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ABSTRACT A novel multimodal fusion approach is proposed for Chinese sign language (CSL) recognition.
This framework, the LSTM2+CHMM model, uses dual long short-term memory (LSTM) and a couple
hidden Markov model (CHMM) to fuse hand and skeleton sequence information. Novel contributions,
first, include a unique hand segmentation algorithm using power rate transforms and the RGB-D image
fusion. This approach effectively overcomes common limitations, such as complex backgrounds, inconsistent
lighting, and variable skin tones. Then, as a result, the proposed skeleton-hand fusion framework can be used
for the vision-based sign language recognition (SLR) of non-specific people in non-specific environments.
Finally, this LSTM2+CHMM model combines the probability theory with a neural network to provide a
unified methodology for multiple-sequence fusion. The proposed SLR framework was tested using the two
CSL datasets, and the experimental results showed it to be effective.

INDEX TERMS Multimodal fusion, LSTM, CHMM, CNN, CSL recognition.

I. INTRODUCTION
Vision-based sign language recognition (SLR) is currently an
active area of research in the field of artificial intelligence
[1]–[18]. SLR is challenging because critical technologies
needed for high accuracy identification, such as human-
computer interfacing, are still being developed. In addition,
existing techniques are often designed for specific peo-
ple or environments, limiting their robustness. As such, there
is a need for precise SLR with non-specific conditions.

SLR involves multiple complex problems, such as human-
computer interactions and pattern recognition, which have
attracted the attention of experts in multiple fields [18], [19].
Other challenges include variations in data collection and
interpretation, such as subtle changes in gestures between
individual people that make it difficult to establish a uniform
SLR model [19]. In addition, hands are relatively small in
videos and their movements are complicated [20]. Differ-
ing cultural and personal habits also affect SLR accuracy
[21], [22]. Furthermore, robust real-time SLR requires
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expensive hardware and software for processing complex
scenes and rapidly changing backgrounds [5].

Previous SLR algorithms have encountered multiple
issues [18]. Primarily, a simple combination of features is not
certain to produce better results than a single feature [22].
For example, a histogram of oriented gradients (HOG) has
been used to describe local hand information, but some
feature combinations have actually reduced the overall per-
formance [22]. To solve this problem, we introduced a con-
volutional neural network (CNN) to extract hand features and
avoid the negative effects of HOG. In previous HMM-based
SLR methods, model parameters needed to be adaptively set,
which introduced too many system parameters and reduced
both the model training and calculation speeds [22]. In this
study, we combined LSTM with a couple hidden Markov
model (CHMM) for sequence signal processing [23]. Unlike
existing HMM-based methods [22], this approach avoids
the need to model signs one at a time, while reducing the
total number of parameters. In previous studies, adaptive
multi-modal signals were typically fused by adaptive frac-
tional fusion methods to achieve higher recognition accuracy
than for individual features [24], [25]. However, there is
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typically not a theoretical explanation for assigning appro-
priate weights to each feature. In this paper, the CHMM
model was used for multi-modal fusion and a probabilistic
theoretical derivation is provided.

We propose a hierarchical fusion approach, based on the
combination of dual LSTM and CHMM, to resolve the issues
discussed above. This two-level fusion framework effec-
tively utilizes low-level sequence classification capabilities
and advanced semantic decision-making mechanisms. The
motivation for this approach can be described as follows.
(1) Our two-level fusion mechanism assumes that if unreli-
able features reduce classification accuracy in the first level,
they can be repaired in a higher level. (2) In previous studies,
HMM-based SLR methods required the establishment of an
adaptive HMM classifier for each sign word. Our framework
uses the LSTMmodel to automatically extract system param-
eters, which can be used in the CHMM to improve classifier
learning. (3) A CNN was used for automated hand feature
extraction, avoiding the negative effects of local features
(such as HOG) that are adaptive or unsupervised.

The rest of this paper is organized as follows. Related
work is reviewed in section II and our model is introduced
in section III. Test results are analyzed in section IV and
summarized in section V.

II. RELATED WORK
A variety of classification algorithms have been proposed
for SLR, which can generally be divided into HMM-based
and NN-based methods. HMM techniques typically involve
a weighting scheme that is used for gesture recognition.
However, matching times can be prohibitively long and
unsuitable for real-time SLR [25]. Curve matching tech-
niques have been proposed for manifold analysis of gesture
trajectories [26] and light-HMM methods have also been
used to select key frames using a low rank approximation,
to improve recognition efficiency [27].

HMM-based approaches typically require fewer training
data but tend to exhibit lower recognition accuracy. Neural
network algorithms have become popular in recent years,
partly because they offer higher recognition accuracy. For
example, Huang et al. incorporated a convolutional neural
network in their algorithm [5], Liu et al. developed a long
short-term memory (LSTM) model [23], Neverova et al.
utilized a recurrent neural network (RNN) structure [24],
Wu et al. used a 3D-CNN-based approach [28], and
Molchanov et al. proposed a deep dynamic neural net-
work [29]. These algorithms were effective for sequence
information processing, such as active recognition. However,
the primary disadvantage of deep learning methods like these
is they typically require large training sets.

Classical multimodal fusion, an emerging SLR technol-
ogy, can be divided into early and late fusion techniques.
Early fusion takes place at the feature level [30], while
late fusion takes place at the decision or scoring level [31].
Late fusion still suffers from certain limitations, such as
inflexible parameter learning, longer runtimes, and invalid

feature results. As such, neural networks are often used to
assist in the multimodal fusion process. As a critical compo-
nent needed for accurate training, this fusion step has received
increased attention from researchers in recent years [27],
[32], [33]. For example, Wang et al. proposed a combined
mode feature for skeleton and hand HOG features [27].
Wu et al. input skeleton data and RGB-D images into an
HMM in order to fuse multimodal gesture data streams [32].
Neverova et al. used a multi-scale, multi-modal neural net-
work called ModDrop to learn cross-modal correlations
between multi-modal channel representations [24].

Dynamic sign language recognition (DSLR) systems have
been proposed for smart home interactive applications in
which a k-means++method was used to cluster features and
train the system. A nonlinear support vector machine (SVM)
was then utilized to classify hand movements [34]. However,
the testing stage only considered six simple dynamic gestures.
Wang et al. proposed a multi-view parameter-free framework
(MPF) [35] and Yuan et al. focused on designing a robust
feature description for optical flow frames [36]. A lightweight
deep learning model, based on the convolutional 3D (C3D)
network, and a recurrent neural network (RNN) were used
for complicated action recognition. 3D spatio-temporal infor-
mation for each sign has also been interpreted using joint
angular displacement maps (JADMs), which encode the sign
as a color texture image [7]. A new color-coded feature map,
called a joint angular velocity map, was recently proposed to
accurately model 3D joint motion [8]. These studies provide
a variety of options for multi-modal fusion.

In addition, some studies have investigated SLR based on
machine translations, such as the variational auto-encoder
(VAE). Huang et al. proposed a hierarchical attention net-
work with latent space (LS-HAN) for continuous CSL recog-
nition [6]. A recent coding challenge introduced the sign
language translation (SLT) problem [4], in which the objec-
tive was to generate spoken translations from sign language
videos by taking into account both the order of words and
grammar. However, machine translation methods cannot rec-
ognize semantic details in each frame of a video. As such,
we propose the use of CSLwords corresponding to individual
frames, necessitating the selection of an algorithm for the
automatic grouping of sentences to recognize frames in real-
time. This approach combines the advantages of existing
fusion techniques and introduces a novel multimodal fusion
technique for SLR.

The quantity of available training data is often insufficient
for practical applications of large-scale SLR [20]. Public
sign language datasets, such as the MSRC-12 Kinect gesture
dataset [37], the 73 ASL mark datasets [38], the 12 American
sign language datasets [19], the 10-Gesture dataset [39], and
the 24 static ASLmark word data set [20] are relatively small.
Onewell-known gesture dataset, the ChaLearn database, only
contains 20 gestures [21]. In 2016, Wan et al. released a new
dataset containing 249 gestures [27] and in 2018 Huang et al.
conducted a series of experiments on the 500 CSL dataset [5].
Sentence datasets, such as Sun’s 63-sentence database, are
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FIGURE 1. Multi-sensor data fusion based on LSTM2+CHMM for SLR.

also available and typically consist of two or four isolated
words [40], [41]. This study focuses on CSL recognition
and utilizes two datasets. The first includes a series of sen-
tences and was developed in-house. The second is the largest
known CSL dataset, developed by Jie et al. [5]. The primary
objective for this study was improving recognition accuracy
through a combination of NN-based and HMM-based meth-
ods in a limited sample environment.

III. RECOGNITION METHODOLOGY
As shown in Fig. 1, a Microsoft Kinect device was
used to acquire sign language information, including color,
depth, and skeleton streams simultaneously. The 3D skele-
ton data and segmented hand sequences were then com-
bined for continuous CSL recognition using the proposed
LSTM2+CHMMmodel. First, segmented hand images were
input to the hand-related LSTM algorithm (denoted as
LSTMh). 3D skeleton sequences were simultaneously input
to the skeleton-related LSTM algorithm (denoted as LSTMs).
The output from these two LSTM sequences were input
to a CHMM model. Continuous CSL recognition results
were then acquired using graph model probability inferences,
the details of which are discussed below.

A. FEATURE EXTRACTION
1) HAND FEATURE EXTRACTION
Input video from the Kinect was used to acquire a color
stream Ic = (I ci )

T
i=1, a depth stream Id = (Idi )

T
i=1, and a 3D

skeleton stream K3D
= (k3Di )Ti=1. At time t , RGB-D images,

which are a composition of I ci and Idi , were used to segment
hands from the background.

RGB-D images (I ci , I
d
i ), based on transfer learning and

power rate transforms, were used to segment hands from
the background [42]. Two different techniques were used to
negate the effects of skin color on segmentation. First, depth
informationwas used to establish a threshold in Idi , separating
the face from the hands. This approach is viable because the

FIGURE 2. Hand segmentation using RGB-D image fusion.

face is always behind the hands during active CSL. Secondly,
a hand detector was used in I ci to distinguish foreground from
background. The active contour method was then applied.

This framework is represented in Fig. 2. A faster R-CNN,
trained with a CSL dataset, was used to detect hands in
RGB frames as shown in Fig. 2(c) [43], [44]. Depth images
Idi (Fig. 2(d)) were processed using power rate transforms
(Fig.2(e)) and morphological closing operations (Fig.2(f)) to
acquire handmasks. The environment used for collecting ges-
ture data is shown in Fig.3(a), where the Kinect is 0.5 meters
away from the signer and 1.2 meters from the ground. The
grayscale is deeper for shorter distances.

Since hands remain mostly in front of the body during
signing, grayscale values for the hand are lower in the depth
image. In this study, the power rate transform was used to
stretch the image grayscale histogram in order to highlight
hand information. This process can be expressed as follows:

s = crγ , (1)

where c and γ are control parameters, r is the initial grayscale
value, and s is the transferred grayscale. According to the
formula, when γ > 1, image stretching is focused primarily
in the high grayscale range and image details are highlighted.
When γ < 1, image stretching is focused primarily in
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FIGURE 3. (a) The CSL data collection environment and (b) the power rate
transform function for varying parameters.

FIGURE 4. A comparison of results using power rate transforms in depth
images for multiple values of c and γ .

the low grayscale range. A function image for the power
rate transform is shown in Fig. 3(b). According to the his-
togram of Idi , all values are concentrated in a small range
and grayscale stretching occurred for the parameters c = 1,
γ = 0.8, 0.6, 0.2, and 0.1. The power rate transform of Idi
was calculated as shown in Fig. 4. Experiments demonstrated
that smaller values of γ produced better grayscale stretching
effects. As such, values of c = 1, γ = 0.1 were chosen for
the power rate transform of Idi . As seen in Fig. 2(f), the hand
silhouette is more obvious after the power rate transform,
though some noise contours are still visible. This small-
area noise can be removed using a morphological closing
operation, in which the region is expanded and the image is
then etched.

Action contours, calculated from the detected field
(Fig.2(c)) and the processed depth image (Fig.2(f)) were used
to segment the hands (Fig.2(g)) [45]. RGB images (Fig.2(a))

were then combined to produce the final hand segmentation
(Fig.2(h)). Since the hand area is small, it is inconvenient to
directly extract features using trained large-scale networks
such as AlexNet or VGG. As such, we have established a
small-scale CNN to extract image features.

FIGURE 5. An illustration of hand feature extraction using the CNN.

Fig. 5 shows the 11-layer CNN model used to extract
features from the segmented hands. This model includes an
input layer (28× 28× 3), 3 convolution layers, 2 max pool-
ing layers, 3 nonlinear layers, 1 fully-connected layer, and
1 classification output layer. The input to the CNN is an RGB
image containing both left-hand and right-hand data. The 1st

convolution layer includes 8 different 3 × 3 kernels, while
the 1st pooling layer contains 8 different 2× 2 neighborhood
domains. The 2nd convolutional layer includes 16 different
3×3 kernels, while the 2nd pooling layer contains 16 different
2 × 2 neighborhood domains. The 3rd convolution layer
includes 32 different 3×3 kernels. The xs hand features were
extracted from the fully-connected layer.

2) 3D SKELETON FEATURE EXTRACTION
The skeletal stream for the ith skeleton contained 25 nodes
and was represented byK 3D

= (k3D1 , · · · , k3Dn ). A quaternion
representation was selected for 3D skeletal features as human
body gestures can be described by angles between bones. Two
skeletal vectors were defined as en = (a1, b1, c1) and em =
(a2, b2, c2). The cosine of the angle θ between two bones is
then given by:

cos θ =
a1a2 + b1b2 + c1c2√

a21 + b
2
1 + c

2
1 ·

√
a22 + b

2
2 + c

2
2

. (2)

The rotation axis for non-parallel vectors en and em in a plane
are given by:

r = en × em =

∣∣∣∣∣∣
i j k
a1 b1 c1
a2 b2 c2

∣∣∣∣∣∣
=

(∣∣∣∣b1 c1
b2 c2

∣∣∣∣ ,− ∣∣∣∣a1 c1
a2 c2

∣∣∣∣ , ∣∣∣∣a1 b1
a2 b2

∣∣∣∣) , (3)

where r represents a rotation from en to em and the direction
of the normal vector is determined by the right-hand criterion.
This implies:

v = (a,b, c) = sin
(
θ

2

)
· r,

w = cos
(
θ

2

)
.

(4)
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The unit quaternion q can be expressed as:

q = (v,w) = (a,b, c,w) (5)

and a complete 3D skeletal gesture is represented as a
4 × 25 = 100 dimensional vector with 25 nodes: xg =
(q1,q2, · · · ,q25).

B. CSL RECOGNITION
1) THE LSTM2+CHMM FRAMEWORK
In this study, two LSTMs and a CHMM algorithm were used
for CSL data modeling. The included LSTM was a type of
recurrent neural network (RNN), while LSTMh was used to
calculate hand-related sequence data and LSTMs was used to
calculate skeletal data. These two models had the same struc-
ture but different input feature vector types. LSTMoutput was
input to the CHMM model and the two data streams were
fused using CHMM inference to produce CSL recognition
results.

Calculation of the LSTM models shown in Fig. 6 can be
described as follows [23]:

ft = σ (Wf [ht−1, xt ]+ bf )

it = σ (Wi[ht−1, x]+ bi)

dt = tanh(WC [ht−1, xt ]+ bC )

ot = σ (Wo[ht−1, xt ]+ bo)

Ct = ft ∗ Ct−1 + it ∗ dt

ht = ot ∗ tanh(Ct )

(6)

where xt is a hand-related or skeleton-related feature vector
input signal. The ht−1 term is a middle hidden variable, h0 is
the initial value, σ (·) and tanh(·) are active functions,W is the
network weight, and b is the deviation. The output is given by
yt = Softmax(Wyht + by).
LSTM output yst , y

g
t was then input to the CHMM as an

observed signal. The CHMM was divided into two basic
HMMs to simplify its calculation, as described by graph
model theory [22]. This HMM is a simple dynamic Bayesian
network (DBN) that can be determined using Markov chain
theory and a Viterbi decoding algorithm [22]. It is defined
by the parameter λ = (π,A,B), where π indicates prior
knowledge, A is a state transaction matrix, and B is the
observation probability.

As shown in Fig. 6, Y s = (ys1, · · · , y
s
T ) and Y g =

(yg1, · · · , y
g
T ), where ysi and ygi denote the ith hand and

skeleton feature vectors, respectively. A mixed-state DBN
model was developed to represent continuous CSL recogni-
tion systems using gesture observations Y and sign statesW .
Hand-related contributions were assumed equal to skeleton-
related contributions. As a result, the state sequence W s

=

(ws1, · · · ,w
s
T ) could be updated using W g

= (wg1, · · · ,w
g
T ).

Information in these two sequences was fused by probabil-
ity inference, producing a final state with higher estimation
accuracy.

FIGURE 6. The LSTM2+CHMM model for CSL recognition.

2) LSTM2+CHMM CALCULATION
Inference was first performed by dividing the CHMM into
two HMMs to calculate optimal hidden state probabilities.
Hand-related HMMs included 3 parameters [46]:

π s = [psi ]1×n = P(ws0)
As = [asij]n×n = P(wst+1|w

s
t )

Bs = P(yst |w
s
t ) = N(µsy, 6

s
y)(y

s
t )

(7)

where π s is the prior distribution of hand-related states ws0.
If ws0 includes n states, then (s1, s2, · · · , sn), where si corre-
sponds to the ith sign. Hence, P(ws0 = si) = π s(i). The term
As is a state transaction matrix and asij denotes the transaction
probability from the ith sign state to the jth sign state. As such,
asij = P(wst+1 = sj|wst = si). Bs is an observation matrix such
that yst is a continuous variable. The observation probability
P(yst |w

s
t = si) is then a Gaussian distribution, where µy and

6y are the mean and variation, respectively. From Bayesian
theory, optimal state sequence estimation for ws1:t and P(w

s
1)

can be calculated as follows [46]:

P(ws1) = P(ws1|w
s
0)P(x

s
0). (8)

The observation y1 then yields:

P(ws1y
s
1) =

P(ys1|w
s
1)P(x

s
1)

P(ys1)
. (9)

The state probability at time t can be determined from:

P(wst+1) = P(wst+1|w
s
t )P(w

s
t ) (10)
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and the state can be optimized using an observation sequence:

P(ws1+t |y
s
1:1+t )

= P(ws1+t |y
s
1+t , y

s
1:t )

= P(ws1+t |y
s
1+t ) · P(w

s
1+t |y

s
1:t )

= αP(ys1+t |w
s
1+t )P(w

s
1+t ) · P(w

s
1+t |y

s
1:t )

= αP(ys1+t |x
s
1+t )P(x

s
1+t |x

s
t )

×P(xst )
∑

xt
P(ws1+t |w

s
t )P(w

s
t |y

s
1:t ) (11)

The final fusion inference probability was acquired by assum-
ing the skeleton-related HMM to be the primary network,
implying it is more important for recognition. The 3 parame-
ters used in this inference process are given by the following:

πg = [pgi ]1×n = P(wg0)
Ag = [agijk ]n×m×l = P(wg1+t |w

g
t ,w

s
t )

Bg = P(ygt |w
g
t ) = N(µgy, 6

g
y )(y

g
t )

(12)

where πg is the prior distribution of skeleton-related states
wg0. If w

g
0 includes n states, then (s1, s2, · · · , sn). Here, si

corresponds to the ith sign and P(wg0 = si) = πg(i). The
term Ag is a state transaction matrix and aijg denotes the
transaction probability from the ith sign state to the jth sign
state. As a result, agijk = P(wgt+1 = sk |w

g
t = si,wst = sj).

Bg is an observation matrix and ygt is a continuous variable.
The observation probability P(ygt |w

g
t = si) is then a Gaussian

distribution, where µy and 6y are the mean and variation,
respectively. The initial hand-related HMM inference state is
given by:

P(wg1) = P(wg1|w
g
0,w

g
0)P(w

g
0,w

g
0)

= P(wg1|w
g
0,w

s
0)P(w

g
0)P(w

s
0). (13)

wg1 can then be updated using yg1:

P(wg1y
g
1) =

P(yg1|w
g
1)P(w

g
1)

P(yg1)

=
P(yg1|w

g
1)P(w

g
1|w

g
0,w

s
0)P(w

g
0)P(w

s
0)

P(yg1)
(14)

In general, the state at time t is:

P(wg1+t ) = P(wg1+t |w
g
t ,w

s
t )P(w

g
t ,w

s
t )

= P(wg1+t |w
g
t ,w

s
t )P(w

g
t )P(w

s
t ) (15)

An optimized state can be estimated from the observed
sequences:

P(wg1+t |y
g
1:1+t ) = P(wg1+t |y

g
1+t , y

g
1:t )

= P(wg1+t |y
g
1+t ) · P(w

g
1+t |y

g
1:t )

= αP(yg1+t |w
g
1+t )P(w

g
1+t ) · P(w

g
1+t |y

g
1:t )

= αP(yg1+t |w
g
1+t )P(w

g
1+t ) · P(w

g
1+t |y

g
1:t )

= αP(yg1+t |w
g
1+t )P(w

g
1+t |w

g
t ,w

s
t )P(w

g
t )

×P(wst ) · P(w
g
1+t |y

g
1:t )

= αP(yg1+t |w
g
1+t )P(w

g
1+t |w

g
t ,w

s
t )P(w

g
t )

×P(wst )
∑

wt
P(wg1+t |w

g
t )P(w

g
t |y

g
1:t ) (16)

Bayesian theory then produces [46]:

max
w1,··· ,wt

P(wg1:1+t |y
g
1:1+t )

= αP(yg1+t |y
g
t )max

wt
P(wg1+t |w

g
t )

× max
w1,··· ,wt−1

P(wgt |y
g
1:t ) (17)

with an optimal CSL classification prediction of:

(ŵg1:t )
∗
= E[wg1:t |y

g
1:t ]

=

∑
w

wg1:t · ( max
w1,··· ,wt−1

P(wg1:t |y
g
1:t )). (18)

In contrast, using hand-related HMMs as the primary proba-
bility network gives:

(ŵs1:t )
∗
= E[ws1:t |y

s
1:t ]

=

∑
w
ws1:t · ( max

w1,...,wt−1
P(ws1:t |y

s
1:t )). (19)

This leads to the final multimodal fusion CSL classification
result:

(ŵfusion1:t )
∗

= E[wfusion1:t |y
s
1:t , y

g
1:t ]

=

∑
w
{ws1:t · ( max

w1,...,wt−1
P(ws1:t |y

s
1:t ))

+wg1:t · ( max
w1,...,wt−1

P(wg1:t |y
g
1:t ))}. (20)

IV. RESULTS AND DISCUSSION
A. DATASET
Two SLR datasets were used to evaluate the proposed model.
As shown in Figs. 7-8 . The first CSL dataset was collected in-
house and can be used for daily communication. The results
of this analysis, including statistical information, are listed in
Tab. 1. This dataset consisted of 50 continuous common CSL
sentences, such as ‘‘What’s your name?’’, ‘‘Don’t forget to
bring an umbrella’’, and ‘‘Hello, everyone.’’ Each sentence
wasmade up of 3-5 signs, with a total of 150 different isolated
signs in the dataset, including human, you, we, ID card,
happy, home, etc. In all, there were 500 instances of each
isolated sign, for a total of 150 × 500 = 75, 000 instances.
The second CSL dataset, which included RGB-D Kinect
images, focused on a large vocabulary [5]. It consisted
of 500 different isolated signs for words such as head, body,
lady, glass, etc., totaling 125,000 instances.

TABLE 1. Statistics for the 1st CSL dataset.

B. EVALUATION OF LSTM2+CHMM PERFORMANCE
1) ISOLATED SIGN RECOGNITION
Isolated sign recognition was evaluated by dividing our CSL
dataset into three components. Half of these data were used
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FIGURE 7. An illustration of CSL sentences composed by isolating CSL words in our dataset.

FIGURE 8. An illustration of isolated words in the 2nd dataset (images reproduced from [5]).

for training and the other half for testing. The proposed
methodwas assessed using an i5 core CPUwith 8GB of RAM
and the Microsoft Windows 10 operating system.

A subset containing 20 isolated CSL signs was selected
to test the proposed algorithm and display the corresponding
results. Fig. 9 shows a confusion matrix for subset recogni-
tion, indicating recognition accuracy to be highly satisfactory.
Some of these signs, such as ‘‘Please’’ and ‘‘Happy’’ were
similar, making them difficult to distinguish and decreasing
the overall recognition rate. However, this feature could
be improved further through increased training. The total
recognition accuracy across 150 signs in our CSL dataset was
89.55%. Comparisons with existing techniques are provided

in Tab. 2. It is evident the recognition accuracy gradually
decreased with increasing database size. The main reasons
can be explained as: first, the more data categories, the more
factors to affect classification. Second, the more data cate-
gories, the more complex of classification surface, it is more
difficult to obtain optimization results, resulting in lower
classification rates. For example, using the SLR method
based on LSTM, a database size of 50 produced an accuracy
of 97.12%, while a database size of 150 produced a cognitive
accuracy of 77.12%. It is evident the proposed LSTM+HMM
approach outperformed conventional LSTM methods,
with LSTM2+CHMM achieving even higher accuracy.
In addition, data combinations based on color+ depth tended
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FIGURE 9. A confusion matrix displaying recognition accuracy for our CSL
subset.

TABLE 2. Recognition results for isolated CSL words with various
framework settings.

to produce better results than skeleton-based data, primarily
because skeletal information does not include hand features.
However, skeletons are more independent of environmental
factors than color or depth information, making them suit-
able for SLR with non-specific people and environments.
The proposed LSTM2+CHMM model incorporated color,
depth, and skeleton data, fusing the images to produce robust
segmentation results. Both segmented hands and skeletons
are suitable for non-specific people and non-specific envi-
ronments. As a result, this combined methodology exhibited
the highest recognition accuracy.

2) CONTINUOUS CSL RECOGNITION
As most sign language databases are primarily used for iso-
lated sign recognition, continuous sign language data are
rarely available. As such, 50 sentences were established,
composed of 150 isolated sign words, to test the contin-
uous CSL recognition framework proposed in this paper.

These included common phrases such as: ‘‘I am very happy
to see you’’, ‘‘Do not forget to bring an umbrella’’, ‘‘This is
my business card’’, ‘‘Is there a room?’’, etc.

FIGURE 10. Results of the first test. (a) An illustration of continuous CSL
recognition for ‘‘Don‘t forget to bring an umbrella.’’ (b) CSL recognition
results for the proposed method. There is little difference between the
ground truth label and predicted labels. The video included 70 frames and
produced a recognition accuracy of 97.3%.

FIGURE 11. Results of the second test. (a) An illustration of continuous
CSL recognition for ‘‘Nice to meet you.’’ (b) CSL recognition results for the
proposed method. There is little difference between the ground truth
label and predicted labels. The video included 110 frames and produced a
recognition accuracy of 97.1%.

Figs. 10-13 provide four examples of continuous CSL
recognition. It is evident from these test results that the
proposed algorithm can effectively identify continuous CSL
terminology. The 1st - 4th examples produced recognition
accuracies of 97.3%, 97.1%, 84.6%, and 98.1%, respectively,
with an average value across all 50 sentences of 80.25%.
A comparison with previous studies is provided in Tab. 3.
It is evident that our method can automatically segment iso-
lated signs, primarily because the framework uses LSTM and
Markov chain-based probability algorithms for sequence data
modeling.
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FIGURE 12. Results of the third test. (a) An illustration of continuous CSL
recognition for ‘‘Please give me your ID card.’’ (b) CSL recognition results
for the proposed method. There is little difference between the ground
truth label and predicted labels. The video included 110 frames and
produced a recognition accuracy of 84.6%.

FIGURE 13. Results of the fourth test. (a) An illustration of continuous
CSL recognition for ‘‘Welcome to my home.’’ (b) CSL recognition results for
the proposed method. There is little difference between the ground truth
label and predicted labels. The video included 92 frames and produced a
recognition accuracy of 98.1%.

We also compared continuous CSL recognition perfor-
mance for different data sizes and various frameworks.
As shown in Tab. 3, recognition accuracy gradually decreased
as data increased, making large-scale SL recognition diffi-
cult. For example, LSTM recognition accuracy for 10 sam-
ples was 96.15%. However, this decreased to 73.19% with
50 samples, which may have been caused by a decline in
isolated word recognition or increased sentence complexity.
Regardless, the LSTM+HMM approach outperformed the
LSTMmethod, with LSTM2+CHMM producing the highest
recognition accuracy (80.25%) across all 50 sentences. These
results indicate that multimodal fusion is beneficial for auto-
mated segmentation of SL sentences, independent of the data
sampling environment.

TABLE 3. The results of continuous CSL recognition for various
framework settings.

C. A COMPARISON OF RECOGNITION ACCURACY
1) BASELINE
In tasks related to time series processing, such as
motion or speech recognition, integrating spatial and tempo-
ral information is critical for accurate classification. There
are two primary strategies used for this process. The first
utilizes manually-designed spatio-temporal features to build
classifiers. The second directly constructs spatio-temporal
models that can simulate hidden sequences, such as HMM.
In this study, both techniques were used to design baselines
for comparison with our approach.

LSTM2+CHMM is a tool for automatically extracting and
processing spatio-temporal features. As such, it was com-
pared with two other manually-developed spatio-temporal
models: space-time interest point (STIP) [47] and improved
dense trajectories (iDTs) [48]. A traditional Gaussian
mixture-hidden Markov model (GMM-HMM) was also used
as a baseline for comparison with the proposed technique.
STIP is a common spatio-temporal feature and iDT has
produced some of the best results to date. STIP calculates
the HOG and HOF by detecting Harris corners in videos,
while iDT calculates local HOG or HOF features based on
optical flow tracking and low-level gradient histograms. After
local feature extraction, a support vector machine (SVM)
was utilized for CSL recognition in which segmented data
and labels were used to train multi-class SVM classifiers.
GMM-HMM is a traditional time series pattern classification
method, similar to speech recognition or SLR. The baseline
was developed using manually-extracted features to express
motion sequences, after which statistical pattern recognition
was used to train the GMM-HMM. Changes in both hand
shape and body skeletal structure were observed to be highly
distinguishing features for describing CSL movements and
were thus used to train the GMM-HMM. This study followed
the methodology presented by Tang et al., who similarly
used a Kinect as an input device and proposed an efficient
algorithm for hand segmentation, tracking, and cropping
hand shapes from a background [49]. However, this algo-
rithm combined RGB and depth information without specific
requirements for uniformity or stability. We extracted local
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HOG features for the hand and simultaneously used the 3D
positions of 25 skeletal joints, producing a 75D trajectory
feature vector. After combining these two features, a 111D
vector was used as the final representation for training the
GMM-HMM. This vector was extracted from each video
frame, classified, and used to train the GMM-HMM in CSL
recognition.

2) RESULTS AND ANALYSIS
The proposed CSL recognition model was compared with
conventional SLR algorithms, including GMM-HMM [27],
adaptive HMM [22], 3D-CNN [5], iDTs+SVM [48], and
STIP+SVM [47] using the 2nd CSL dataset. The results of
this performance comparison are shown in Table 4. It is evi-
dent the proposed technique achieved the best results despite
differences in processingmodes for sequence signals.We also
compared the proposed fusion model to existing fusion mod-
els, such as SLR Fusion 1 and Fusion 2, each of which
outperformed simple feature sequence processing. Although
Fusion 1, Fusion 2, and the proposed model functioned sim-
ilarly, our integration consistently achieved the best results.

TABLE 4. Accuracy comparison on different SLR methods.

Tab. 4 indicates that recognition algorithms based on a
neural network generally perform better than HMM-based
methods, such as 3DCNN or LSTM2+CHMM, with maxi-
mum accuracies of 79.33% and 82.55%, respectively. These
values are much higher than single HMM-based methods,
such as GMM-HMM or A-HMM (60.78% and 70.15%,
respectively). This is likely because deep learning-based
methods extract richer spatio-temporal information. It is also
evident that our proposed multimodal combination technique
includes other advantages. Specifically, our fusion model
achieved a higher recognition accuracy than fusion 1 or
fusion 2. The proposed fusion method is also completely
independent of the data acquisition environment, allowing its
application to non-specific people and scenes. In addition,
identification methods based on artificially-designed features
are often inferior to those acquired using deep learning,
such as iDT- or STIP-based methods (recognition accura-
cies of 62.33% and 70.21%, respectively). Our method not
only combines the long-term memory functions of RNNs
with the automatic segmentation function of HMMs, but also
uses a CNN to extract features automatically. The advan-
tages of these methods are combined while the potential
disadvantages are eliminated. As a result, our proposed CSL
recognition algorithm achieved the highest accuracy.

V. CONCLUSION
A novel LSTM2+CHMM model was proposed for contin-
uous CSL recognition. This method, which was based on

multimodal data fusion, probabilistic inference, and deep
learning, constructs two LSTM models and uses CHMM to
fuse multiple modes. A CNN was used to extract features
and two LSTMs were used to mine sequence information.
SLR recognition results were acquired based on graph model
probability inference. The proposed technique was evaluated
using two SLR databases, with experimental results indi-
cating it to be highly effective for accurate real-time CSL
recognition.
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