dataset, whereas there are more
accurately approximately 100 unique routines a user could
perform.

There are 102 routine sets with an anomaly score above 2.
Therefore LOF has indicated that 0.74% of the routine sets
are anomalous. The most notable routine set is the com-
bination ‘Assessment Forms | Maternity Data | Care-Area
Administrative Data | Admissions Demographic Data’, with
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TABLE 6. EPR audit log data examples for inlier, outlier and abnormal data points for user ID.

TABLE 7. LOF (Mean) anomaly scores for routine ID.

FIGURE 5. (a) Scattergraph of LOF results for UserID, (b) Scattergraph of LOF results for DeviceID, (c) Scattergraph of LOF results for PatientID,
(d) Scattergraph of LOF results for Routine.

an anomaly score of 13.34. This specific routine combination
only occurs twice in the audit logs of over 1,000,000 rows.
However, in order for the LOF scores for routine to be of
value, each routine (rather than the routine combination)
would need to be calculated. Unfortunately, this cannot be
differentiated within the dataset. For example, if the LOF
scores for each routine are calculated individually (rather than
as a routine set), such as ‘Assessment Forms’ and ‘Maternity
Data’, then these values can be compared with other instances
of that routine, to determine whether certain log accesses

are anomalous. However, as these cannot be separated within
the combinations of routines, then an informative LOF score
cannot be determined for Routine ID.

C. VISUALISATION OF RESULTS
A visualisation of the LOF results for each ID is presented
in Figure 5.

Through visualising the anomalies in this way, outliers can
be highlighted to an analyst for scrutiny. In our visualisa-
tion engine, outliers in the top quarter of each ID range are
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highlighted as red, to be investigated as a priority. Outliers in
the 3rd quarter appear orange, and outliers in the 2nd quarter
appear yellow. This creates an interactive live task list for
the analyst, with an anomaly priority ordering. Clicking on
a point displays the ID number, which allows the analyst to
investigate the activity associated with the ID. The display
updates when new data is input and new LOF scores are
calculated, providing a current view of anomalous EPR activ-
ity within a hospital. Activity such as insider threats (a staff
member misusing their access privileges), or external threats
(such as credentials accessed through social engineering and
utilised for data exfiltration), can be investigated. In this
way, the system provides situational awareness to aid patient
privacy officers to monitor for malicious or unusual activity
proactively.

V. CONCLUSION AND FUTURE WORK
The far-reaching consequences of this work are illustrated
with a prediction: This research project will increase the
situational awareness of data flow and actively address this
issue of data misuse. Machine learning algorithms have the
capability to observe and learn patterns of data and profile
users’ behaviour, which can then be represented visually.
The far reaching consequences of this work will result in
the development of a system that can be used by healthcare
practitioners to increase the protection of their EPR records.
This will make the UK, not only one of the safest places to
conduct business, but also one of the securest in protecting
patient privacy in healthcare systems.

Future Work will involve normalising the data further with
a case study of the routine ‘Pharmacy Orders’. This routine
accounts for approximately 21.27% of the actions performed
on the EPR. It is therefore possible to use this as a case
study to understand user roles within the dataset and compare
similar actions, in order to identify anomalous behaviours.
Factors other than solely the duration of the routine (such
as the date and time an action is performed) will be con-
sidered. Additionally, a quantitative model-based approach
that takes into account the duration and the sequence of
events during the interaction of the user with the EPR will be
explored.

The features discussed in the paper compare every activity
performed associated with each ID, but without detail. For
example, for each User it compares the duration of all actions
performed for that user. This can broadly identify anomalous
behaviour, but for a more nuanced approach, other factors
can be taken into consideration. For example how long a
user typically spends performing a certain task, or accesses a
specific device, or with a particular patient. By calculating the
local outlier factor for these behaviours, and assigning each
a weighted score, these can be factored together to provide
data-driven insight of potential EPR misuse. Additionally,
currently inputting new data to calculate their LOF values is
a manual process and not in real-time. This will be explored
further with an aim to automate this and improve update
efficiency within the big data context of EPR audit logs.

Future work will also incorporate game theory through
the use of an interactive visualisation. The vision is that the
operator interacts with and manipulates the visualisation in
order to set their own data parameters. This increases their
situational awareness of the data flow within the healthcare
infrastructure. Additionally, The Theory of Gamified Learn-
ing infers that gamification can positively affect learning and
decision making through a more direct mediating process and
a less direct moderating process [30]. Firstly, gamification
affects learning via mediation when a user’s behaviour is
encouraged in such a way that it itself improves learning out-
comes, such as a fitness app [31]. The theory therefore medi-
ates the relationship between game elements and learning.
Secondly, gamification affects learning via moderation when
pre-existing information is improved through strengthening
the relationship between instructional design quality and out-
comes [32]. For the moderation theory, the moderator does
not influence the outcome construct independently of the
causal construct, therefore the pre-existing information must
be of high quality, or the addition of gamification techniques
would be of no benefit. Through the use of visualisation
techniques to enhance the results of the local outlier factor
results, gamification moderation theory is implemented.

Supervised learning techniques will be implemented to
compliment the unsupervised LOF scores. Access to labelled
data for EPR audit logs is often not available or comprehen-
sive. However, through displaying LOF results to an analyst,
upon investigation the analyst can label the data as legitimate
or illegitimate. Through this process, the combined use of
unsupervised and supervised machine learning algorithms
results in a semi-supervised approach to the challenge of
detecting EPR misuse. Additionally, once semi-supervised
techniques are employed, the accuracy of the algorithms in
detecting outliers can be quantified through feedback from
analysts.
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