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ABSTRACT Computational drug repositioning plays a vital role in the prediction of drug function.
Many new functions discovered have been confirmed. In comparison with traditional drug repositioning,
computational drug repositioning shortens the time and reduces labor. Thus, it has received wide attention
in recent years. However, prediction remains a considerable challenge. In this paper, a method called HNRD
is introduced to predict the link between drugs and diseases. It is based on neighborhood information
aggregation in neural networks which combines the similarity of diseases and drugs, the associations between
the drugs and diseases. Compared with the state-of-the-art method before, our method has achieved better
results, with the best AUC of 0.97 in one of the golden datasets. To better evaluate our approach, we also
performed data analysis based on one-to-one association’s prediction and robust analysis by testing on
different datasets. All the results prove the excellent performance of prediction. Source codes of this paper
are available on https://github.com/heibaipei/HNRD.

INDEX TERMS Drug reposition, deep learning, matrix decomposition, heterogeneous network, end to end.

I. INTRODUCTION

Drug research and development is a complex, lengthy and
expensive process. It often takes 10-15 years of research and
0.8-15 billion dollars to make a drug from abstract concept
to market-ready product [1]. Annually, 90% of drugs fail
to get access to FDA evaluations, thereby preventing their
use in actual therapy [2]-[5]. Accordingly, Drug Reposition-
ing (DR) based on computing method appears. The repo-
sitioning method bypasses many pre-approval tests that are
critical to newly developed therapeutic compounds, and it can
shorten the drug development cycle to 3-12 years for a repo-
sitioned drug [6]. In recent years, DR has received increased
interest from governments, nongovernmental agencies and
academic researchers.

In general, DR seeks to find new uses for existing drugs,
with established and demonstrated human safety. In techni-
cal terminology, DR is the process by which new indica-
tions are found for approved drugs [7]. Recently, the usage
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of computational DR in drug discovery has become a
popular practice, and an increasing number of machine
learning [8]-[10], network analysis [11]-[13], text min-
ing and semantic inference methods [14] have been
proposed [15]-[20].

PREDICT [21] calculates the link between potential drugs
and diseases, mainly by integrating the similarities between
various drugs, diseases, and using these features to obtain
new potential features through a logical classifier. DRRS [22]
merges three matrices, including the drug similarity matrix,
the disease similarity matrix, and the drug and disease asso-
ciation matrix, into one large matrix. Then it finds the lowest
level of the big matrix that reconstructs the large matrix.
NeoDTT [23] predicts new drugs and drug targets by inte-
grating various information in heterogeneous networks and
conducting end-to-end learning through a nonlinear model.
TL-HGBI [24] has proposed a computational framework,
to infer novel treatments for diseases based on a hetero-
geneous network integrating similarity and association data
about diseases, drugs and drug targets. DrugNet [25] has
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FIGURE 1. HNDR flowchart: (a) Input data include a reconstructive
drug-drug similarity matrix, a disease semantic similarity matrix, and an
experimentally verified drug-disease association matrix. The similarity
matrices are symmetric. (b) Construct a heterogeneous network. Each
node of the network is either drug or disease and is initialized with a low
dimensional vector representation. (c) Perform neighborhood information
integration, which updates nodes representation. (d) Reconstruct three
matrices with learned node representation. These three new matrices
serve the next input of feature extraction procedure. The procedure is
designed to minimize the difference between the initial matrices and
reconstructed matrices, the reconstructed drug-disease matrix is used to
predict potential associations between drugs and diseases.

developed a network-based prioritization method to predict
new therapeutic indications for drugs and novel treatments
for diseases. This method identifies novel drug-disease asso-
ciations by propagating information in a heterogeneous net-
work which is constructed by using all the information about
diseases. Reference [26] integrates miRNA similarity and dis-
ease similarity based on the functional similarity of miRNA,
disease semantic similarity and Gaussian interaction pro-
file kernel similarity, and predicts the association between
miRNA and disease through inductive matrix completion.
Reference [27] has proposed MBiRW utilizing some compre-
hensive similarity measures, and Bi-Random walk (BiRW)
algorithm to identify potential novel indications for a given
drug. By integrating information about drug or disease fea-
tures with known drug-disease associations, the comprehen-
sive similarity measures are initially developed to calculate
the similarity between drugs and diseases, which has demon-
strated certain success in computational DR, and other drug
or disease association [28]-[35]. Although some of these
methods are predictions of the potential relationship between
drugs and drug targets [36], [37], all methods prove that
multiple relationships integrated into a graph could improve
the effect of prediction novel link.

Inspired by currently popular neural-network-based
approaches, we introduce a neural-network-based method
of neural-network-based integration of neighborhood infor-
mation in a Heterogeneous Network for drug-Disease asso-
ciation prediction (HNRD) in this paper to predict novel
associations between drug and disease. In the HNRD, a het-
erogeneous network is first generated from the dataset with
each node, either drug or disease, by integrating neighbor-
hood information, which is achieved through the nonlinear
feature learning. Then, HNRD enforces the embedding node
representations of drugs and diseases to match the observed
matrices. HNRD is a global approach that can rank candidate
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drug-disease pairs for all diseases simultaneously. In tenfold
cross-validation experiments, our method achieves an area
under the receiver operating characteristic curve (AUC)
of 0.97 in one of the golden datasets, which is approximately
higher than that of the state-of-the-art method. Additionally,
we perform leave-one-out cross-validation (LOOCV) exper-
iments based on the new drug prediction where only one
association exits drug and disease; our method achieves a
perfect result, which is approximately 2% higher than the
state-of-the-art method we know. Finally, to further prove the
validation we use different dataset with our algorithm.

The main contribution of this paper involves the following:
(1) our proposed method preformed a deep network to extract
drug features from the drug-drug matrix and the drug-disease
matrix, to extract disease features from the disease matrix and
disease-drug matrix, finally, based on the principle of matrix
decomposition, the two recessive features are decomposed as
the matrix to recover the matrix. It is the first time to apply
in the drug-disease reposition using the end-to-end method to
recover method. (2) Considering the characters of the network
model, large data is needed to train the model. A large amount
of data corresponds to a good AUC. Among the datasets,
the DNdataset has the biggest matrix, which has the highest
AUC of 0.972. Its precision rate can reach 0.802, which is
much higher than that of the state-of-the-art method with an
AUC of 0.935 and maximum precision is 0.348. It would not
be influenced by the sparse as long as the amount of data is
abundant.

Il. MATERIALS AND METHODS

In this study, we propose a novel DR HNRD approach to
infer potential drug indications. First, we provide a brief
description of our datasets. Then, HNRD is utilized to train
the prediction model to predict the missing association in the
test dataset.

A. DATASETS
The gold standard dataset include three apartments. For the
drug-drug similarity matrix, the chemical structure of all
drugs are download from DrugBank in the Canonical Sim-
plified Molecular-Input Line-Entry System (SMILES) for-
mat [38], and then a two-category is calculated according to
the Chemical Development Kit [39]. Finally, based on the two
fingerprints the similarity is calculated, with a range of [0, 1].

For the disease-disease similarity matrix, a phenotype-
based disease-disease similarity dataset is downloaded from
MimMiner [40], which was constructed by calculating sim-
ilarities based on the numbers of occurrences of Medical
Subject Headings vocabulary (MeSH) terms in the medi-
cal descriptions of each pair of diseases from the OMIM
database [41]. According to the MimMiner database descrip-
tion, the similarities have already been normalized to the
range [0, 1].

For the drug-disease matrix, initial disease drug interac-
tions were obtained from [21], where disease and drug inter-
actions are assembled for the diseases listed in the OMIM
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TABLE 1. Statistics of the gold standard dataset used in this study.
Sparsity is defined as the ratio of the number of known interactions to
the number of all possible interactions.

Dataset Drugs Disease Interaction

Fdatasets 593 313 1933

Sparsity®
1.04172

database and their associated drugs but are limited to the ones
registered in the DrugBank database [42]. The corresponding
value in the matrix Wy, was set to 1 if an interaction exists
and 0 otherwise.

B. SCHEMATIC OVERVIEW OF HNRD

a) Construct a heterogeneous network based on three standard
matrices. The three matrices mainly include the drug similar-
ity link matrix, the disease similarity adjacency matrix, and
the correlation matrix of drugs and diseases. The similarity
matrix is symmetrical, whereas the drug-disease correlation
matrix is asymmetric and binary. Regularize the correla-
tion matrix for each pair. b) Integrate neighborhood infor-
mation for drugs and diseases, and embed low-dimensional
space, each with a low-dimensional representation. c¢) Recon-
struct the drug-disease matrices with the captured feature
vectors. This step is intended to minimize the different
between the reconstructed matrices and the initial matrices.
It also can be considered as an embedding process to maxi-
mize the extraction of information about the three matrices.
e) Finally, predict the drug-disease sequence by reconstruct-
ing the matrix. The whole task can be considered as a filling
of the matrix, mainly to fill the data that is not in the part [43].

C. HETEROGENEOUS NETWORK
Let S,-e R"*"™ be the drug expression profile similarity matrix
and Syzze R be the similarity matrix between diseases. Let
AeR™" be the drug-disease association matrix, where for
each number g;; in A, a;; = 1 if drugg;) is connected to
disease(j), otherwise, a; = 0. Elements of each matrix are
non-negative. For each matrix, we conduct normalization
before further processing. Let S/, Sgs7, A’ be the normal-
ized matrix of drug expression profile similarity matrix, dis-
ease semantic similarity matrix and drug-disease associations
matrix, respectively such that:
M{i, j}

S M k)

where M stands for matrix and num(col) is the size of the
matrix’s column dimension. By using the normalized matri-
ces as edges weight, a heterogeneous network is generated
which contains two node types {drug, disease } and three edge
types {drug-drug, disease-disease, drug-disease}.

M'{i,j} =

ey

D. NODE EMBEDDING

For each node v, drug or disease. Its features should be
aggregated from its neighbors, which have a positive weight
of connections between node v and its neighbors:

m n
Rej = concat(Re; )_Sa'li.j} x on! + Y Ali.j} x 0vd))
j=1 j=1
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Dej = concat(De; Y Sa'{i.j} x oad’ + Y A'li,j} x oa)
j=1 j=1

3)

where R, .€R*! and D/ eR*! are the embeddings of drug;
and disease;, respectively. The initial representations of nodes
(Rei€Ry or D,jeRy) are randomly set. Through neighborhood
aggregation, we obtain the representation of each node, con-
sidering its relation with its neighbor nodes considering its
connection and its own nodes features, and we learn the
structural and topological information as the feature vectors
oy is defined as follows:

o) = o (yejWyy £ b) 4)

where W and b are parameters trained in the neural network.
o[-] (implemented as RELU(x) = max(x,0)) stands for
the activation function in the neural network. In this step,
the model further learns node representations into lower
dimensional vectors and implement normalization:

., o(€Wy £ bo)

= ®)
e} Wy = ol

i
where ¢ stands for either R). or D. In this step, a new
embedding is learned in a single-layer neural network which
non-linearly transforms the representation of the nodes.

E. TRAINING AND EVALUATION
We train the neural network to minimize losses between
reconstructed matrices and the initial matrices.

o T 2
Loss = Z(A{lsj} — Rei"E;\Ejyy D))
. . . [ j T T
+ 3 (Simp i) — Rei' B}y B, Re) Y
. . . [ j T T
+Z(Slma’d{l,l} — RyEE)y Def 2 ©

Here EeR4*K functions as projection matrices, which
extract the principle features from node representations. The
inner product of the two projected vectors should be recon-
structed by the original edge weights as much as possible.
For a symmetric matrix reconstruction ( drug-drug similarity
matrix or disease-disease similarity matrix), the matrix EET
is used to enforce symmetry of the recovery. A similar recon-
struction strategy has also been used [44] to solve prediction
problems.

Considering that all operations are differentiable and sub
differentiable, parameters can be trained in an end-to-end
manner by performing gradient descent. After training, each
LDA score could be predicted using the reconstructed drug-
disease association matrix. A high score corresponds to a
high probability, and we suggest that the following potential
association exists:

. T
Ali, j}recovered = Rej//E;d1E£d2 Dej/f @)
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In this sense, the HNRD prediction task can be considered
as a matrix completion problem, which is conventionally
solved by matrix factorization with mathematical calcula-
tion. By comparison, our method develops a deep learning
model to generate feature matrices by explicitly defining
the construction process. Through representation learning,
HNRD incorporates prior knowledge of network topology,
after which the loss minimization procedure is implemented
to prevent the network from being arbitrarily factorized.
As a result, the method obtains performance improvement in
identifying LDA associations.

Ill. RESULTS

In this section, we systematically evaluate the performance
of HNRD by using the datasets. First, the evaluation metrics
used in this study are introduced. Then, we compare HNRD
with several other methods in terms of prioritizing candidate
diseases for a given drug. Next, a case study is conducted to
further illustrate the practical usefulness of HNRD. Finally,
we perform prediction on the other dataset to verify the
robustness of our method.

A. EVALUATION METRICS

To evaluate the effect of HNRD on DR, a ten-fold cross-
validation was used. The gold has links to 1933 already
known and other unverified links. All known links and the
unverified data set are randomly divided into 10, from each
of the positive and negative samples as a testset, and the rest
as training sets.

When the probability of connection between the drug and
disease is re-estimated, the tested links and the candidate links
are reordered for each drug. For each specific threshold, four
values of true positive (TP), false positive (FP), false nega-
tive (FN), and true negative (TN) are calculated [45]-[47].
Predicted value ranks that exceed the threshold are considered
correct. TP and TN indicates that the positive and negative
samples are correctly predicted, and FN and FP are pre-
dicted to be incorrect for the positive and negative samples,
respectively. The TPR, FPR, and correct rate are calculated
by varying thresholds, resulting in the Receiver Operating
Characteristic (ROC) and Precision Rate(PR). For the ROC
curve, FPR and TPR are plotted on the x-axis and y-axis,
respectively. For PR curve, recall is plotted on the x-axis,
and precision is plotted on the y-axis [48]. The area under
ROC curve (AUC) value and precision are utilized to evaluate
the overall performance of the prediction methods. PR does
not represent the preparation rate, but only the existing link
probability is ranked first, and the position is ranked later.

TP
TPR = —— 8)
TP + FN
FP
TPR = —— )
FP+ TN

B. COMPARISON WITH OTHER METHODS
To assess the performance of HNRD, we compare it with the
other five methods: DRRS [22], MBiRW [27], DrugNet [25],
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HGBI [24], and KBMF [49]. DRRS constructs a big matrix
combine the drug-drug similarity, disease-disease similarity
and drug-disease matrix, and finds the minimum rank to
reconstruct the drug-disease matrix. MBiRW utilizes the
comprehensive similarity measures and Bi-Random Walk
algorithm to identify potential novel indications for the given
drug. DrugNet is a generic network-based drug reposition-
ing method, which propagates information between networks
and can be used to perform both drug-disease and disease-
drug. HGBI is introduced based on the guilt-by-association
principle and an intuitive interpretation of information flow
on the heterogeneous graph. All the parameters used in these
methods are determined according to their literature. KBMF
is a kernelized Bayesian matrix factorization method, that
may work with multiple data side information and can be
applied in recommendation systems, the parameter R used as
40 is the same as DRRS.

—— Druget
—— KBMF N

2 04 06 08 1 '01 02 03 04 05 06 07 08 09
False Positive Rate Recall

0 0

FIGURE 2. (a) Comparison of predicting methods in terms of AUC on the
dataset. When the parameter o = 0.5, i.e. to wrongly predict unknown
entry as positive entry (0 to 1) would cause the same loss as wrongly
predict positive entry as negative entry (1 to 0), our method (blue) has an
AUC value of 94.2% which is higher than the AUC value (93%) of the
state-of-the-art method (red). The other colors indicate the performance
of other methods. (b) Comparison of predicting methods in terms of
precision and recall, the best value can be 0.562.

The overall performance of all methods is evaluated by
applying ten-fold cross-validation. The experiment results
in terms of ROC curves and PR curves are depicted in
Figure2. Experiment results show that our proposed method
outperforms other competitive methods in terms of AUC and
precision values. HNRD can achieve an AUC value of 0.942,
while the best precision can be 0.572, indicating that it can
successfully prioritize 57.2% true drug-disease associations
as the ones with the highest rank.

C. PREDICTING INDICATIONS FOR NEW DRUGS

LOOCYV was implemented on the known experimentally ver-
ified drug-disease associations to evaluate the performance of
HNRD. For a given disease d;, each known drug associated to
d; is left out in turn as the test sample, while the other known
experimentally verified drugs associated with d; are consid-
ered as training samples. All the drugs without known asso-
ciations with d; make up the d;-associated candidate samples.
In the candidate samples, the test sample is deemed as a posi-
tive sample, and the others are negative samples. In each turn,
predicting score was recovered by the HNRD method. After
all drug-disease entries have been predicted, a special ranking
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FIGURE 3. Top k associations predicted by HNRD (red) for each disease.
In the condition that k =10, 20, 50 or 100, HNRD fetch more corrected
association than the state-of-the-art method.
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FIGURE 4. Cdataset test results (the blue color) in terms of AUC with the
other algorithms. The best result is 0.95.

cutoff was selected as a threshold. Entries with values higher
than the threshold are identified as having associations.
TPR (sensitivity) measures the proportion of positives that
are correctly identified, while FPR (1-specificity) is the per-
centage of negative samples incorrectly identified.

A total of 171 drugs have only one known disease associa-
tions. To make a comparison with the state-of-the-art method,
we analyze the performance of all methods for drugs, which
have only one known disease association in the dataset.
Figure 4 represent the ROC curves. HNRD has achieved
superior performance over the other methods. For exam-
ple, HNRD achieves an AUC value of 0.85, while DRRS,
MBIiRW, HGBI, DrugNet and KBMF obtain inferior AUC
values of 0.842, 0.818, 0.746, 0.759 and 0.806, respectively.
Moreover, 43 drugs are predicted ranked in at the 1 top
in HNRD.

D. HNRD PREDICTS NOVEL RD

After confirming the prediction ability of HNDR by cross-
validation experiments, we conducted a comprehensive pre-
diction of novel associations between all drugs and diseases.
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In the inference process, all known drug-disease associations
in the gold standard dataset are used as the training set and
the remaining drug disease pairs are regarded as the set of
candidate drug-disease associations. HNRD can predict the
potential disease associations for all drugs simultaneously.
By applying HNRD, all candidate diseases for a specific
drug are ranked according to their predicted values assigned
by HNRD. We also have conducted case studies to verify
whether the predicted top-ranked diseases are true or not
according to two public biological databases: KEGG [50] and
CTD [51], which have been constantly updated to include
newly verified drug-disease associations and provide a foun-
dation for our validation. We examined the most potential
indications for each of the 593 drugs. The predicted results
by all methods are summarized in Supplementary form S1.
One can observe that 160 of top-5 predicted novel drug-
disease associations by HNRD have been annotated in KEGG
and CTD, respectively, which are more than the other pre-
diction methods. We choose several drugs as examples and
list the verified information of the top-5 candidate diseases
for each selected drug in Supplementary Tables S2. We find
several novel drug disease associations of the top-ranked
predictions that have been annotated in KEGG, CTD or the
other papers. For example Esophageal cancer is cancer aris-
ing from the esophagus—the food pipe that runs between the
throat and the stomach [52]. Topotecan is a semi-synthetic
derivative of camptothecin. Camptothecin is a natural product
extracted from the bark of the tree Camptotheca acuminata.
Topoisomerase-I is a nuclear enzyme that relieves torsional
strain in DNA by opening single strand breaks [53]. Once
topoisomerase-I creates a single strand break, the DNA can
rotate in front of the advancing replication fork. In physi-
ological environments, topotecan is in equilibrium with its
inactive carboxylate form [54], so it also can be used in
Esophageal cancer by the same function.

E. VALIDATION ON THE OTHER DATASETS

To demonstrate the capability of HNRD in predicting new
drugs related to a queried disease, we also conduct some
test on other datasets, including Cdataset and DNdataset,
which have been used in the research [27]. Cdataset includes
663 drugs registered in DrugBank, 409 diseases listed in
OMIM database, and 2,353 verified drug-disease associ-
ations. DNdataset contains 4,516 diseases annotated by
Disease Ontology (DO) terms, 1,490 drugs registered in
DrugBank and 1008 known drug-disease associations derived
from DrugBank.

We conduct ten times ten-fold cross-validation to vali-
date the prediction accuracy of our proposed method on
Cdataset and DNdataset. HNRD achieves an AUC value
of 0.95 in the Ddataset whereas DRRS, MBiRW, HGBI,
DrugNet and KBMF obtain inferior results of 0.947, 0.933,
0.858, 0.804 and 0.928, respectively. The maximum precision
achieved by HNRD is 0.67, which is higher than that of the
other methods. The AUC value obtained by HNRD is 0.97 in
the Dndataset, which is higher than that obtained by DRRS,
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MBiRW and DrugNet. This may be due to the larger size than
the other datasets.

IV. DISCUSSION AND CONCLUSION

Identifying the relationships between drugs and diseases is
essential for understanding the mechanisms and functions
of drugs. In this paper, we apply a neural-network-based
model to predict drug-disease associations. LOOCV and
case studies are implemented to evaluate the performance
of our method in comparison with the other state-of-the-art
approaches. In comparison with the state-of-the-art method,
HNRD performs better in terms of AUC values on the dataset
and can retrieve more correct associations. Results show
that HNRD could be a useful tool for studying the drug-
disease relationship. We analyze the top 5 predictions by
using HNRD. In the case studies, we confirm drug connec-
tions with gastric, ovarian, and colorectal cancer by literature
mining. Our study has a major contribution in identifying
potential drug-disease associations that our method could
integrate more matrix than we have integrated (e.g., drug
Gaussian kernel similarity matrix) due to its property of
heterogeneity.

The basic idea of considering drug-disease prediction
problem as a matrix factorization problem is to determine
a low-rank matrix that can integrate prior knowledge about
drug and disease. Multiple methods have been proposed and
then improved for the task. Therefore, our method might be
improved in the future. Considering that matrix factorization
is often applied in small data, when the number of data
increases, the time consumed is very long. However, HNRD
is generated from the neural network, which needs sufficient
data. As time passes, the dataset will be updated, and the
model will be friendlier to predict.

ACKNOWLEDGMENT
(Yingdong Wang and Gaoshan Deng contributed equally to
this work.)

REFERENCES

[1] K. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, and A. L. Barabdsi,
“The human disease network,” Proc. Nat. Acad. Sci. USA, vol. 104, no. 21,
pp. 8685-8690, 2007.

[2] L. Weng, L. Zhang, Y. Peng, and R. S. Huang, “Pharmacogenetics and
pharmacogenomics: A bridge to individualized cancer therapy,” Pharma-
cogenomics, vol. 14, no. 3, pp. 315-324, 2013.

[3]1 Y. H. Li et al., “Clinical trials, progression-speed differentiating features
and swiftness rule of the innovative targets of first-in-class drugs,” Brief-
ings Bioinf., 2019.

[4] Y. H. Li et al., “Therapeutic target database update 2018: Enriched
resource for facilitating bench-to-clinic research of targeted therapeutics,”
Nucleic Acids Res., vol. 46, no. D1, p. D1121, 2018.

[5] H. Yang et al., “Therapeutic target database update 2016: Enriched
resource for bench to clinical drug target and targeted pathway informa-
tion,” Nucleic Acids Res., vol. 44, no. D1, pp. 1069-1074, 2016.

[6] S.J. Cockell et al., “An integrated dataset for in silico drug discovery,”
J. Integr. Bioinf., vol. 7, no. 3, pp. 15-27, 2010.

[7]1 S. Naylor and J. Schonfeld, “Therapeutic drug repurposing, repositioning
and rescue—Part I: Overview,” Drug Discovery World, vol. 16, pp. 49-62,
Dec. 2014.

[8] F. Zhu, X. X. Li, S. Y. Yang, and Y. Z. Chen, “Clinical success of drug
targets prospectively predicted by in silico study,” Trends Pharmacol. Sci.,
vol. 39, no. 3, pp. 229-231, 2017.

50586

[9]

[10]

(11]

[12]

[13]

(14]

[15]

(16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

Z.-J. Han, W.-W. Xue, L. Tao, and F. Zhu, ““Identification of novel immune-
relevant drug target genes for Alzheimer’s Disease by combining ontology
inference with network analysis,” CNS Neurosci. Therapeutics, vol. 24,
no. 12, pp. 1253-1263, 2018.

Y. Xu, Y. Wang, J. Luo, W. Zhao, and X. Zhou, “Deep learning of the
splicing (EPI) genetic code reveals a novel candidate mechanism linking
histone modifications to ESC fate decision,” Nucleic Acids Res., vol. 45,
no. 21, pp. 12100-12112, 2017.

L. Wei, S. Wan, J. Guo, and K. K. L. Wong, “A novel hierarchical selective
ensemble classifier with bioinformatics application,” Artif. Intell. Med.,
vol. 83, pp. 82-90, Nov. 2017.

L. Wei, P. Xing, J. Zeng, J. Chen, R. Su, and F. Guo, “Improved prediction
of protein—protein interactions using novel negative samples, features, and
an ensemble classifier,” Artif. Intell. Med., vol. 83, pp. 6774, Nov. 2017.
Y. Xu, M. Guo, X. Liu, C. Wang, Y. Liu, and G. Liu, “Identify bilayer
modules via pseudo-3D clustering: Applications to miRNA-gene bilayer
networks,” Nucleic Acids Res., vol. 44, no. 20, p. e152, 2016.

Y. Xu, M. Guo, W. Shi, X. Liu, and C. Wang, “A novel insight into gene
ontology semantic similarity,” Genomics, vol. 101, no. 6, pp. 368-375,
2013.

J.Li, S. Zheng, B. Chen, A.J. Butte, S. J. Swamidass, and Z. Lu, “A survey
of current trends in computational drug repositioning,” Briefings Bioinf.,
vol. 17, no. 1, pp. 2-12, 2016.

J. Tang et al., “ANPELA: Analysis and performance assessment of the
label-free quantification workflow for metaproteomic studies,” Briefings
Bioinf., 2019.

J. Fu et al., “Discovery of the consistently well-performed analysis chain
for swath-ms based pharmacoproteomic quantification,” Frontiers Phar-
macol., vol. 9, p. 681, Jun. 2018.

B. Li et al., “NOREVA: Normalization and evaluation of MS-
based metabolomics data,” Nucleic Acids Res., vol. 45, no. WI,
pp. W162-W170, 2017.

B. Li et al., “Performance evaluation and online realization of data-driven
normalization methods used in LC/MS based untargeted metabolomics
analysis,” Sci. Rep., vol. 6, Dec. 2016, Art. no. 38881.

N. Zeng, H. Qiu, Z. Wang, W. Liu, H. Zhang, and Y. Li, “A new
switching-delayed-PSO-based optimized SVM algorithm for diagnosis of
Alzheimer’s disease,” Neurocomputing, vol. 320, pp. 195-202, Dec. 2018.
A. Gottlieb, G. Y. Stein, E. Ruppin, and R. Sharan, “PREDICT:
A method for inferring novel drug indications with application to person-
alized medicine,” Mol. Syst. Biol., vol. 7, no. 1, p. 496, 2014.

H. Luo, M. Li, S. Wang, Q. Liu, Y. Li, and J. Wang, “Computational
drug repositioning using low-rank matrix approximation and randomized
algorithms,” Bioinformatics, vol. 34, no. 11, pp. 1904-1912, 2018.

F. Wan, L. Hong, A. Xiao, T. Jiang, and J. Zeng, “NeoDTI: Neural
integration of neighbor information from a heterogeneous network for
discovering new drug—target interactions,” Bioinformatics, vol. 35, no. 1,
pp. 104-111, 2018.

W. Wang, S. Yang, X. Zhang, and J. Li, “Drug repositioning by integrating
target information through a heterogeneous network model,” Bioinformat-
ics, vol. 30, no. 20, pp. 2923-2930, 2014.

V. Martinez, C. Navarro, C. Cano, W. Fajardo, and A. Blanco, “DrugNet:
Network-based drug—disease prioritization by integrating heterogeneous
data,” Artif. Intell. Med., vol. 63, no. 1, pp. 41-49, 2015.

N. Natarajan and I. S. Dhillon, “Inductive matrix completion for predicting
gene—disease associations,” Bioinformatics, vol. 30, no. 12, pp. i60-i68,
2014.

H. Luo et al., “Drug repositioning based on comprehensive similarity
measures and bi-random walk algorithm,” Bioinformatics, vol. 32, no. 17,
pp. 2664-2671, 2016.

L. Jiang, Y. Ding, J. Tang, and F. Guo, “MDA-SKF: Similarity kernel
fusion for accurately discovering miRNA-disease association,” Frontiers
Genet., vol. 9, p. 618, 2018.

X. Zeng, L. Liu, L. Lii, and Q. Zou, “Prediction of potential disease-
associated microRNAs using structural perturbation method,” Bioinfor-
matics, vol. 34, no. 14, pp. 2425-2432, 2018.

X.Zhang, Q. Zou, A. Rodriguez-Paton, and X. Zeng, ‘Meta-path methods
for prioritizing candidate disease miRNAs,” IEEE/ACM Trans. Comput.
Biol. Bioinformatics, vol. 16, no. 1, pp. 283-291, Jan. 2019.

Y. Ding, J. Tang, and F. Guo, “Identification of drug-side effect associa-
tion via multiple information integration with centered kernel alignment,”
Neurocomputing, vol. 325, pp. 211-224, Jan. 2019.

Y. Liu, X. Zeng, Z. He, and Q. Zou, “Inferring microRNA-disease
associations by random walk on a heterogeneous network with multiple
data sources,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 14, no. 4,
pp. 905-915, Jul. 2017.

VOLUME 7, 2019



Y. Wang et al.: Drug-Disease Association Prediction Based on Neighborhood Information Aggregation in Neural Networks

IEEE Access

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

X.Zeng, X. Zhang, Y. Liao, and L. Pan, “Prediction and validation of asso-
ciation between microRNAs and diseases by multipath methods,” Biochim.
Biophys. Acta (BBA)-Gen. Subjects, vol. 1860, no. 11, pp. 2735-2739,
2016.

L. Jiang, Y. Xiao, Y. Ding, J. Tang, and F. Guo, “FKL-Spa-LapRLS:
An accurate method for identifying human microRNA-disease associa-
tion,” BMC Genomics, vol. 19, no. 10, p. 911, 2018.

C. Long, W. Li, P. Liang, S. Liu, and Y. Zuo, “Transcriptome compar-
isons of multi-species identify differential genome activation of mammals
embryogenesis,” IEEE Access, vol. 7, pp. 7794-7802, 2019.

Y. Ding, J. Tang, and F. Guo, ‘“‘Identification of drug-target interactions via
multiple information integration,” Inf. Sci., vols. 418-419, pp. 546560,
Dec. 2017.

C. Shen, Y. Ding, J. Tang, X. Xu, and F. Guo, “An ameliorated prediction
of drug—target interactions based on multi-scale discrete wavelet transform
and network features,” Int. J. Mol. Sci., vol. 18, no. 8, p. 1781, 2017.

D. Weininger, “SMILES, a chemical language and information system. 1.
Introduction to methodology and encoding rules,” J. Chem. Inf. Comput.
Sci., vol. 28, no. 1, pp. 31-36, 1988.

C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher, E. Luttmann, and
E. L. Willighagen, “The chemistry development kit (CDK): An open-
source Java library for chemo- and bioinformatics,” J. Chem. Inf. Comput.
Sci., vol. 43, no. 2, pp. 493-500, 2003.

M. A. Van Driel, J. Bruggeman, G. Vriend, H. G. Brunner, and
J. A. M. Leunissen, “A text-mining analysis of the human phenome,” Eur.
J. Hum. Genet., vol. 14, no. 5, pp. 535-542, 2006.

A. Hamosh, A. F. Scott, J. S. Amberger, D. Valle, and V. A. Mckusick,
“Online mendelian inheritance in man (OMIM),”” Hum. Mutation, vol. 15,
no. 1, pp. 57-61, 2000.

D. S. Wishart et al., “DrugBank: A comprehensive resource for in sil-
ico drug discovery and exploration,” Nucleic Acids Res., vol. 34, no. 1,
pp. 668-672, 2006.

E.J. Candes and B. Recht, “Exact matrix completion via convex optimiza-
tion,” Found. Comput. Math., vol. 9, no. 6, pp. 717-772, 2009.

Y. Luo et al., ““A network integration approach for drug-target interaction
prediction and computational drug repositioning from heterogeneous infor-
mation,” Nature Commun., vol. 8, no. 1, p. 573, 2017.

F.-Y. Dao et al., “Identify origin of replication in saccharomyces cerevisiae
using two-step feature selection technique,” Bioinformatics, 2018.

Q. Zou, J. Li, L. Song, X. Zeng, and G. Wang, ‘““Similarity computation
strategies in the microRNA-disease network: A survey,” Briefings Func-
tional Genomics, vol. 15, no. 1, pp. 55-64, 2015.

C.-Q. Feng et al., “iTerm-PseKNC: A sequence-based tool for predicting
bacterial transcriptional terminators,” Bioinformatics, 2018.

J. Davis and M. Goadrich, “The relationship between Precision-Recall and
ROC curves,” in Proc. Int. Conf. Mach. Learn., 2006, pp. 233-240.

M. Gonen and S. Kaski, “Kernelized Bayesian matrix factorization,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 10, pp. 2047-2060,
Oct. 2014.

M. Kanehisa, S. Goto, Y. Sato, M. Kawashima, M. Furumichi, and
M. Tanabe, “Data, information, knowledge and principle: Back to
metabolism in KEGG,” Nucleic Acids Res., vol. 42, no. 1, pp. 199-205,
2014.

A. P. Davis et al., “The comparative toxicogenomics database: Update
2011,” Nucleic Acids Res., vol. 39, no. 1, pp. 1067-1072, 2011.

B. W. Stewart and C. P. Montgomery, “Oesophageal cancer,” World
Cancer Rep., 2014, pp. 528-543.

Y. Pommier, E. Leo, H. L. Zhang, and C. Marchand, ““Dna topoisomerases
and their poisoning by anticancer and antibacterial drugs,” Chem. Biol.,
vol. 17, no. 5, pp. 421-433, 2010.

G. Cordell, “The alkaloids: Chemistry and biology,” in The Alkaloids:
Chemistry and Biology, vol. 17, no. 5. New York, NY, USA: Academic,
2003, pp. 1-50.

YINGDONG WANG (S’17-M’17) received the
master’s degree in educational technology from
Sun Yat-sen University, in 2012. She is currently
pursuing the Ph.D. degree in computer science
with Xiamen University. Her current research
interests include big data, human—machine inter-
face, and bioinformatics.

VOLUME 7, 2019

GAOSHAN DENG received the bachelor’s degree
in software engineering from Xiamen University,
in 2017. He is currently pursuing the M.S degree
from the Computer Science Department, Univer-
sity of Southern California. His current research
interests include multi-objective optimization, big
data, and data mining. He is a Student Member the
IEEE Computational Intelligence Society.

NIANYIN ZENG received the B.Eng. degree
in electrical engineering and automation and
the Ph.D. degree in electrical engineering from
Fuzhou University, in 2008 and 2013, respectively.
From 2012 to 2013, he was a RA with the Depart-
ment of Electrical and Electronic Engineering, The
University of Hong Kong. From 2017 to 2018,
he was an ISEF Fellow founded by the Korea
Foundation for Advance Studies and also a Visit-
ing Professor with the Korea Advanced Institute of
Science and Technology.

He is currently an Associate Professor with the Department of Instru-
mental & Electrical Engineering, Xiamen University. He has authored or
coauthored several technical papers, including six ESI Highly Cited Papers
according to the most recent Clarivate Analytics ESI report and also a very
active reviewer for many international journals and conferences. His current
research interests include intelligent data analysis, computational intelligent,
and time-series modeling and applications.

Dr. Zeng is currently serving as an Associate Editor for Neurocomput-
ing, an Editorial Board members for Computers in Biology and Medicine,
Biomedical Engineering Online, and also a Guest Editor for Frontiers in
Neuroscience. He also serves as a Technical Program Committee Member
for ICBEB 2014 and an Invited Session Chair of ICCSE 2017.

XIAO SONG received the B.Sc. degree in com-
puter science and technology from the Zhengzhou
University of Light Industry, in 2007, and the
Ph.D. degree in electrical engineering from
Xiamen University, in 2012. From 2014 to 2017,
she held a postdoctoral position with the Depart-
ment of Computer Science and Technology,
Huazhong University of Science and Technology.
She is currently an Associate Professor with the
School of Computer and Information Technology,
Nanyang Normal University. Her current research interests include compu-
tational intelligent and bioinformatics.

YUANYING ZHUANG received the B.Sc. degree
in mathematics and applied mathematics from
Xiamen University, in 2007, and the M.Sc. degree
in mathematics and computing for finance and
the Ph.D. degree in mathematics from Swansea
University, U.K., in 2009 and 2013, respectively.
From 2009 to 2013, he was a fixed term Tutor
with the International College of Wales Swansea.
He is currently a Lecturer with the School of Math-
ematics and Statistics, Nanyang Institute of Tech-
nology. His current research interests include stochastic analysis, statistical
forecasting, and bioinformatics.

50587



	INTRODUCTION
	MATERIALS AND METHODS
	DATASETS
	SCHEMATIC OVERVIEW OF HNRD
	HETEROGENEOUS NETWORK
	NODE EMBEDDING
	TRAINING AND EVALUATION

	RESULTS
	EVALUATION METRICS
	COMPARISON WITH OTHER METHODS
	PREDICTING INDICATIONS FOR NEW DRUGS
	HNRD PREDICTS NOVEL RD
	VALIDATION ON THE OTHER DATASETS

	DISCUSSION AND CONCLUSION
	REFERENCES
	Biographies
	YINGDONG WANG
	GAOSHAN DENG
	NIANYIN ZENG
	XIAO SONG
	YUANYING ZHUANG


