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ABSTRACT Sparse demixing aims to separate signals that are sparse in some general dictionary, which
has wide applications in signal and image processing, such as in super-resolution, image inpainting, robust
sparse recovery, source separation, interference cancellation, saturation, and clipping restoration. For sparsity
promotion in sparse demixing, the convex `1 norm is of the most popular but it has a bias problem.
In comparison, nonconvex regularization can mitigate the bias problem and can be expected to yield
significantly better performance. In this paper, we employ the nonconvex `q-norm (0 ≤ q < 1) for sparsity
promotion and consider a linearly constrained `q-minimization formulation for the sparse demixing problem.
Since the `q-minimization formulation is nonconvex and nonsmoothing, the standard alternative direction
method of multipliers (ADMM) often fails to converge. To address this problem, we develop an iteratively
reweighted ADMM algorithm which solves convex subproblems in each iteration and is convergent. Further,
for the application of color image inpainting, we extend the new algorithm for multi-channel (RGB)
joint recovery. The experimental results showed that the new algorithms can achieve significantly better
performance than the `1 algorithm.

INDEX TERMS Alternative direction method of multipliers, inpainting, nonconvex optimization, sparse
demixing, sparse recovery, signal separation.

I. INTRODUCTION
Sparse recovery has attracted much research attention in
the past decade, which has found wide applications in sig-
nal/image processing, statistics and machine learning [1].
In this paper, we consider the problem of recovering two
sparse vectors x1 ∈ Rn1 and x2 ∈ Rn2 , from the linear
measurements y ∈ Rm expressed as

y = A1x1 + A2x2 (1)

where A1 ∈ Rm×n1 and A2 ∈ Rm×n2 are known (deter-
ministic) dictionaries, on which the two components can be
sparsely (or approximately sparsely) represented, e.g., with
sparse coefficients x1 and x2. The goal is to recover and demix
the two components via exploiting their underlying sparsity
structure. This sparse recovery and separation problem has
many applications in signal and image processing, such as
the following applications.
1) Super-resolution and inpainting of image, audio and

video signals: For example, in the super-resolution and
inpainting of image, audio, and video signals [2]–[5]. In these

The associate editor coordinating the review of this manuscript and
approving it for publication was Guan Gui.

applications, a part of the signal is missing and the task is
to retrieve the missing part from an available subset of the
desired signal y0 = A1x1. In these applications, A2 = Im
and x2 represents the missing part to be retrieved.
2) Robust sparse signal recovery in the presence of out-

liers: This problem considers sparse recovery in the presence
of impulsive noise. In realistic applications, impulsive noise
may come from missing data in the measurement process,
transmission problems, faulty memory locations, buffer over-
flow, reading out from unreliable memory [6]–[10]. In this
problem, A2 = Im and x2 represents the impulsive noise
which is sparse [19].
3) Source separation: For example, in the separation of

image texture [11], [12] and in the separation of neuronal
calcium transients in calcium imaging [13]. In these appli-
cations, A1 and A2 are two dictionaries allowing for sparse
representation of the two distinct components, and x1 and
x2 are the corresponding sparse coefficients [14]–[16]. The
objective is to demix the two distinct components A1x1 and
A2x2 in y.
4) Narrow-band interference signal cancellation: In some

communication applications, it is desired to recover a sig-
nal contaminated by narrowband interference, e.g., electric
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hum [16]. As a typical interference can be sparsely repre-
sented in the frequency domain,A2 can be an inverse discrete
Fourier transform matrix on which the interference can be
sparsely represented.
5) Restoration of saturation and clipping signals: Sat-

uration arises in some practical systems where the mea-
surements are quantized to a finite number of bits, which
can cause significant nonlinearity and potentially unbounded
errors [16]–[18]. In the saturation and clipping restoration
problem, the objective is to restore y0 = A1x1 from its
saturated measurement y, with x2 accounts for the saturation
errors.

In the above mentioned applications, x1 and x2 can be
reasonably assumed to be sparse. To recover (demix) the two
components from y via exploiting the sparsity of x1 and x2,
a natural formulation is the `0 norm minimization problem

minimize
x1,x2

{λ ‖x1‖0 + ‖x2‖0}

subject to A1x1 + A2x2 = y (2)

where ‖x‖0 is the `0 norm which counts the number of
nonzero elements in x. λ is a positive balance parameter
which takes the statistic difference between the two com-
ponents into consideration. The optimal value of λ depends
on the statistical information of the true signals x1 and x2.
However, the `0 minimization problem is highly nonconvex
and difficult to solve, known as NP hard. A popular manner
is to use convex relaxation that replaces the `0 norm by its
convex envelop (i.e., the `1 norm) as [15]

minimize
x1,x2

{λ ‖x1‖1 + ‖x2‖1}

subject to A1x1 + A2x2 = y. (3)

For sparsity promotion, the `1-norm regularization is
of the most popular due to its convexity, since well-
established convex optimization algorithms can be directly
applied or can be applied after some extension in solv-
ing the involved convex problems. However, the `1-norm
regularization would yield a biased estimation, as the cor-
responding soft-thresholding operation imposes a constant
shrinkage on the parameters which would result in biased
estimate for large coefficients [1], [32], [35].Moreover, it has
been demonstrated both theoretically and empirically that,
the `1-regularization cannot achieve reliable recovery with
the least measurements [20]. To alleviate the bias prob-
lem of the `1-regularization, nonconvex regularization can
be used. Typical nonconvex penalties include the `q-norm
(0 ≤ q < 1), and the smoothly clipped absolute deviation
(SCAD) penalty [21]. For example, it has been shown that
`q-regularization with q < 1 can attain better sparse recovery
performance than `1-regularization [22]–[27]. More specif-
ically, `q-regularization requires fewer measurements and
weaker sufficient conditions for reliable reconstruction than
`1-regularization. It has been demonstrated that, in terms of
restricted isometry property (RIP), the sufficient conditions
of `q-regularization for reliable reconstruction are weaker
than those of `1-regularization [22].

In this paper we consider a sparse demixing formulation
using the `q-norm with 0 ≤ q < 1 for sparsity inducing as

minimize
x1,x2

{
λ ‖x1‖q1q1 + ‖x2‖

q2
q2

}
subject to A1x1 + A2x2 = y (4)

where 0 ≤ q1, q2 < 1, ‖·‖q is the `q quasi-norm defined as
‖x‖q = (

∑n
i=1 |xi|

q)1/q.

A. RELATED WORK
Using convex regularization for sparse demixing has been
considered in [14], [15]. Specifically, the particular case of
q1 = q2 = 1 has been considered in [15] for source
separation, in this case the formulation becomes

minimize
x1,x2

{λ ‖x1‖1 + ‖x2‖1}

subject to A1x1 + A2x2 = y. (5)

Meanwhile, the case of λ = 1 and q1 = q2 = 1 has been
considered in [14] for sparse demixing. Moreover, the case
with A2 = Im and q1 = q2 = 1, problem (4) becomes

minimize
x1,x2

{λ ‖x1‖1 + ‖x2‖1}

subject to A1x1 + x2 = y

which reduces to the `1-regularized least-absolute problem
for robust sparse recovery [28]

minimize
x1

{
λ ‖x1‖1 + ‖A1x1 − y‖1

}
. (6)

The `1-loss is more robust to impulsive noise than the `2-
loss. An extended version for robust sparse recovery with
A2 = Im, q1 = 1 and 0 ≤ q2 < 2 has been considered in [29].
Furthermore, the `q-regularized least-squares formulation
in [27] is also a special cases of (4) withA2 = Im, 0 ≤ q1 < 1
and q2 = 2.
More recently, the sparse demixing formulation (4) with

0 ≤ q1, q2 < 1 has been considered in [5]. Instead of directly
solving (4), a relaxed version has been used in [5] as

min
x1,x2

{
1
β
‖A1x1 + A2x2 − y‖22 + λ ‖x1‖

q1
q1 + ‖x2‖

q2
q2

}
(7)

where β > 0 is a penalty parameter. For this unconstrained
formulation, two first-order algorithms have been proposed
in [5] based on the block coordinate descent (BCD) and alter-
native direction method of multipliers (ADMM) frameworks.
With a sufficiently small value of β, ideally β → 0, the solu-
tion of (7) satisfy ‖A1x1 + A2x2 − y‖2 → 0 and hence
accurately approaches the solution of (4). However, with a
very small value of β, problem (7) becomes ill-conditioned
and the algorithms would converge very slowly and become
impractical.

B. CONTRIBUTION
In this work we directly solve problem (4) using ADMM.
However, the standard ADMM applied to problem (4) is not
guaranteed to converge in the nonconvex case. Numerical
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studies showed that the standard ADMMalgorithm often fails
to converge (see Fig. 2 in section IV).

First, to derive a convergent algorithm, we employ an
iterative reweighting strategy in the ADMM algorithm. The
proposed iteratively reweighted ADMM algorithm solves a
convex subproblem in each step and is convergent under some
mild conditions.

Second, for the application of color image inpainting,
the new algorithm has been extended to exploit the feature
correlation between the RGB channels of a color image.

Finally, experimental results have been presented to show
the effectiveness and efficiency of the new algorithm, with
special application interesting on color image inpainting.

C. OUTLINE
Section II introduces the proposed algorithm for sparse vector
demixing. Section III extends the proposed algorithm to the
multi-channels joint sparse recovery application. Numerical
experiments are provided in Section IV. Finally, Section V
ends the paper with concluding remarks.

II. PROPOSED ALGORITHM
ADMM is a powerful framework that can be used to effi-
ciently solve many high-dimensional problems in signal pro-
cessing, image processing and machine learning [30]. The
core idea of ADMM is to employ a splitting-coordination
procedure to decouple the variables and make an intackable
global problem easy to tackle.

A. STANDARD ADMM ALGORITHM
For problem (4), the standard ADMM can be applied. Specif-
ically, the augmented Lagrangian function is

L(x,w) = λ ‖x1‖q1q1 + ‖x2‖
q2
q2 + 〈w,A1x1 + A2x2 − y〉

+
ρ

2
‖A1x1 + A2x2 − y‖22

= λ ‖x1‖q1q1 + ‖x2‖
q2
q2+

ρ

2

∥∥∥∥A1x1+A2x2 − y+
w
ρ

∥∥∥∥2
2

−
‖w‖22
2ρ

wherew is the dual variable, ρ is a positive penalty parameter.
Then, the primal and dual variables are alternatively updated
as follows

xk+11 = arg min
x∈Rn1

(
λ ‖x‖q1q1+

ρ

2

∥∥∥∥A1x+A2xk2−y+
wk

ρ

∥∥∥∥2
2

)
(8)

xk+12 = arg min
x∈Rn2

(
‖x‖q2q2+

ρ

2

∥∥∥∥A1xk+11 +A2x−y+
wk

ρ

∥∥∥∥2
2

)
(9)

wk+1
= wk

+ ρ(A1xk+11 + A2xk+12 − y). (10)

The x1-subproblem is a nonconvex regularized least-
square problemwhich is difficult to solve directly. A standard
trick is to use a proximal linearization for the quadratic term.

Specifically, let uk = A2xk2 − y + wk/ρ, use a quadratic
majorization of the second term in the x1-subproblem as

1
2

∥∥∥A1x1 + uk
∥∥∥2
2

≈
1
2

∥∥∥A1xk1 + uk
∥∥∥2
2
+

〈
x1 − xk1, d1(x

k
1)
〉
+
µ1

2

∥∥∥x1 − xk1
∥∥∥2
2

(11)

where d1(xk1) = AT
1 (A1xk1 + uk ), µ1 > 0 is a proximal

parameter. In this manner, the x1-subproblem becomes

xk+11 = arg min
x∈Rn1

λ ‖x‖q1q1+ ρµ1

2

∥∥∥∥∥x−xk1+ d1(xk1)µ1

∥∥∥∥∥
2

2

 (12)

which can be efficiently solved via element-wise proxim-
ity operator. Recall the proximity operator for the `q-norm
function

Tq,η(t) = argmin
x

{
‖x‖qq +

η

2
(x − t)2

}
(13)

where η > 0. For q = 0, it reduces to the hard-thresholding

T0,η(t) =


0, |t| <

√
2/η

{0, t}, |t| =
√
2/η

t, otherwise

while for q = 1, it becomes the soft-thresholding operator

T1,η(t) = sign(t) max {|t| − 1/η, 0} (14)

For 0 < q < 1, it can be computed as [31]

Tq,η(t) =


0, |t| < τ

{0, sign(t)β}, |t| = τ
sign(t)z, |t| > τ

where β = [2(1−q)/η]1/(2−q), τ = β+qβq−1/η, z ∈ (β, |t|)
satisfies h(z) = qzq−1 + ηz − η |t| = 0. As h(z) is a convex
function, when |t| > τ , z can be efficiently solved using a
Newton’s method. The subproblem (12) is separable and can
be solved in an element-wise manner as (13).

Similarly, let vk = A1xk+11 − y + wk/ρ, use a quadratic
majorization of the second term in the x2-subproblem as

1
2

∥∥∥A2x2 + vk
∥∥∥2
2

≈
1
2

∥∥∥A2xk2+v
k
∥∥∥2
2
+

〈
x2−xk2, d2(x

k
2)
〉
+
µ2

2

∥∥∥x2−xk2∥∥∥22
(15)

where d2(xk2) = AT
2 (A2xk2 + vk ), µ2 > 0 is a proximal

parameter. Then, the x2-subproblem becomes

xk+12 = arg min
x∈Rn2

‖x‖q2q2+ ρµ2

2

∥∥∥∥∥x−xk2+ d2(xk2)µ2

∥∥∥∥∥
2

2

 (16)

which can be efficiently solved via the proximal
minimization (13).

However, the above ADMM algorithm is not guaranteed to
converge, which often fails to converge in numerical experi-
ments (see Fig. 2 in section IV). In the following, we propose
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an iteratively reweighted algorithm to approximately solve
the problem (4).

B. PROPOSED ITERATIVELY REWEIGHTED ADMM
ALGORITHM
To develop a convergent algorithm for the linearly con-
strained nonconvex minimization problem (4), we use the
iteratively reweighted method to approximately solve (4).
Our algorithm can be viewed as an extension of the work [33]
on sparse recovery to sparse demixing. Besides, while the
method in [33] solves a sequence of `1 minimization sub-
problems, our algorithm is a first-order algorithm as in each
iteration the dominant computational complexity is matrix-
vector multiplication, hence is highly efficient and scales well
to high-dimensional problems.

Specifically, at the (k + 1)-th iteration, the `q norm is
approximated by

‖x‖qq,ε =
∑

i

(∣∣∣xki ∣∣∣+ ε)q−1 |xi| (17)

where ε > 0 is a proximal parameter.
With this approximation, the x1 and x2 subproblems

become convex problems as

xk+11

= arg min
x∈Rn1

(
λ

∥∥∥ωk1 ◦ x∥∥∥1+ ρ2
∥∥∥∥A1x+A2xk2−y+

wk

ρ

∥∥∥∥2
2

)
(18)

xk+12

= arg min
x∈Rn2

(∥∥∥ωk2 ◦ x∥∥∥1+ ρ2
∥∥∥∥A1xk+11 +A2x−y+

wk

ρ

∥∥∥∥2
2

)
(19)

where ◦ denotes the Hadamard product and ωki is weight at
the k-th iteration given by

ωki =

[(∣∣∣xki (1)∣∣∣+ ε)qi−1 , · · · , (∣∣∣xki (ni)∣∣∣+ ε)qi−1] . (20)

Then, with the use of the linearization (11) and (15), it fol-
lows that

xk+11 = arg min
x∈Rn1

λ ∥∥∥ωk1 ◦ x∥∥∥1
+
ρµ1

2

∥∥∥∥∥x− xk1 +
d1(xk1)
µ1

∥∥∥∥∥
2

2

 (21)

xk+12 = arg min
x∈Rn2

∥∥∥ωk2 ◦ x∥∥∥1
+
ρµ2

2

∥∥∥∥∥x− xk2 +
d2(xk2)
µ2

∥∥∥∥∥
2

2

 (22)

which can be efficiently solved via the soft-thresholding
operator (14).

FIGURE 1. DCT coefficients of the RGB channels of a 500× 318 color
image used in the inpainting experiment in section IV (see Fig. 4). For
clarity, only the first 25% coefficients of each channel are plotted.

Extensive numerical studies show that, this iteratively
reweighted algorithm can achieve satisfactory with an initial-
ization obtained by this algorithm with q1 = q2 = 1. When
q1 = q2 = 1, the x1 and x2 subproblems degenerate to

xk+11 = arg min
x∈Rn1

λ ‖x‖1 + ρµ1

2

∥∥∥∥∥x− xk1 +
d1(xk1)
µ1

∥∥∥∥∥
2

2


(23)

xk+12 = arg min
x∈Rn2

‖x‖1 + ρµ2

2

∥∥∥∥∥x− xk2 +
d2(xk2)
µ2

∥∥∥∥∥
2

2

 .
(24)

In the new algorithm, the dominant computation is matrix-
vector multiplication with complexity O(mn1 +mn2), thus it
scales well to large-scale problems.

III. EXTENSION TO MULTICHANNEL JOINT SPARSE
RECOVERY PROBLEMS
This section extends the proposed algorithm to the problem
of joint sparse recovery. An interesting application of such
problem is color image inpainting. For a color image with
three channels (RGB image), each channel can be recovered
separately. Since the three color channels (also the corrup-
tion in the three channels) usually have similar (roughly the
same) sparsity pattern (as illustrated in Fig. 1), performance
improvement can be expected via exploiting the sparsity pat-
tern similarity among different channels. This is also referred
to as group or joint sparse recovery. In this section, we extend
the above ADMM algorithm to joint sparse recovery.

In the joint sparse recovery problem, assume that there
are L channels, the linear measurements Y ∈ Rm×L can be
expressed as

Y = A1X1 + A2X2 (25)

where Xk ∈ Rnk×L , k = 1, 2, contain the sparse coefficients
of the two components. To exploit the joint sparsity among
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FIGURE 2. Typical convergence behavior of ADMM in the nonconvex case
with q1 = q2 = q < 1. (a) Standard ADMM. (b) Proposed iteratively
reweighted ADMM.

the L channels, we reformulate the problem (4) as

minimize
X

λ ‖X1‖
q1
1,q1
+ ‖X2‖

q2
1,q2

subject to A1X1 + A2X2 = Y. (26)

For q ≥ 0, the matrix norm ‖X‖q1,q is defined as

‖X‖q1,q =
∑

i
‖X[i, :]‖q1 =

∑
i

(∑
j
|X[i, j]|

)q
.

Similar to (17), at the (k + 1)-th iteration, we approximate
the `q norm by

‖X‖q1,q,ε =
∑

i

[(
ε+
∑

j
|Xk [i, j]|

)q−1∑
j
|X[i, j]|

]
(27)

with ε > 0 be a proximal parameter. Then, similar to
the iteratively reweighted ADMM algorithm in section II-B,
the ADMM algorithm for joint sparse recovery consists
of the following steps

Xk+1
1 = arg min

X∈Rn1×L

(
λ

∥∥∥6k
1 ◦ X

∥∥∥
1,1

+
ρ

2

∥∥∥∥A1X+A2Xk
2−Y+

Wk

ρ

∥∥∥∥2
F

)
(28)

Xk+1
2 = arg min

X∈Rn2×L

(∥∥∥6k
2 ◦ X

∥∥∥
1,1

FIGURE 3. Rate of successful recovery and averaged relative error of
recovery versus sparsity K . A1 is a DCT matrix and A2 be a Gaussian
matrix, with q1 = q2 = q ∈ {0.2, 0.5, 0.7, 1}. (a) Rate of successful
recovery. (b) Averaged relative error of recovery.

+
ρ

2

∥∥∥∥A1Xk+1
1 +A2X−Y+

Wk

ρ

∥∥∥∥2
F

)
(29)

Wk+1
= Wk

+ ρ(A1Xk+1
1 + A2Xk+1

2 − Y) (30)

where W is the dual variable, 6k
i ∈ R

ni×L (with i = 1, 2) is
a weighting matrix in the (k + 1)-th iteration given by

6k
i

=


(
ε+
∑

j |X
k [1, j]|

)qi−1
· · ·

(
ε+
∑

j |X
k [1, j]|

)qi−1
...(

ε+
∑

j |X
k [ni, j]|

)qi−1
· · ·

(
ε+
∑

j |X
k [ni, j]|

)qi−1


Similar to the algorithm in section II, we further use a
linearization for the X1 and X2 subproblems. Let Uk

=

A2Xk
2 − Y +Wk/ρ, a quadratic majorization of the second

term in the X1-subproblem is

1
2

∥∥∥A1X1 + Uk
∥∥∥2
F

≈
1
2

∥∥∥A1Xk
1+U

k
∥∥∥2
F
+

〈
X1 − Xk

1,D1(Xk
1)
〉
+
c1
2

∥∥∥X1−Xk
1

∥∥∥2
F

where D1(Xk
1) = AT

1 (A1Xk
1 + Uk ), c1 > 0 is a

proximal parameter. In this manner, the X1-subproblem
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FIGURE 4. Recovery performance of the proposed algorithms on three 600× 400 color images corrupted by salt-and-pepper noise.

becomes

Xk+1
1 = arg min

X∈Rn1×L

λ ∥∥∥6k
1 ◦ X

∥∥∥
1,1

+
ρc1
2

∥∥∥∥∥X− Xk
1 +

D1(Xk
1)

c1

∥∥∥∥∥
2

F

 . (31)

Moreover, let Vk
= A1Xk+1

1 − Y + Wk/ρ, a quadratic
majorization of the second term in the X2-subproblem is

1
2

∥∥∥A2X2 + Vk
∥∥∥2
F

≈
1
2

∥∥∥A2Xk
2+V

k
∥∥∥2
F
+

〈
X2−Xk

2,D2(Xk
2)
〉
+
c2
2

∥∥∥X2−Xk
2

∥∥∥2
F
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where D2(Xk
2) = AT

2 (A2Xk
2 + Vk ), c2 > 0 is a proximal

parameter. In this manner, the X2-subproblem becomes

Xk+1
2 = arg min

X∈Rn2×L

∥∥∥6k
2 ◦ X

∥∥∥
1,1

+
ρc2
2

∥∥∥∥∥X− Xk
2 +

D2(Xk
2)

c2

∥∥∥∥∥
2

F

 . (32)

Then the X1 and X2 subproblems (31) and (32) can be
solved in an element-wise manner. Specifically, the subprob-
lems (31) and (32) are separable with respect to each element
in the varableX, and each element is a proximal optimization
problem of the form

min
x

{
ω|x| +

η

2
(x − t)22

}
(33)

whose solution is explicitly given by the soft thresholding
sign(t) max {|t| − ω/η, 0}. Thus, the solution to the subprob-
lems (31) and (32) are given by

Xk+1
1 = sign(T1) ◦max

{
|T1| −

λ

ρc1
6k

1 , 0
}

(34)

Xk+1
2 = sign(T2) ◦max

{
|T2| −

1
ρc2

6k
2 , 0

}
(35)

with

Ti = Xk
i − Di(X

k
i )/ci.

For the special case of L = 1, this algorithm degener-
ates to the ADMM algorithm for sparse vector recovery in
section II-B.

IV. NUMERICAL EXPERIMENTS
This section evaluates the performance of the new algorithms
via numerical experiments, including a synthetic experiment
using simulated sparse signals and a real life experiment on
color image inpainting. The regularization parameter λ is
selected by providing the best performance of the algorithm
in terms of the lowest relative error (RelErr) of recovery.
For the new algorithm, the proximal parameter is selected as
ε = 10−4, and we first run it with q1 = q2 = 1 and λ = 1 to
obtain an initial estimation.

A. SYNTHETIC DATA RECOVERY
In the first experiment, we use simulated data as:
A1 ∈ R128×128 is a DCT matrix, A2 ∈ R128×128 is an
orthonormal Gaussian random matrix, the sparse vectors x1
and x2 have a same sparsity of K . The positions of nonzeros
elements in x1 and x2 are uniformly distributed, while the
amplitude of the nonzero elements Gaussian distributed. The
sparsity K is varied from 1 to 45. We use q1 = q2 = q with
q ∈ {0.2, 0.5, 0.7, 1}.
Fig. 2 plots typical convergence behavior comparison

between the standard ADMM using the steps (8)–(10) and
the proposed iteratively reweighted ADMM algorithm using
the steps (18), (19) and (10) in the considered nonconvex

FIGURE 5. Recovery performance versus q1 and q2 in salt-and-pepper
noise, in terms of PSNR in dB.

cases. It can be seen that, the standard ADMM using (8)–(10)
does not converge, while the proposed iteratively reweighted
ADMM algorithm is convergent. The new algorithm can
converge to an accuracy with tolerance lower than 10−15

within 500 iterations.
Fig. 3 shows the recovery performance for different spar-

sity K in terms of success rate of recovery and averaged rela-
tive error of recovery. Let x̂1 denote the recovered result of the
ground-truth xo1, then the recovery is regarded as successful
if the relative error of recovery is smaller than 10−2, i.e.,∥∥x̂1 − xo1

∥∥
2∥∥xo1∥∥2 < 10−2.

The result in Fig. 3 is averaged over 200 independent runs.
It can be seen from Fig. 3 that, using q < 1 can achieve
significantly better performance than using the popular con-
vex penalty with q = 1. The performance gain of nonconvex
regularization is especially conspicuous when the sparsity
is in the region K ∈ [20, 35]. For example, for K = 25,
the success rate given by q = 1 is about 40% while that
given by q ∈ {0.2, 0.5, 0.7} is 100%. Moreover, for K = 25,
the averaged recovery error given by q = 1 is about 80 times
larger than that given by q = 0.2. On the whole, q = 0.2
yields the best performance.

B. REALISTIC EXPERIMENT ON COLOR IMAGE
INPAINTING
In the second experiment, we consider color image inpainting
using the multichannel version of the new algorithm. It is
worth noting that, there exist a number of inpainting meth-
ods, such as the method using the Field of Experts (FoE)
model [34], which can attain better performance than the pro-
posed algorithm in the following considered inpainting exper-
iment. However, such methods require the exact support-set
knowledge (mask) of the corruption, while our algorithm
does not use such prior information. Themain interesting here
is evaluate the new algorithm with q < 1 in comparison with
the convex `1 method.
The objective is to separate the original image from text

overwriting or salt-and-pepper noise corruption. For this
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FIGURE 6. Recovery performance of the proposed algorithms on a 500× 318 color image corrupted by overwriting with text.

TABLE 1. Recovery performance of the new method on color image
inpainting in the presence of salt-and-pepper noise (q1 = q2 = q).

application, A1 is a basis of the image and A2 = I. A1 is
selected as an inverse discrete cosine transformation (IDCT)
matrix. In this case, X1 contains the DCT coefficients of
the image. The IDCT matrix enables fast computation of the
multiplication of A1 (or AT

1 ) with a vector.
Fig. 4 shows the results in color image inpainting with the

images be corrupted by salt-and-pepper noise, where 30% of
the pixels of each image are corrupted. The presented results
include the recovered images, the relative error (RelErr) of the
estimated DCT coefficients and the peak-signal noise ratio
(PSNR) of the restored image.

The results demonstrate that, the proposed algorithm with
q1 < 1 and q2 < 1 can yield distinctly better performance
than that of q1 = 1 and q2 = 1. For example, as shown by
the results in Table I, for the three images, the PSNR with
q1 = q2 = 0.4 are respectively 3.53, 1.19 and 1.91 dB higher
than that of q1 = q2 = 1. Fig. 5 shows the PSNR for the first
image of the proposed method for different values of q1 and
q2. The result indicates that, the new algorithm can achieve
satisfactory performance by roughly selecting q1 ≤ 0.8 and
q2 ≤ 0.5. This is reasonable, since the DCT coefficients of a
real-life image are not strictly sparse but rather approximately

follow an exponential decay, while the salt-and-pepper noise
is strictly sparse.

The final experiment considers color image inpainting
when the image is corrupted by overwriting with text. The
result is shown in Fig. 6. It can be seen that, with properly
chosen values of q1 and q2, the proposed method has signifi-
cantly better performance than the `1 method.

V. CONCLUSIONS
This paper proposed an efficient algorithm for sparse demix-
ing based on nonconvex regularization. The new algo-
rithm uses a reweighted `1 method to approximately solve
the `q-norm regularized nonconvex formulation based on
ADMM. Further, the new algorithm has been extended to the
multichannel joint recovery problem for color image inpaint-
ing. Both synthetic and realistic experiments demonstrated
that, the new algorithm can achieve considerable better per-
formance than the popular `1 method in sparse demixing
problems.
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