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ABSTRACT In this paper, an improved brain storm optimization (BSO) algorithm is proposed to solve the
optimization problem in a hybrid renewable energy system. The objective of the proposed algorithm is the
minimization of the annualized costs of the system (ACS), the loss of power supply probability (LPSP), and
the total fuel emissions. In the proposed algorithm, first, the K-Means clustering method is embedded to
make the same clusters have similar solutions. Then, the distance of a city block is taken as the distance
measure, which makes the solution feasible. Then, to measure the merits and demerits of each individual,
the composite index is utilized as the fitness value. In addition, to improve the efficiency of the algorithm,
a pair of crossover andmutation strategies are designed in detail. Finally, a set of realistic instances are used to
test the performance of the proposed algorithm, and after detailed experimental comparisons, the competitive
performance of the proposed algorithm is verified.

INDEX TERMS Brain storm optimization, city block distance, K-Means method, hybrid renewable energy
system.

I. INTRODUCTION
During recent years, energy issues have become an increas-
ingly important factor for economic and social development.
As a result, researchers are looking for renewable clean
energy, such as wind, solar, biomass, and tidal energy [1],
to replace traditional fossil fuels. However, some renewable
energies are susceptible to local weather and climate charac-
teristics and are disadvantageous and unstable [2]. A hybrid
renewable energy system (HRES) can effectively improve
the reliability of the power supply system, reduce the power
generation costs, and overcome the instability of a single
energy form by combining different forms of renewable
energy [3]–[6], therefore improving the overall efficiency of
the system [5], [6]. Fig. 1 presents a block diagram of a
hybrid wind/photovoltaic (PV)/diesel system. It can be seen
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from Fig. 1 that the various components of the HRES system
should be optimized, and the performance of the hybrid sys-
tem will be directly affected by the optimization results [7].

The linear programming method was first used in the
optimization design of the HRES [8]–[10]. To consider the
optimization problem with a single objective, Kuznia et al.
proposed a random mixed integer programming model for
the design of a hybrid power generation system, which
includes a fan, an energy storage device, a transmission
network, and components such as thermal generators [11].
Akella et al. constructed a linear programming model to
optimize the design of a hybrid energy system consisting
of small hydroelectric generators, photovoltaic panels, fans
and biomass [12]. To consider two or more objectives, such
as the system reliability and emissions indicators, Kaabeche
et al. proposed an iterative optimization technique to optimize
the reliability and costs of a landscape hybrid system [13].
Ashok et al. used the quasi-Newton method to find the best
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FIGURE 1. Block diagram of a hybrid wind/PV/diesel system.

combination of components in a wind-light-water-storage
system, which maximizes the system reliability and mini-
mizes the costs [14]–[17].

With the rapid development of multi-objective evolution-
ary algorithms, many researchers have proposed a series of
methods for multi-objective problems. Katsigiannis et al.
proposed a two-objective optimization model and used the
non-dominated sorting genetic algorithm (NSGA-II) to opti-
mize the Pareto frontier for the optimal allocation of hybrid
energy systems with the goal of minimizing the total sys-
tem costs and greenhouse gas emissions during the life
cycle [18]. Bilil et al. used a penalty factor to constrain the
resulting imbalance between renewable energy and demand
and ensure system reliability, where the two objectives
of the system costs and reliability were minimized [19].
Hakimi and Tafreshi used particle swarm optimization (PSO)
to determine the number of system components and mini-
mize the total costs while ensuring that the energy require-
ments are met [20]. Borhanazad et al. used a multi-objective
PSO method and a weighting method to optimize a hybrid
system with wind and light energy with the goal of mini-
mizing the unit energy costs and the missing power supply
rate [21]. Kamjoo et al. considered the uncertainty of renew-
able energy [22]. Wang et al. proposed a multi-objective
combinatorial optimization model [23]. Abedi et al. estab-
lished a multi-objective optimization model that minimized
the total costs, failures of meeting load requirements and pol-
lutant emissions [24]. Bilal et al. developed a multi-objective
genetic algorithm [25]. Shi et al. minimized the annual costs
of the system, the fuel emissions and the loss rate of the power
supply [26]. Other types of meta-heuristics for solving the
HRES can be found in [11], [27].

During recent years, many types of meta-heuristics have
been developed to solve realistic optimization problems, such
as the artificial bee colony (ABC), teaching-learning-based
optimization (TLBO), invasive weed optimization (IWO),
particle swarm optimization (PSO), Fruit Fly Optimiza-
tion Algorithm (FOA), and brain storming algorithm (BSO).
Many researchers have applied the ABC algorithm to
solve the distributed flow shop problem [28], [29], crowd

evacuations in buildings [30], steelmaking scheduling
problems [31], the flexible job-shop scheduling prob-
lem [32]–[34], the large-scale hybrid flow shop scheduling
problem with limited buffers [35], cooperative co-evolution
based on hierarchical communication model [36], the hybrid
flexible flowshop problem [37], and the distributed flow
shop problem [38]–[43]. Other types of scheduling problems,
including flexible job shop scheduling and vehicle routing
problems, have also been solved by the classical optimization
algorithms, such as genetic algorithm, shuffled frog-leaping
algorithm, and the tabu search algorithm [44]–[49]. The
TLBO has also been recently developed and applied to solve
many types of problems, such as chiller loading optimization
problems [50] and realistic flowshop rescheduling prob-
lems [51]. The IWO has been applied to solve chiller loading
optimization problems [52], [53] and lot-streaming flowshop
scheduling problems [54], [55]. The PSO has been applied
to solve permutation flow shop scheduling problem [56].
The FOA has successfully used to solve the Realistic Hybrid
Flowshop Rescheduling Problem [57], [58] and continuous
function optimization problems [59]. Other optimization
algorithms [60], such as the harmony search (HS) algo-
rithm [61], and the artificial fish swarm algorithm
(AFS) [62], have also been researched. In addition,
multi-objective optimization algorithms have also been
developed. The typical applications of the multi-objective
optimization algorithms including theMOEA/Dmethod [63],
the dynamic decomposition method [64], the cognitive-radio-
based Internet of Things [65], the hybrid flow shop prob-
lems [66], the financial loss problems [67], the rescheduling
congestion management problems [68], the multi-attribute
group decision problems [69], the stochastic nonlinear sys-
tems [70], the flexible job shop problems [71], the lot-
streaming flow shop problems [72], the blocking flow shop
problems [73]–[74], and other applications [75–84]. The
BSO algorithm was proposed in 2011, and it simulates a kind
of collective brainstorming behavior. The BSO algorithm has
been used to solve many practical application including con-
tinuous optimization problems and other types of scheduling
problems [85]–[87]. The BSO has been verified to be an
efficient algorithms, especially for the realistic application.

In this paper, to solve the optimization problems in a hybrid
and renewable energy system, we develop an improved
BSO algorithm. The remainder of this paper is organized
as follows. Section II briefly describes the components of
the model of the mixed renewable energy system. Then,
Section III illustrates the problem description and optimiza-
tion objectives. Section IV presents the related algorithm and
the proposed algorithm is detailed in Section V. Experimental
comparisons and analyses are given in Section VI. Finally,
Section VII concludes by presenting the contributions and
plans for future works.

II. MODELING THE HRES
This section describes the various components of a hybrid
renewable energy system.
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FIGURE 2. Solar photovoltaic panels irradiate sunlight.

A. MODELING THE PHOTOVOLTAIC SYSTEM
The mathematical model of photovoltaic power generation
often only considers the light intensity and the ambient tem-
perature as variables [17]. The inclination of the photovoltaic
panel to the position of the sun’s illumination affects the
output power of the photovoltaic panel, and therefore, the tilt
angle of the photovoltaic panel is an important decision
variable in the system. The photovoltaic panels and solar
radiation components are shown in Fig. 2.

δ = θ × sin(360◦ ×
284+ n
365

) (1)

sinh = sinϕ sin δ + cosϕ cos δ cos τ (2)

τ =
360
24

(12− lt) (3)

The incident radiated solar energy on an inclined photovoltaic
plate is calculated by equation 1. First of all, it is necessary
to calculate the solar declination angle δ and the solar height
angle h. The declination angle is the angle between the equa-
torial plane of the earth and the center line of the earth and the
sun; the solar height angle is the angle between the incident
direction of the sun and the horizontal ground. Where θ is the
inclination of the earth’s axis to the earth’s orbital plane, n is
the number of days in one year when January 1st is recorded
as one, ϕ is the geographical latitude, τ is the angle of the
earth’s rotation every hour, and lt is the local time.

Gi =
Gg
sinh

(4)

Gp = Gi sin(σ + β) (5)

Then the incident radiation Gi on the inclined photovoltaic
plate is calculated, and Gg is the horizontal component of
solar radiation. The operational component Gp of solar radi-
ation perpendicular to the inclined surface is calculated. The
maximum output power of the photovoltaic plate at time t ,
taking into account the surrounding temperature effect, which
can be reflected in the following formula.

TC (t) = TA(t)+
NOCT − 20

800
Gp(t, β) (6)

ISC (t) = [IS + KI (TC (t)− 25)]
GP(t, β)
1000

(7)

VOC (t) = VO − KV · TC (t) (8)

PM (t, β) = NS · NP · VOC (t) · ISC (t, β) · FF(t) (9)

FIGURE 3. Wind turbine output power.

TC (t) is the temperature of the photovoltaic panel at time t,
and TA(t) is the temperature of the surrounding environ-
ment of the t-time system. NCOT (Nominal Cell Operat-
ing Temperature) indicates the rated operating temperature
of the battery with the data supplied by the manufacturer.
IS and VO are the short-circuit current and open-circuit
voltage of photovoltaic cells under standard test conditions.
KI and KV are the corresponding temperature coefficients,
respectively. PM (t, β) is the resulting power of a photovoltaic
array consisting of NS series and NP parallel photovoltaic
panels. FF(t) is a filling factor, which is linked to the proper-
ties of photovoltaic cells.

B. MODELING THE WIND TURBINE
The rated output power of the wind power is set to match the
specific rated wind speed. Since the energy is proportional to
the cube of the wind speed, the power of the wind turbine
varies with the wind speed. The description of the fan is
shown as below.

When the actual wind speed is lower than the cut-in wind
speed of the fan, and the output power of the fan is less than
the loss of the system, then the fan is in a shutdown state.
The output power of the fan increases to the third power
of the wind speed until the rated wind speed is reached,
when the wind speed is higher than the cut-in wind speed.
When the wind speeds is higher than the rated wind speed
and lower than the cut-out wind speed, it is necessary to take
appropriate measures to limit the output power of the fan. The
fan must stop to ensure the safety of the system, when the
wind speed exceeds the cut-out wind speed.

The model formula for wind power generation is as
follows:

P =


0, v<Vci
1/2CpMAv3, Vci < v < Vr
PR, Vr < v < Vco
0, v > Vco

(10)

The wind speed v at each time is the input to the model.
Cp is the performance coefficient of the fan, which is the
output power of a fan divided by the maximum wind power.
M is the air density, A is the area swept by the rotor, and
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PR is the rated power of the fan. Vci is the cut-in speed of
the fan which is set as 4 m/s, the rated wind speed Vr is set to
be 14 m/s, and the cut-out wind speed Vco is set as 20m/s.
The wind speed varies with the height of the tower, which

results in a different model.
The following model is utilized:

v = vh(
Hwg
Hr

)x (11)

where v is the wind speed, Hwg is the fan height, vh is the
wind speed measured by the reference height Hr , and x is the
exponential law coefficient.

C. MODELING THE BATTERY
A battery pack is used to store excess energy.When the power
generation cannot satisfy the load requirements, the battery
pack can be used to fulfill the load requirements. Most battery
models take into account the state of charge (SOC), which
should remain within the maximum and minimum values that
are given by the manufacturer to ensure battery pack safety.

The SOC of the battery pack is based on the relationship
between the renewable energy generation and the load power
demand. The SOC of the battery pack at each simulation time
step can be calculated by the following:

SOC(t + 1) = SOC(t)+
(Pbat (t)/Vbus) · 4t · ηbat

Cn
(12)

where Pbat (t) is the input/output power of the battery;
Vbus is the DC (Direct Current) bus voltage;1t is the simula-
tion time step, whose value is 1 hour; ηbat is the bidirectional
charge-discharge efficiency, considered 80% in the process of
charging and 100% for the duration of discharging; and Cn is
the total rated capacity of the energy storage battery pack.

D. MODELING THE DIESEL ENGINE
The introduction of diesel generators can further increase the
reliability of hybrid renewable energy systems, but it will also
raise the costs of the system. Meanwhile, the consumption
of fossil fuels such as diesel will add harmful pollutants and
greenhouse gas emissions.

The fuel consumption of a diesel generator depends on its
own nature. To simplify the calculation, the fuel consumption
of the diesel generator FC can be approximated as a linear
function of its power output. The expression is as follows:

Fc = AdgPr + BdgPdg (13)

where Pr is the rated power of a diesel generator; Pdg is
the output power of a diesel generator; Adg and Bdg are the
coefficients of the fuel consumption curve, which are set
to 0.08231/ kWh and 0.256 l/kWh, respectively.

In addition to the commonly used components, such as
photovoltaic power generation, fan power generation, energy
storage systems, and diesel generators, the hybrid renewable
energy systems also contain accessories such as a rectifier,
inverter, and control switch and so on. These attachments are
typically low-cost, simple in nature, and have little impact on

the construction of the overall model of the system. There-
fore, it is simplified in system modeling [23].

III. PROBLEM DESCRIPTION
Based on Zaragoza, Spain, this paper studies a hybrid renew-
able energy system consisting of solar energy, wind energy,
diesel generators and battery packs that can satisfy the load
demand in the area.

For the planning and design of hybrid renewable energy
systems, different optimization objectives will produce dis-
tinct optimization results, thus resulting in different optimal
system configurations. It can be seen from the research status
of the HRES that there are many goals that can be considered
in the optimal design of hybrid renewable energy systems, but
there is only a single objective rather than multiple targets.
Although these optimization goals are not exactly the same
in terms of their meanings, they can be divided into three cat-
egories: economic goals, reliability goals, and environmental
benefit goals.

A. HRES OPTIMIZATION GOAL
In the optimal design of the system, the annualized costs
of the system (ACS), the loss of power supply probability
(LPSP) and the fuel emissions are selected as the optimization
objectives from the three above categories of optimization
goals.

The annualized cost of system (ACS) is the annual costs
that are calculated based on factors such as the system’s
age, the annual interest rate and the inflation rate, which can
reasonably reflect the economic benefits of the system for one
year [17].

ACS = IC × CRF + Cr × SFF + OMC (14)

where IC represents the annualized initial investment cost;
CRF represents the capital recovery factor, which is a pro-
portion of the amount of money that can be recovered each
year at a specified interest rate; Cr is the replacement cost
of the component;SSF represents the sinking fund factor,
which converts the replacement cost to the average annual-
ized replacement cost over the life of the component; and
OMC represents the operating and maintenance costs for the
year.

Due to the intermittent and random nature of renewable
energy, reliability analysis is an important goal to be consid-
ered in the HRES optimization process. The reliability of the
system refers to the system’s response requirements.

The loss of power supply probability (LPSP) is defined as
the ratio of the total time that the system’s capacity cannot
meet the load demand. LPSP ranges from [0],[1], where
0 means that the load can always be satisfied, and 1 means
that the load will always not be satisfied throughout the cycle.
The formula for calculating the LPSP is as follows:

LPSP =
LOLE
T

(15)

where the loss of load expected (LOLE) refers to the expected
value of the load exceeding the amount of electricity available
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over a period of time, and T is the sum time of one year,
i.e., 8760 hours.

With respect to environmental performance objectives,
many studies have considered fuel emissions, including
greenhouse gas emissions. CO2 is usually representative and
is the main gas that is responsible for the Greenhouse Effect.
In an HRES, the fuel emissions mainly come from the diesel
generator, and most of its emissions are CO2. Therefore,
many literatures directly use the CO2 emissions of the diesel
generator to represent the gas emissions of the system, and
regard it as the optimization goal for the environmental ben-
efit. Emissions can be calculated using formula (16):

Fe =
T∑
t=1

Fc(t)× Ef (16)

where Fc(t) is the fuel consumption of diesel generators at
t-time, and Ef is an emission factor, which is dependent on
the nature of the diesel generator and fuel.

B. DECISION VARIABLES
As mentioned earlier, the objective functions include the
annualized costs of the system (ACS), the loss of power
supply probability (LPSP), and the fuel emissions during one
year. The decision variables are described as follows:

D = [Dpv,Dwg,Dbat ,Ddg,Hwg, β] (17)

The decision variables include the photovoltaic panel count
Dpv, the wind turbine count Dwg, the battery count Dbat , and
the diesel generator count Ddg. In addition, the slope angle
of the pv board is β. Furthermore, the influence of the wind
tower heightHwg on the simulation results is also considered.
Considering the constraints of the decision variables and

the objectivesmentioned above, themulti-objective optimiza-
tion problem can be expressed as follows.

MinFj = (ACS,LPSP,Fe) (18)

Subject to

(Dpv,Dwg,Dbat ,Ddg) ≥ 0

Hlow ≤ Hwg ≤ Hhigh
0◦ ≤ β ≤ 90◦ (19)

where Fj is the objective function;Dpv,Dwg,Dbat , andDdg are
integers; and Hwg is within a given height range. In addition,
the maximum values forDpv,Dwg,Dbat ,Ddg are set to 30, 20,
30, 10, respectively.

IV. THE RELATED ALGORITHM
A. MULTI-OBJECTIVE OPTIMIZATION
HRES programming is usually a multi-objective optimization
problem in which more than one objective is involved. That
is, it is impossible to simultaneously achieve multiple optimal
values for multiple sub-objects, and it is only possible to
coordinate and form compromises between them so that each
sub-goal is optimized as much as possible [19]. The essential

FIGURE 4. Pareto dominance level.

difference between it and the single-objective optimization
problem is that the solution is not unique, but there is a
set of optimal solutions consisting of many Pareto optimal
solutions. Each element in the set is called the Pareto optimal
solution [4], as shown in Fig. 4. That is, between two solutions
with differing non-domination ranks we prefer the point with
the lower rank.

The multi-objective optimization problem is described in
text as having D decision variable parameters, n objective
functions, and m + n constraints to form an optimization
problem, the decision variables and the objective functions;
and the constraints are functional relationships [18]. In the
non-inferior solution, the decision-maker can only choose a
non-inferior solution that satisfies the specific problem as the
final solution. The mathematical form of the multi-objective
optimization problem can be described as follows.
Definition 1:Multi-objective optimization problem

min y = f (x) = [f1(x), f2(x), ..., fn(x)]
s.t.x ∈ �

(20)

F(x) is themulti-objective optimization, where f1(x), ..., fn(x)
are the target components and m is the number of targets.
Definition 2: Pareto Dominance
N minimizes the optimization problem when h ∈

{1, 2, ...,m}, fh(x) ≤ fh(y),
j ∈ {1, 2, ...,m}, and fh(x) < fj(y). We indicate x control of

y, as x ≺ y.
Definition 3: Pareto Set
Take a multi-objective optimization problem for a given set

of optimal solutions; if the solutions in the set are mutually
dominant, that is, if the two are not dominant, then the solu-
tion set is called the Pareto set.

B. BRAINSTORMING OPTIMIZATION
During recently years, the BSO algorithm has been applied
for many types of optimization problems, especially for the
multi-objective optimization problems. BSO refers to bring-
ing people together to brainstorm problems that are difficult
for one person to solve. Brainstorming creates inspiration for
solving problems. The core ideas are postponing judgment,
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FIGURE 5. Coding of an individual solution.

bold hypotheses, cross-referencing and winning by quantity.
Through a large number of assumptions, ultimately, it is
greatly possible to produce an excellent problem solution, and
the algorithm has achieved good results in optimizing test
functions. This new algorithm combines the advantages of
the group intelligent optimization algorithm and data mining.
Each solution in the intelligent optimization algorithm is
regarded as a data point. By clustering the data points, the
optimal solution of the problem is found [85].

C. K-MEANS ALGORITHM
Clustering is an algorithm that classifies or packets data
according to attributes or feature objects. The goal of this kind
of algorithm is to cluster the objects that are close to each
other, thus obtaining compact and independent clusters. The
K-Means clustering algorithm is one of the most classi-
cal algorithms. As an important branch of data mining, the
K-Means clustering algorithm is simple [86], easy to imple-
ment and extend, and can give full play to the advantages of
large data sets. In this subsection, K-Means clusteringmethod
is adapted to the HRES problem. The K-Means clustering
method is shown as follows.

The default of K-Means clustering is that the Euclidean
distance is used to measure the distance. In this article,
the method of measuring the distance is the distance of a
city block, which is also called the L1-distance. The distance
of a city block is the sum of the absolute wheelbases in
the standard coordinate system, and the result is the total
absolute values of the two coordinate differences. The dis-
tance between two n-dimensional vectors (z1, z2, z3, ..., zn)
and (q1, q2, q3, ..., qn) should be expressed as follows:

d(z, q) =
p∑
j=1

|zj − qj| (21)

Each cluster in the partition is defined by its member objects
and by its centroid, or center. The centroid for each cluster
is the point to which the sum of distances from all objects in
that cluster is minimized.

V. THE PROPOSED ALGORITHM
The encoding is a floating-point encoding method, which
must ensure that the genetic value is within a given interval
limit. The crossover, mutation and other genetic operators that
are used in the evolutionary algorithm must also confirm that
the genetic value of the new individual that is generated by
its results is also within this range limit. There are 6 genes on
each chromosome. Thus, the first four decision variables are
integers, and the latter two are real numbers, as shown below:

The above picture shows a kind of coding scheme cor-
responding to the 12 PV panels, 9 sets of wind turbines,
8 batteries and 8 diesel generators. The installation height of
the fan is 16.55meters, while the installation angle of the solar
photovoltaic panels is 54.85 degrees.

The specific description of the BSO algorithm is as
follows.

The flow chart for brainstorming optimizations is shown
in Fig. 6.

Algorithm 1 K-Means Cluster

Input The number of objects and clusters in the
database

Output The square error criterion that is theminimum
of k clusters

1 K objects are arbitrarily selected from n
data objects as the initial cluster center.

2 repeat
3 Each point is assigned to the nearest cen-

troid to form k clusters
4 Recalculate the center of the mass of each

cluster
5 Until the cluster does not change or the

maximum number of iterations is reached

The optimization algorithm of brainstorming mainly con-
sists of two modules: the generic module and the study mod-
ule. In the generic module adopt the Algorithm 1. The algo-
rithm optimizes the information content by learning all kinds
of information to drive the local search. Through the in-class
mutual coordination and the mutation operation, it allows the
algorithm to break through the local optimum to promote the
global research. The cluster center’s optimization procedure
guarantees the algorithm’s convergence performance. The
process of optimizing the information variation ensures the
diversity of the algorithm’s population.

In the BSO, the interlace operation can be taken from
line 14 of the BSO algorithm’s description. Pb is the prob-
ability of updating the individual in the two ways and r2 is a
number between 0 and 1 that is randomly generated.

There are four ways to update individuals in the BSO algo-
rithm, which could be divided into the following two classi-
fications. Fig. 7 (a) shows a class-center or a class-individual
forming the new individual new through mutation. Fig. 7 (b)
illustrates the two class-centers or class-individuals forming
an old one through fusing. The old could generate the new
through mutation. old1 and old2 are two different class-
centers or class-individuals.

The probability of selecting the sub-group of each class is
in direct proportion to the amount of individuals in the group.
The stochastic disturbance can be expressed by the following
formula:

XN = XS + ξ · n(µ, σ ) (22)

γ = log((0.5 ∗ m_i− c_i)/k) ∗ r() (23)
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FIGURE 6. Proposed BSO framework.

FIGURE 7. New individual generation mode.

In addition, XN is the value of the dth dimension, XS is the
value of the dth dimension of the selected individual, n(µ, σ )
is the Gaussian function with the mean of µ and the variance
of σ , and γ is a weight coefficient that can be described
by Formula (22). In addition, log() is log-sigmoid transfer
function, m_i is the maximum number of iterations, c_i is the
current iteration, k can alter the slope of the log() function
and rand() is a random value within (0, 1) [87].

The integration of two individuals is as follows:

xe = tx1 + (1− t)x2 (24)

In addition, xe is the new individual that is generated by two
individuals’ integration, x1 and x2 are the two individuals
for implementing the integration operation and t is a random
number between 0 and 1.

VI. SIMULATION AND RESULTS
A. EXPERIMENTAL INSTANCES
In this paper, a hybrid renewable energy generation sys-
tem is adopted to supply electricity to the northeast of
Zaragoza, Spain. Since different components make up dif-
ferent hybrid energy systems, different optimization schemes
can be obtained when optimizing the model.

In this paper, the improved BSO algorithm is used
to optimize the system by using the model proposed by
Wang et al [26]. We obtain the local average wind speed, light
intensity, temperature and other data from the local weather
station. The simulation process of the system optimization is
conducted using an hour step size, and so the experimental
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Algorithm 2 Pseudo-Code of the Proposed Cooperative BSO
With K-Means Algorithm
1: Randomly generate n potential

solutions(x1,x2,. . . ,xn).
2: Adjust all xi, i=1,2,. . . ,n by one iteration of algo-

rithm1
3: repeat
4: Cluster n solutions into m clusters.
5: Rank the solutions in each cluster and set the

best one as the cluster center.
6: Randomly generate a value r between 0

and 1.
7: ifr<p5a then
8: Randomly select a cluster center
9: Randomly generate an individual to replace the

selected cluster
10: Adjust the obtained solution by one iteration of

algorithm1
11: end of
12: repeat
13: Randomly generate a value r between 0 and 1.
14: if r<p6b then
15: Randomly select a cluster with probability

p6bi.
16: Randomly generate a value r1 between

0 and 1.
17: if r1<p6bii then
18: Select the cluster center and add random

values to it to generate a new individual.
19: else
20: randomly select a solution from the chosen

cluster and add a random value to the solu-
tion to generate a new one

21: end if
22: adjust the obtained solution by one iteration

of the K-Means algorithm
23: else
24: Randomly select two clusters.
25: generate a random value r2 between 0 and

1
26: if r2<p6c then
27: Two cluster centers are

combined to generate a new
individual

28: else
29: Two solutions from each selected cluster are

randomly chosen to be combined to gener-
ate a new individual.

30: end if
31: Adjust the obtained solution by one iteration

of algorithm1
32: end if
33: The newly generated solution is compared with

the same solution index and the better one is
kept

34: Until n new solution is generated.
35: Until maximal iteration number is reached.
36: return the best solution among all population

FIGURE 8. One year load demand.

FIGURE 9. Hourly mean values of meteorological conditions.

data such as the solar radiation, wind speed, ambient tem-
perature and load demand are calculated on an hourly basis,
assuming that these data are measured every hour. For the
sake of research, it is assumed that the load requirement of
the hybrid renewable energy system is a branch load, and the
branch voltage of the hybrid renewable energy and battery
energy storage system is 48 V. The distribution of the daily
load requirements in the region is as follows.

Input meteorological data include: horizontal plane solar
radiation, average wind speed of 10 meters per hour and
average environment temperature per hour.

B. EXPERIMENTAL PARAMETERS
In addition to the meteorological data and the load data,
the input data of the system simulation and optimization
process also include the technical parameters of each com-
ponent and the related cost data. According to the related
literatures, the output voltage and current, the maximum
output voltage and current and the maximum output power
of each component of the system can be determined under
the standard test conditions. The initial investment costsCinv,
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TABLE 1. Solar photovoltaic panel parameters.

TABLE 2. Parameters of the wind generator.

TABLE 3. Battery parameters.

TABLE 4. Parameters of the Diesel Generator.

and maintenance costs Com, and other parameters are also
incorporated.

The experimental parameters are shown in the following
table. Table 1 lists the relevant property parameters of the
photovoltaic panel. Table 2 shows the fan related parameters,
including rated power, minimum and maximum installation
height, initial investment cost, maintenance cost, investment
cost and the maintenance cost of the fan tower, which are
calculated separately. The property parameters of the battery,
shown in Table 3, include the rated capacity, the rated voltage,
and the maximum discharge depth. The costs of these prop-
erty parameters include the investment cost, the maintenance
cost, and the replacement cost. Table 4 demonstrates the
relevant parameters of the diesel generator. The service life of
these system components is 25 years except that the battery
is 5 years. The additional components such as a photovoltaic
plate, fan, and diesel generator are all set to 25 years. The life
cycle of the system is also set to 25 years.

The parameters of the BSO algorithm are given in Table 5,
where n−p is the population size, n−d is the dimension value
of decision variables, and n−c is the size of clustering. The
maximum number of iterations is 50.

C. EFFECTIVENESS OF THE SEQUENCE METHOD
Because of the complexity of the model and the diversity
of the parameters, it is difficult to solve this kind of prob-
lem. As a new swarm intelligence optimization algorithm,
the brainstorm optimization algorithm can solve this prob-
lem very well. First, 50 candidate solution populations were
initialized and the fitness values of 50 individuals were cal-
culated using the brainstorming optimization algorithm.

The clustering algorithm and the solution set converged to
two clusters. We present an example. As shown in Table 6,
we divided 6 individuals into two clusters. Cluster_1 and

FIGURE 10. Fifty iterations result in a three-dimensional Pareto front.

cluster_2 are used to represent the two clusters. N is the
label of the individual, C is the cluster classification, and the
individual {1.5.6} belongs to cluster_1 with K-Means. The
individual {3.4.6} belongs to cluster_2.
In the brainstorming optimization algorithm, a new solu-

tion is generated by the combination of one solution or two
solutions in the cluster. By comparing the newly generated
solution with the same number of original solutions, we store
the solutionwith the best adaptive value and enter the iteration
as a new solution. After the iterations, all solutions are clus-
tered into a small search area. The probabilistic parameters
are used to control the probability of replacing the clustering
centers with random solutions, to prevent the algorithm from
converging prematurely and to avoid local extremum. After
50 iterations, the weight target value is unchanged. Three
objectives values are visualized, as shown in Figs. 10-11.

It can be seen from the Pareto front of Fig. 12 that the
annualized cost of the system (ACS) objective is negatively
correlated with the loss of power supply probability (LPSP)
and the fuel emissions objectives. Combined with the two-
dimensional Pareto frontier below, we can see that reducing
the system’s fuel emissions would make the system more
expensive, while the same reduction in the LPSP would
result in a higher ACS value. In short, a system with higher
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TABLE 5. BSO parameters.

FIGURE 11. Weighted target value evolutionary process.

FIGURE 12. Two-dimensional Pareto fronts.

reliability and lower fuel emissions would be more costly.
Therefore, an optimal system configuration scenario would
make a trade-off between the three available goals, and none
of them could be simultaneously minimized.

D. PARAMETER ANALYSIS
The BSO generally involves the following four parame-
ters p5a, p6b, p6biii and p6c. p5a is the probability to decide
whether to change the cluster center. p6b is the probability
to select parent solutions to generate new solutions from
one or two clusters. p6biii is the probability to decide whether
to select the cluster center or to select a non-center solution
randomly. p6c is the probability to decide whether to select
one cluster center or to select two cluster centers to generate
a new solution.

E. EFFECTIVENESS OF THE SEQUENCE METHOD
Policymakers want the lowest costs, highest reliability, and
as few contaminants as possible. To be able to measure the

TABLE 6. Optimization algorithm parameters of brain storming.

pros and cons of each individual, a comprehensive indicator
is used as the objective value. We select 10 solutions from the
Pareto solution, and the corresponding decision variables are
shown in the table below.

When the value of Fe (kg) is 0, it means that the diesel
generator is not used in this solution, that is, the value ofDbat
is 0.

Solution 1 represents Dpv = 11, Dwg = 5, Dbat = 19,
Ddg = 1, Hwg = 12.12, and β = 59.03. The three objectives
values that are obtained areFe(kg)= 2265.52,LPSP= 6.78%,
and ACS = 6191.84$.

Solution 8 represents Dpv = 25, Dwg = 10, Dbat = 30,
Ddg = 0, Hwg = 12.38, and β = 74.50. The three objectives
values that are obtained are Fe(kg) = 0, LPSP = 3.81%, and
ACS = 9683.33.
Solution 10 represents Dpv = 5, Dwg = 8, Dbat = 14,

Ddg = 0, Hwg = 9.17, and β = 49.19. The three objectives
values that are obtained are Fe(kg)= 0, LPSP= 28.31%, and
ACS = 4199.20 $.
Comparatively speaking, solution 8 is more stable than

solution 1 and does not emit carbon dioxide and other gases,
but the ACS value of solution 8 is higher. The greenhouse gas
emissions of Solution8 are the same as those of Solution10,
and Solution8 has higher system stability. The system annual
costs of Solution10 are lower. Therefore, while pursuing the
maximum stability of the system, the costs of the system are
also increasing.

To verify the validity of the model, a time series simu-
lation is carried out for one year with the time unit as an
example, and the operation of each component of the system
is observed. In the process, the batteries, solar panels, wind
turbines, renewable energy loads and diesel generators are
shown in Figs. 13-17:

In this paper, we apply the BSO algorithm to the HRES and
optimize the annualized costs of the system (ACS), the loss of
power supply probability (LPSP) and the total fuel emissions.
Compared with the SPEA method [88], the two use different
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TABLE 7. Solution set.

FIGURE 13. Battery bank SOC.

FIGURE 14. PV power output.

components, and SPEA has more complex system compo-
nents. Nevertheless, in a 3D coordinate system, the brain-
storming algorithm has better diversity and a similar solution
for the same classification. Compared with the PICEA [89],
the convergence speed of the BSO algorithm is faster, and
the optimal Pareto solution is found in a short time. The
probabilistic parameters are used to control the probability of
replacing clustering centers with random solutions to prevent
the algorithm from converging prematurely and to avoid local
extremum. Diesel generators and batteries were used more

FIGURE 15. Wind turbine power output.

FIGURE 16. Renewable energy minus load.

frequently in the study. The output power of the solar pho-
tovoltaic panels is higher in the summer and lowers in the
winter, while the output power of the wind turbine is higher
in the spring and autumn and lower in the winter and summer.
Therefore, the system is susceptible to weather and other
factors, which increases the uncertainty. Based on the analysis
of the uncertain factors, this paper presents different system
models with different system compositions, which provide
more suitable solutions for decision makers.
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FIGURE 17. Diesel energy needed.

VII. CONCLUSIONS
In this paper, the optimal allocation problem of each compo-
nent in a hybrid renewable energy system is studied, and the
three objectives functions of the problem are the minimiza-
tion of the annualized costs of the system (ACS), the loss of
power supply probability (LPSP) and the total fuel emissions.
An improved BSO is proposed. The K-Means clustering
method is used to solve this problem, which makes the same
clusters have similar solutions. By using the distance of a city
block as the distance measure, the clustering of individuals is
calculated and the solution is made feasible. To measure the
merits and demerits of each individual, we take the composite
index as the target value. In addition, to improve the efficiency
of the algorithm, a unique crossover mutation strategy is
adopted in the BSO. A group of Pareto optimal solutions
are quickly obtained and introduced into the model to verify
the validity of the model and the competitiveness of the
algorithm.

Our future work will mainly focus on the following
aspects: (1) Application of the BSO algorithm to large-scale
problems to solve the problem of a large amount of data
analysis. New measures are needed to improve the efficiency
of the algorithm. (2) The current hybrid energy systems are
uncertain in the deterministic environment and the future can
be considered to be under the constraints of the uncertain
environment. We will also consider designing a more com-
plex renewable energy system.
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