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ABSTRACT As an integral part of source code files, code comments help improve program readability
and comprehension. However, developers sometimes do not comment their program code adequately
due to the incurred extra efforts, lack of relevant knowledge, unawareness of the importance of code
commenting or some other factors. As a result, code comments can be inadequate, absent or evenmismatched
with source code, which affects the understanding, reusing and the maintenance of software. To solve these
problems of code comments, researchers have been concernedwith generating code comments automatically.
In this work, we aim at conducting a survey of automatic code commenting researches. First, we generally
analyze the challenges and research framework of automatic generation of program comments. Second,
we present the classification of representative algorithms, the design principles, strengths and weaknesses
of each category of algorithms. Meanwhile, we also provide an overview of the quality assessment of
the generated comments. Finally, we summarize some future directions for advancing the techniques of
automatic generation of code comments and the quality assessment of comments.

INDEX TERMS Code comment, deep learning, information retrieval, machine learning, program annotation.

I. INTRODUCTION
Code comments, also called program annotations, are human-
readable explanations or annotations of the source code of
a computer program [1], which mainly describe the func-
tions and intentions of source code. Good comments can
improve the readability of programs [74], [75], [84], thus
helping people comprehend programs. For instance, an early
study [74] shows that comments can improve the readability
of the banker algorithm used in operating systems. As a result,
it has been widely acknowledged that comments play an
important role in software development and maintenance [6],
[65], [73], [75], [84].

However, writing high quality comments in practice during
development is laborious and time-consuming for develop-
ers [27], [35]. To deal with this issue, many efforts [31],
[61], [67], [82], [83] have been made towards automatically
generating code comments. At the same time, researchers
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propose other approaches to improving the readability of
programs too. For example, some researchers have tried to
define identifiers with a long descriptive name in order to
implement self-commented code [7], [23]. However, it makes
code comprehension more difficult [14], [42]. In general,
automatic code commenting has become an important and
challenging research direction in software engineering area.

Studies on code comments and readability of programs can
be traced back to the 1980s [74], [75], [84] while the history
of autocommenting just started in the last decade. Existing
methods are mainly based on machine learning or informa-
tion retrieval techniques to generate comments for programs.
The generation framework of code commenting is mainly
composed of three parts. The first one is data preparation
which prepares data for the commenting system. The sec-
ond part is the representation of source code, which aims at
capturing the structure and semantics of source code, such
as information of structure, lexis, grammar, semantics, con-
texts, invocation relation and data dependency of source code.
The third part is text generation, which is responsible for

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

111411

https://orcid.org/0000-0001-7654-5574


X. Song et al.: Survey of Automatic Generation of Source Code Comments: Algorithms and Techniques

FIGURE 1. The general process of the automatic generation of code comments.

generating natural language sentences based on the informa-
tion extracted from source code.

Along with the study of code comment researchers have
found that the assessment of the quality of code comments
is another important research problem, as the quality of
generated comments is an important indicator for evaluating
whether a commenting algorithm is efficient and effective.
Thus designing appropriate criteria for code comment quality
assessment is another challenge faced by automatic comment
generation [13], [20], [38], [58], [87]. The task of assessment
for quality of code comments involves the comparison and
verification of various algorithms.

There have been a lot of research efforts on automatic code
commenting, especially from the overlapping community of
software engineering and artificial intelligence. As a result,
many papers have been published in top software engineer-
ing and artificial intelligence venues including IEEE ICSE,
IEEE FSE, IEEE/ACM ASE, IEEE TSE, ACM TOSEM,
EMSE, AAAI, IJCAI and so on. To our best knowledge,
there are few efforts on the survey of studies in this field.
In [85], Yang et al. summarize the work on code comments
from four aspects: code comment generation, classification
of comments, the consistency of code and comments, and
quality assessment of code comments. However, the paper
does not discuss the principle of each algorithm in detail and
fails to analyze the future research direction. Nazar et al. [53]
survey the studies on summarizing software artifacts, which
include bug reports, mailing list, source code and developer
discussions, where the task of summarizing source code is
similar to code commenting because code summary can be
viewed as a special type of comments. In light of this, we aim
at giving a comprehensive survey of the work on automatic
code commenting for the following objectives: (1) giving
researchers access to a catalogue of representative algo-
rithms for automatic comment generation and providing new
researchers with a good understanding of the state-of-the-art
algorithms of automatic code commenting; (2) summarizing
the main challenges and limitations of existing studies.

In this work, we present the motivation of automatic code
comment generation first, analyze the main challenges, and
describe the workflow of code commenting automatically.
Next we discuss the three mainstream categories of algo-
rithms of automatic comment generation, and show the poten-
tial trends in automatic comment techniques. This paper also

summarizes the work on quality assessment of comments
and presents the future direction accordingly. Note that in
our survey we also investigate the work on generating code
summaries, a short brief description of the code that is often
viewed as a special type of comments.

The rest of the paper is organized as follows. Section II
provides the motivation of automatic comment generation,
and discusses the technical challenges. Section III discusses
the core ideas for comment generation techniques, and gives
a summarization of all kinds of techniques. In Section IV,
we discuss the problem of quality assessments of comments,
with datasets used in different studies as our focus, and sum-
marize the quality assessment criteria of code comments. The
future directions on the automatic code comment generation
will be discussed in Section V. In Section VI, we conclude
the paper.

II. OVERVIEW OF AUTOMATIC GENERATION OF CODE
COMMENTS
A. PROBLEM STATEMENT
Automatic code comment generation concerns the production
of some textual descriptions of source code. The essential task
is to translate the code written in programming languages into
textual comments written in natural languages. Meanwhile,
comments may describe not only the functions, but also the
design intents of developers behind source code. In brief,
automatic code commenting is to generate textual description
written in natural languages automatically for source code by
means of source code analysis, which can reveal the design
intents, program logic, functionality of programs and the
meanings of the related parameters, etc.

B. CHALLENGES OF AUTOMATIC CODE COMMENTING
AND RESEARCH FRAMEWORK
Although the processes of different code commenting
algorithms are not completely the same, the fundamental
workflows are roughly similar, as shown in Figure 1.

The processing of automatic code commenting is usually
performed in three steps. First, data collection to construct
datasets for comment generation systems. These data are
used for training, validating and testing models, extracting
code and the corresponding comments, or extracting particu-
lar rules needed by a comment generation system. In order
to collect these data, researchers often crawl or download
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them from open source communities or websites, e.g. Stack
Overflow. Accordingly, the specific tasks in this step vary
from algorithm to algorithm [17], [82], [83] to some extent.
For example, it is necessary for deep neural network based
comment generation system [9], [29], [31], [33], [51], [80],
[89] to build high quality datasets (i.e. source files) which
contain code and the corresponding comments, so as to pro-
vide data for training, testing and verification of commenting
algorithms.

Second, comment generation through certain algorithms.
This step can be divided into two subtasks, i.e. representation
of source code and text generation. It involves varying pro-
cesses depending on different algorithms of automatic code
comment generation, which will be described in Section III.

Third, the assessment of the generated comments in terms
of their quality. Designing practical and objective quality
assessment criteria of comments directly affects the com-
parative results for different algorithms in performance and
quality assessment. There are two popular evaluation meth-
ods including human assessment and automatic assessment,
which will be discussed in Section IV.

After assessment of code comments, commenting sys-
tems will take different actions depending on the assessment
results of comments. If the amount and quality of comments
generated by the commenting system is satisfactory, the pro-
cess of commenting will stop. Otherwise, the commenting
system will go back to the first step: preparing more and
suitable data, and/or adjusting source code models, generat-
ing text and assessing the quality of code comments again,
repeating this process till the need of code commenting ismet.

1) CHALLENGES OF AUTOMATIC CODE COMMENTING
As for automatic code commenting, the first thing is to
build the source code model to express the structural, lexical,
grammatical, semantic and context features of source code.
Then, source code model is processed to yield the natural lan-
guage comments. The third step is to evaluate the generated
comments. However, generating satisfying code comments
remains a challenging issue. The fundamental reason lies
in the fact that programming languages are different from
natural languages in nature. The difference between code and
comments is two-fold: source code contains a large amount
of information about classes, methods and parameters of
methods, and at the same time has many nested structures and
complex invocation relations; meanwhile, comments written
in natural languages are unstructured, and expressed freely in
form [59]. Consequently, automatic code commenting faces
the following two challenges.

a: CHALLENGE 1: AUTOMATIC CODE COMMENTING
ALGORITHMS
At present, there exist many kinds of algorithms for auto-
matic or semi-automatic code commenting. We summa-
rize them into three main classes: information retrieval
based algorithms, deep neural networks based algorithms

and other automatic code comment generation algorithms
(see Section III for details).

The two main issues in automatic commenting include
source code representation and comment text generation.

SOURCE CODE MODELS
Among automatic comment generation studies, source code
model is one of the core problems. There are a number
of different source code models including Abstract Syntax
Trees (ASTs), parse trees, token contexts, Control Flow
Graphs (CFGs), data flow, etc. The source code models that
have been used in autocommenting can be classified into
three categories [8]. First, the token-based source code mod-
els, which mainly extract tokens such as key words and topics
from source code, e.g. the models in [26], [54]. In token-
based models, source code is viewed as plain text, thus is
often modeled as a bag of code tokens (BoT), or charac-
ters or bag of words (BoW). Information retrieval (IR) based
commenting algorithms mainly adopt these models to repre-
sent source code. These models simply represent the lexical
information of source code. Second, the syntax-based source
code models, which model source code at level of abstract
syntax trees (ASTs) [88]. These kinds of models are often
used in deep neural network based commenting algorithms.
Third, the other source code models, which represent code
in forms that are fit for follow-up process. The models used
in [29], [67] belong to this category, such as Software Word
Usage Model (SWUM). However, a combined model that
can represent various information such as lexis, syntax and
structure of source code is still missing though it has received
some attention [76]. As a result, seeking a comprehensive
and effective model is an open research topic for source code
commenting.

TEXT GENERATION
Since a natural language is unstructured and its expression
form is flexible, the task of generating natural language
text is difficult [11]. When it comes to code commenting,
information should first be extracted from source code accu-
rately before constructing natural language comments, which
makes it more challenging. Existing solutions for text gener-
ation can be classified into three categories. First, rule-based
text generation solutions, which generate text depending on
designed rules or natural language models (templates) [46],
[49], [55], [62], [67]–[69], [81]. Second, generative-based
methods, which yield text by decoder [9], [31], [32], [51],
[89]. Finally, search-based text generation solutions, which
produce natural language comments through retrieving exist-
ing comment text from corpus [25], [26], [57], [61], [77],
[82], [83].

b: CHALLENGE 2: COMMENT QUALITY ASSESSMENT
Quality assessment of code comments is another key problem
for code comment generation. There exist two main issues in
comment quality assessment: unification of datasets used for

VOLUME 7, 2019 111413



X. Song et al.: Survey of Automatic Generation of Source Code Comments: Algorithms and Techniques

validating and testing commenting algorithms, and selection
of evaluation criteria.

UNIFICATION OF DATASETS FOR VERIFYING
COMMENTING ALGORITHMS
At present, there exist many algorithms for automatic or semi-
automatic code comment generation. These studies exploit
different datasets to test their algorithms, whichmakes it diffi-
cult to compare testing results and performance of algorithms.
As a result, unifying the datasets for testing is very important.
However, because each specific comment generation algo-
rithm has the language dependency, unification of dataset for
testing is challenging.

SELECTION OF EVALUATION CRITERIA FOR QUALITY
ASSESSMENT OF CODE COMMENTS
The lack of appropriate quality assessment metrics will lead
to the absence of a quantitative comparison that highlights
the strengths and weaknesses of each commenting algo-
rithm. In existing work, the criteria of quality assessment of
code comments are different depending on the category of
comments. For example, according to [21], [70], from the
perspective of functions, comments can be categorized into
descriptive comments, summary comments, conditional com-
ments, comments for debugging andmetadata comments, etc.
Even in the same category, different automatic comments
generation techniques adopt different comment assessment
criteria. Thus it is important to design and formulate appro-
priate quality assessment metrics for comments, which will
promote the study of automatic code comment generation.

2) RESEARCH FRAMEWORK
Over years, software quality has always been an important
research topic in software engineering. Quality of code com-
ments is one of the important factors for evaluating soft-
ware quality. As early as the 1980s, researchers began to
study code comments. At present, the literature on the study
of code comments focuses on relations between comments
and the readability of code, relationships between comments
and code understandability, algorithms of automatic program
annotation and quality assessment of code comments, etc.
In general, we summarize the studies of automatic code com-
menting and the related work from two perspectives:

• Technologies of automatic program annotation.
• Quality assessment of code comments.

The study of automatic code comment generation tech-
niques is a hot research topic in code commenting, and
another problem associated with code commenting is the
study of comments quality evaluation. According to [87],
there exist two kinds of comments: native comments written
by code authors, and analytical comments produced by a
computer program instead of code authors. We will discuss
the quality assessment of analytical comments in this paper.
The other studies closely related to comment generation are
those on supporting comment decision that aims at guiding

developers to choose the locations needed to comment in
source code. With appropriate locations, comments could
well improve the readability of code. Additionally, several
studies are related to source code analysis and process-
ing, such as code suggestion [28], generating natural lan-
guage summaries for code defect [63], crosscutting source
code concerns [62], class diagram [16] and source code
commit [34], [44] etc.

In summary, this paper focuses on studies on the algorithms
of comment generation and the quality assessment of com-
ment. These two lines of work are interdependent on each
other, and their relationship can be shown in Figure 2.

3) TRENDS OF THE DEVELOPMENT OF CODE
COMMENTING TECHNIQUES
The research on code commenting techniques has received
much attention in the last decade, fostered by the rapid
spread of information retrieval, machine learning, neural net-
works and other related techniques. Our survey indicates that
most of code commenting systems developed from 2010 to
2014 exploit information retrieval techniques, and most of
code commenting systems developed in the last five years
mainly adopt deep neural network techniques.

To provide a comprehensive survey of the emerging trends
in code comment generation automatically, we systematically
reviewed the literature from 2010 to 2018 and select 32 repre-
sentative papers from 59 papers that were published in the last
ten years. These papers focus on the main code commenting
algorithms, and reflect the changing of research interests in
the area of code commenting algorithms.

Note that in the process of collecting papers, we first
performed two types of searches for related papers:
(1) Online library search for papers containing keywords
including ‘‘code + comment’’, ‘‘comment’’, ‘‘code +
summary’’ and ‘‘summary’’ in the fields of title, abstract and
index terms of the papers from ACM Digital Library, IEEE
Xplore Digital Library, DBLP, Google Scholar and arXiv.org.
(2) Specific search of major conference proceedings and
journals in software engineering and artificial intelligence,
including IEEE ICSE, IEEE FSE, IEEE/ACM ASE, IEEE
TSE, ACM TOSEM, EMSE, AAAI and IJCAI. Then we
refined the list of the returned papers manually and read
them one by one. To further collect more relevant papers
on code comment generation and avoid missing important
research efforts, we further performed a citation analysis on
the selected papers from keywords search. A citation analysis
is a manual process of reading title and abstract of candidate
papers. To sum up, we selected most of the papers through
keywords search, and complemented the results further by
means of manual citation search.

Figure 3 shows the distribution of papers over the years
according to the types of algorithms used in the papers. The
figure indicates a relevant increase of interest and results:
almost half of the papers have been published in 2015-2018,
and more than 60% of papers appeared after 2014. The
earliest technique used in studies on automatic code
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FIGURE 2. The framework of code commenting research.

FIGURE 3. Distribution of the selected 32 research papers over publication years.

comment generation is information retrieval. In 2015, with
the emergence and development of neural network tech-
niques, deep neural network models was first applied to auto-
matic generation of code comments. Afterwards, the interests
of research in deep neural network based comment generation
have been increasing dramatically over the years. At the same
time, Figure 3 indicates that recent researches mainly focus
on deep neural network based commenting techniques.

III. THE ALGORITHMS OF AUTOMATIC GENERATION
OF CODE COMMENTS
This section first presents the classification of code comment-
ing algorithms, then gives a thorough analysis of principles of
each type of algorithms. Finally, we summarize the character-
istics of the existing algorithms.

A. CLASSIFICATION OF AUTOMATIC CODE COMMENTING
As shown in Figure 4, existing algorithms mainly fall into
three categories: information retrieval based algorithms, deep
neural networks based algorithms and other automatic code
comment generation algorithms.

In the following, we will summarize and analyze these
three categories one by one in detail.

B. INFORMATION RETRIEVAL BASED COMMENT
GENERATION ALGORITHMS
In general, given a piece of source code that lacks com-
ments and a dataset of source code with comments, informa-
tion retrieval algorithms first compute the relevance between
the target code and other source code in the dataset. Then
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FIGURE 4. The classification of code comment generation algorithms and related literature.

one or multiple pieces of source code that well match the
target code will be returned, and their comments will be
used to generate the comments for the target program. The
commenting algorithms based on the information retrieval
techniques generally exploit the techniques based on Vector
Space Model (VSM), Latent Semantic Indexing (LSI), and
Latent Dirichlet Allocation (LDA) or other related techniques
like code clone detection.

One of the early applications of information retrieval (IR)
techniques in the area of software engineering is about the
traceability between code and comments. In 2003, Marcus
and Maletic [45] employed the latent semantic index (LSI)
technique, to analyze source code and the external documents
for extracting semantic information from program and docu-
ments, and they further recovered links between documents
and source code. Although the study itself is not on the prob-
lem of automatic comment generation, the proposed method
can be applied to code commenting. Kuhn et al. [39] use
Latent Semantic Indexing (LSI) technique to find the linguis-
tic topics which refer to the informal semantics information
contained in the identifiers names and comments in source
code. And these linguistic topics reflect the intention of the
code, and cluster source code according to topics.

In existing literature similarity comparison is not per-
formed directly in the form of source code text. Source code
usually is converted into varying representation forms that
is fit for follow-up comparison. Most commenting systems
convert source code into the form of parse tree [83] or abstract
syntax tree (AST) [82], then, compare the target code with
other source code from datasets. According to the compar-
ison results, the matched code is returned. The correspond-
ing comments of the matched code are filtered with some
heuristic rules. Finally the most relevant text description

is recommended as the comments or summaries for target
source code. All in all, these kinds of algorithms generally
generate comment texts by searching or designed rules.

Some commenting systems [82], [83] require high quality
datasets which contain source code and the corresponding
comments pairs in order to generate comments for programs.
Some other researches make use of code clone detection
techniques to find matched source code for target code.

1) VSM/LSI BASED COMMENT GENERATION ALGORITHMS
These kinds of algorithms refer to leverage Vector Space
Model (VSM) [4], Latent Semantic Indexing (LSI) [2],
or combination of both to generate comments for classes and
methods.

VSM and LSI both belong to the techniques of information
retrieval. They initially developed for the tasks of natural
language processing. When we employ VSM and/or LSI to
generate comments for source code, source code text or query
text are usually represented as vectors, matrix or tuples [32].
Each element in the vector denotes the weight of a word
in the documents. There are many methods to compute
weight of term in VSM, and term frequency-inverse docu-
ment frequency (tf-idf) is the most widely used weighting
methods. Employing singular value decomposition (SVD),
LSI recognizes term relevance between terms and concepts,
and extracts the conceptual topic of a text. The commenting
system determines whether the term should appear in the
comments of source code according to the value of weight for
each term, or calculates text similarities between the vector of
query text and source code text. The term with higher simi-
larity represents higher relevance to the code snippets or the
topic of queries. So commenting systems recommend these
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terms as the key words to construct comments for target
source code.

These techniques are used to mine code text, and find
out key words in source code text for constructing natural
language description as code comments. These comments are
used to describe the functions, characters and parameters of
some form of source code, such as classes, methods or code
block etc.

Summaries of source code can be treated as the spe-
cial comments which can help developers and maintenance
engineers comprehend programs more accurately and faster,
saving their precious time. Several years ago, researchers
have tried to summarize source code by exploiting VSM and
LSI techniques. The achievements have been presented in the
literature [25], [26], [77], [86].

Haiduc et al. [26] use VSM and LSI to analyze the
source code text, and generate the extractive and abstrac-
tive natural language summaries for classes and methods.
First, they convert source code documents and packages
into a document collection, called corpus. Then they rep-
resent the terms which are included in the identifier names
and comments from source code and documents in the cor-
pus as a matrix. When generating extractive summaries for
source code with VSM, the most relevant terms in the source
code document are selected according to the chosen weight.
At the same time, they also use LSI techniques to calculate
the cosine similarities between the vector of each term in
the corpus and the vector of a source code document to be
summarized, then generate terms with high similarity that
do not appear in the method or class to be summarized,
but appear in the corpus. In this way, they analyze the
method and class source code in Java project and generate
short and accurate textual descriptions for them. In another
effort, Haiduc et al. [25] exploit LSI only to generate sum-
mary comments for the code of Java class in open source
repository.

Exploiting the same approach, Vassallo et al. [77] useVSM
model to represent source code text and developer discussion
text from Question and Answer (Q&A) on Stack Overflow
as vectors, and calculate the cosine similarity between target
source code text and discussion text to find the maps. The
paragraph texts with high similarity are recommended as
the comments of target source code. As a result, they mine
the crowdsourcing knowledge to recommend comments for
method.

Similarly, Panichella et al. [57] employ heuristic and
Vector Space Model to process and analyze developer com-
munications for methods descriptions. The developer com-
munications mainly refer to emails and bug reports that are
related to classes, methods and parameters. They extract
paragraph texts which can be traced to source code methods
and recognize the relevant paragraph by means of computing
textual similarities (that is cosine similarity) between text
paragraph and the text of each traced method. The relevant
paragraph with high similarity is recommend as the method
description.

The drawback of this type of technologies is that it
only takes into consideration of terms that appear in the
corpus or source code documents, and pays no regards to
other information that is contained in source code documents,
e.g., program invocation, data dependency, words sequence
in source code. Therefore, it is difficult for these systems to
improve the accuracy of generated comments further.

2) CODE CLONE DETECTION BASED COMMENT
GENERATION ALGORITHMS
Code clone detection based comment generation algorithms
are concerned with utilizing code clone detection technique
to find similar code in a database, and the corresponding
comments of the matched code or discussion text are viewed
as comments for the target code.

Wong et al. [83] propose an approach based on code
clone detection techniques, which mines comments from a
large programming Question and Answer (Q&A) site. They
mine posts from Q&A of Stack Overflow, where develop-
ers can post questions and receive the corresponding solu-
tions in Q&A site. The posts from Q&A on Stack Over-
flow, containing code snippets together with the correspond-
ing textual descriptions, are referred to as code-description
mappings. They extract such mappings to build a database.
Then they leverage code clone detection technique, i.e. the
longest common substring, to discover similar code segments
in database, and extract corresponding comments for tar-
get code segments. In a different effort, Wong et al. [82]
mine comments from open source software projects from
software repositories in GitHub. With the help of improved
code clone detection techniques they find out more matched
code snippets. Their new code clone detection tool leverages
code parser to build ASTs for code snippets, and tokenize
the serialization of AST node of code before comparison.
In this way, their clone detection tool takes into considera-
tion of structural information of source code so as to find
out more matched code snippets. As a result, the improved
code commenting system generatesmore comments for target
code.

The principles of code clone detection based comment
generation algorithms are simple, and the quantity and quality
of the generated comments heavily depend on the scale and
the quality of the dataset built for commenting systems. Con-
sequently, when we require to provide comments for source
code written in particular programming languages in certain
area, it is important to build a high quality dataset containing
code and comment pairs written in the same programming
languages in the same domain.

The quality of comments generated by these commenting
systems, to a large extent, depends upon the performance
of code clone detection algorithms and the quality of com-
ments from datasets. Accordingly, to improve the quality of
the generated comments, it demands we collect more high
quality open source software projects or more discussion and
communication information which contain code snippets and
the corresponding natural language comments.
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The drawback of this approach is that the quantity of the
generated comments is much smaller. The reason is that the
quantity of the generated comments heavily depends on the
information contained in databases or the open source soft-
ware projects from GitHub. For example, if a code segment
is never discussed in any posts, commenting system will fail
to recommend any comment for it at all.

3) LDA BASED COMMENT GENERATION ALGORITHMS
Latent Dirichlet Allocation (LDA) [15] is one of the topic
models proposed for automatically extracting topic from text
documents. It is one of the probability models. Probabil-
ity models used in comment generation algorithms include
n-gram language models, Latent Dirichlet Allocation (LDA)
[15] and the other variants of LDA. N-gram models are
widely used in statistical natural language processing. LDA
is an IR model that can fit a generative probabilistic model
from the term occurrences in a corpus of documents [56].
LDA based comment generation algorithms are concerned
with building the source code model with LDA model and
generate comments for target source code. In other words,
LDA can extract particular features of source code. When
N-grammodel is used to solve automatic comment generation
problems, it is usually used to assist other statistical model to
analyze source code, or train source code models. Its model is
simple and effective, and it becomes the effective model for
semantic mining from source code documents.

In another effort, Movshovitz-Attias and Cohen [52] use
topic models, LDA, and n-gram models to predict comments
for Java source code. They train n-gram models and LDA
models over the same source code documents from multiple
training datasets respectively. Then they consider documents
as having a mixed member of two entity types, code and
text tokens, and train link-LDA models over the documents.
Using trained models they compute the posterior probability
of document topics and with which they further infer the
probability of the comment tokens. Finally the comments
tokens with high probability are recommended as comments
for source code files [52], [61].

Employing LDA, Rahman et al. [61] analyze discussions
from Stack Overflow Q&A site to recommend insightful
comments for open source project. They exploit a heuristic-
based technique, which is different from Wong et al. [83],
to mine the crowdsourcing knowledge to yield comment
for open source project. The generated comments mainly
describe the deficiency, quality and scope of source code to
improve source code and can help maintenance engineers to
perform the maintenance tasks.

4) OTHER INFORMATION RETRIEVAL BASED COMMENT
GENERATION ALGORITHMS
Oda et al. [55] use phrase-based machine translation (PBML)
and tree to string machine translation (T2SMT) to generate
pseudo-code from Python source code. PBML and T2SMT
are both statistical machine translation frameworks. Pseudo-
code is a natural language description, and an informal

high-level description of the operating principle of a com-
puter program [3]. Pseudo-code can aid novice develop-
ers or inexperienced readers to understand programs, so it can
be treated as a special type of comments. First, they construct
the source code/pseudo-code parallel corpora (a dataset,
which consists of <code, pseudo-code> pairs), that is, they
add pseudo-code for existing source code by human labors.
Then they exploit two frameworks (PBMT and T2SMT) and
some existing, open source tools to train the pseudo-code
generator over the parallel corpus. Here, open source tools
include: tokenizer of the target natural languge, tokenizer and
parser of the source programming language. Through training
they acquire the translation rules automatically, and finally,
the trained pseudo-code generator can output NL pseudo code
for target source code.

In a different effort, Allamanis et al. [10] exploit prob-
abilistic models that jointly model short natural language
expressions and source code snippets, which represent the
mapping relation between source code snippets and the cor-
responding natural language queries. They train parameters
of their model which denote mappings between source code
snippets and natural language queries. After building the
model, which allowsmapping in both directions: from natural
language to source code, and from source code to natural
language, this model can be used into two retrieval tasks, i.e.
retrieving source code snippets for a natural language query,
and retrieving natural language descriptions for a source code
query. For the second task, matched natural language descrip-
tions can be regarded as comments of a given source code.

To sum up, information retrieval technology is the earli-
est trial for researches on code comment generation. With
the development of artificial intelligence and machine learn-
ing technologies, researchers continually apply the emerging
techniques to automatic comment generation researches, such
as deep learning algorithm. We will summarize and compare
this type of technology with others in detail in the following
subsection.

C. DEEP NEURAL NETWORKS BASED COMMENT
GENERATION ALGORITHMS
Recent years have witnessed deep neural networks’ excel-
lent performance on natural language processing, machine
translation, image recognition and speech processing [19],
[36], [66], [71], [78]. In the field of software engineering,
researchers formulate the conversion task from source code
to comments as a translation problem between programming
languages and natural languages, and they try to exploit deep
neural network approaches to solve source code commenting
problems [7], [9], [31]–[33], [41], [51], [80], [89].

Deep neural network based comment generation algo-
rithms fall into two main categories: RNN based algo-
rithms and other neural network based algorithms. There
are three kinds of deep neural networks: Convolutional
Neural Network (CNN), Recurrent Neural Network (RNN)
and Recursive Neural Network (RvNN) [60]. Convolutional
neural networks are fit for solving the problems of natural
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language processing (NLP), image recognition and speech
processing [11], [36]. Recurrent neural networks are good at
processing and predicting sequential data, and are preferred
in NLP and speech processing. So, RNN is fit for generat-
ing comments for source code. RvNN is preferred in NLP
too, and it can process source code to generate comment
for code [41]. When borrowing neural machine translation
techniques as the solution of commenting problems, two
important structures, encoder-decoder structure and attention
mechanism, are worth mentioning. They are usually used in
deep neural networks based commenting systems to assist to
generate comments for source code.

a: ENCODER-DECODER FRAMEWORK
In deep neural network based comment generation sys-
tems encoder-decoder structure, also known as sequence to
sequence model, is generally exploited. In the structure of
encoder-decoder, the encoder plays the role of encoding
source code into a fixed-sized vector; and the decoder is
responsible for decoding source code vector and predicting
comments for source code. The difference among various
encoder-decoder structures lies in the form of inputs and the
type of neural network [24]. Generally, the inner structure of
encoder-decoder can choose RNN, CNN [24] and the variants
of RNN, such as Gated Recurrent Unit (GRU) and Long Short
term Memory model (LSTM).

b: ATTENTION MECHANISM
Attentionmechanism is usually added to the encoder-decoder
framework. It is responsible for dynamically assigning the
higher weight values to more relevant tokens of each word
in the input sequences of decoders. In this way, it makes the
effectiveness of decoders improved. Attention mechanism is
proposed by Bahdanau et al. [12] and Mnih et al. [48]. It is a
good solution for the problem of the poor performance in the
case of the long sequences.

Since Deep neural network based comment generation
algorithms belong to the categories of machine learning,
commenting generation systems based on the Deep Neu-
ral Networks require high quality datasets containing code
and comments to train the neural network. The dataset can
meet all data requirements for the system, providing data
for training and for validation and test of the commenting
algorithm as well.

When training and adjusting the parameters for the neural
network model, we could take some preprocessed source
code, (such as the AST of the code or the sequences of AST
of source code, etc.) as the input data. The corresponding
comments of source code can be treated as the output of the
commenting system. Trained neural networks can generate
natural language descriptions for target programs.

1) RNN BASED COMMENT GENERATION ALGORITHMS
In order to model temporal sequential information with neu-
ral network, developers design RNN algorithm. RNN is a
popular and widely used algorithm in deep learning [19],

especially in natural language processing and speech pro-
cessing [40]. When RNN algorithm servers as the solutions
for comment generation, the encoder-decoder structure and
attention mechanism are commonly used so as to improve the
accuracy of commenting systems.

Another two important variants of RNN are Long Short
termMemory model (LSTM) [66], [72] and Gated Recurrent
Unit (GRU) [18]. LSTM is a special kind of RNN, capable of
learning the long term dependency information. The charac-
teristics of LSTMare that it has a three-gated-controller struc-
ture and construct a controlled memory neuron which solves
the gradient descent and gradient explosion in the traditional
RNN. Compared with LSTM, GRU is simple in structure,
and overcomes the shortcomings of LSTM: complex struc-
ture, complicated realization and lower execution efficiency.
GRU only uses two gates: one is the update gate, and the other
is the reset gate. The characteristics of GRU are that it is easy
to realize, having shorter runtime, simpler parameter training
and more easily train than LSTM, especially in the case of
processing large training data. So GRU is adopted in many
applications.

According to the number of RNN used in encoder,
we divide the RNN based comment generation algorithms
into two categories: single-encoder based commenting algo-
rithms and multiple-encoder based commenting algorithms.

a: SINGLE-ENCODER BASED COMMENT GENERATION
ALGORITHMS
In single-encoder based comment generation algorithms,
the encoder is composed of one RNN structure. This is a clas-
sical encoder-decoder structure used in comment generation
tasks.

Iyer et al. [33] propose an LSTM based comment gen-
eration model, named CODE-NN, which uses Long Short
Term Memory (LSTM) networks with attention mechanism
to produce natural language summaries for C# code segments
and SQL queries. The character of CODE-NN is adding the
attention mechanism to LSTM model. CODE-NN is trained
in the dataset automatically collected from Stack Overflow
which includes title and code segment pairs. During the
process, attention mechanism highlights the relevant and
important tokens in source code, completes the relevant and
important content selection, and LSTM provides the context
for words. After training the parameters of embedding matri-
ces and other matrices, Iyer et al. leverage the trained model
and an input code snippet to generate the natural language
summaries for the code.

GRU is also used in the encoder-decoder framework to
generate comments for source code. In a different effort,
Zheng et al. [89] use the encoder-decoder structure whose
basic element is GRU. Their attention module in encoder
is a global attention mechanism. They take the embedding
symbols (e.g identifiers) in code snippets as learnable prior
weights to evaluate the importance of different parts of input
sequences. After sorting identifiers in code segments based
on the order of appearance, they encode tokens of source code
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into an embedded token. In this way, their attention mecha-
nism is able to focus on these specific features in programs.
In other words, their attention mechanism can understand the
structure of code better. Finally attention mechanism helps to
improve the accuracy of generated comments in commenting
system.

In another effort, Hu et al. [31] suggest that the AST
sequences of source code generated by Structure-Based
Traversal (SBT) often bring about much structural informa-
tion from source code. So they adopt sequence to sequence
model and attention mechanism to generate comments for
source code. In their commenting system, named DeepCom,
they use the AST sequences of source code generated by
Structure-Based Traversal (SBT) as the input of neural net-
work, and LSTMas the basic element of encoder and decoder.
After training, the neural network can learn the structural
and semantic information from source code, which finally
generate more accurate comments for the code.

Since Recursive Neural Network (shorting for RvNN) can
be used to represent parse trees of natural language sen-
tences, Liang and Zhu [41] apply a RvNN over the parse
trees of source code to combine the semantic and struc-
tural information from the code into representation vec-
tors. Then they leverage a recurrent neural network decoder
(Code-GRU) to decode these vectors. The overall framework
generates text descriptions for the code with accuracy higher
than other learning based approaches such as sequence-to-
sequence model. Their algorithm mainly generates summary
for code blocks.

b: MULTIPLE-ENCODER BASED COMMENT GENERATION
ALGORITHMS
These kinds of comment generation algorithms contain more
than one encoder in the encoder-decoder structure. Because
each encoder represents and extracts one type of information
from source code, these comment generation algorithms can
produce code comments with high accuracy with the help of
multiple encoders.

Hu et al. [32] exploit the transferred knowledge acquired
from the process of automatic API summaries to solve the
problem of automatic source code comment generation. Thus
their commenting system is equipped with two encoders: an
API encoder and a code encoder. This system produces higher
quality summaries for source code than other code summary
generation systems. The core of their commenting algorithm
is putting an API encoder into the RNN encoder-decoder
model. With the help of learned transferred API knowledge,
the RNN decoder integrate attention information collected
from both two encoders to produce the summary for target
code. Their algorithm outperforms CODE-NN, a state-of-the-
art code summarization approach at that time. The study is
innovative for adding another API encoder which enhances
the performance of code summary generation.

Exploiting reinforcement learning,Wan et al. [80] improve
automatic code summarization. They employ one LSTM
model to represent the sequential information of code, and

another AST-based LSTM model to represent the structure
of source code. That is, they use two encoders in the classi-
cal encoder-decoder framework. Under this framework, they
exploit reinforcement learning model to solve two issues:
exposure bias and inconsistency between train and test mea-
surement [37]. They leverage an actor network and a critic
network to jointly determine the next best word at each time
step. Besides, they employ an advantage reward composed of
BLEUmetric to train both networks. In this way, they directly
use the characters from comment assessment to optimize
code summarization.

To sum up, RNN can utilize the sequential information in
the input data [60]. This property is essential in comment
generation where the structure embedded in the source code
sequence conveys useful knowledge, such as the structure of
program and lexical and syntactic information of source code.
RvNN also can make predictions in a hierarchical structure
using compositional vectors [60].

2) OTHER NEURAL NETWORK BASED COMMENT
GENERATION ALGORITHMS
Although seq2seq model generally adopts RNN based
encoder-decoder structure, CNN model also can be used to
construct encoder-decoder architecture [24] in the task of
natural language translation. The strength of CNN encoder-
decoder is that the computation over all elements can
be fully parallelized during training to better exploit the
GPU hardware. CNN model can be used to represent the
syntactic and semantic information of source code. With the
assistance of the special attention mechanism or the RNN
decoder, CNN can solve the problem of input sequence [24].
When it is applied to sequence problem, the convolution
model can represent input sequential data hierarchically. The
role of CNN lies in that it can extract hierarchical feature
representation from input sequence.

Allamanis et al. [9] introduce a convolutional network into
attention mechanism, which can produce short and descrip-
tive summaries for source code snippets. The commenting
system adopts the encoder-decoder framework and attention
mechanism, where the basic element of decoder is GRU.
Their convolutional attention module applies convolution on
the input source code snippets to detect patterns and deter-
mine the important token sequences where attention should
be focused. So generally CNNmodels are not commonly used
to model temporal sequences, apart from those mentioned
in [24]. We usually select CNN model and other auxiliary
model to solve the temporal sequences problems.

In another effort, Mou et al. [51] exploit convolutional
neural networks to represent the abstract syntax tree of source
code as vectors, then classify programs according to func-
tionality. They take the entire AST of a program as input,
and design a convolution kernel over AST of source code to
capture structural information of source code. Although the
goal of their work is not to generate comments for programs,
their source code model can be used for generating summary
for program in future work.
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Although most of the aforementioned approaches adopt
encoder and decoder structure, Allamanis et al. [7] adopt a
log-bilinear model in neural network to suggest method and
class names. Their model leverages continuous embedding
to represent identifier name. They believe identifiers with
similar vector will appear in similar contexts. So they recom-
mend the name of class or method by selecting the name with
similar vector, and that means comparing the vector between
the function body and candidate identifier name. In a word,
they exploit a neural probability model instead of encoder-
decoder framework to solve the method naming problem.

In existing literature, RNN and CNN all can be exploited
to model source code and generate natural language sum-
maries or comments for source code [9], [51]. RNN makes
use of GRU or LSTM to represent the long distance features
between long input sequences. CNN exploits a convolutional
attention or convolution layers to collect and represent the
features and position model of source code.

All in all, in the deep learning based commenting algo-
rithms, RNN, LSTM, GRU or CNN are generally adopted to
model source code and perform various SE tasks. In comment
generation models, RNN and CNNmodels are equipped with
attention mechanism to improve the accuracy and efficiency.
Although deep neural network based comment generation
algorithms receive successes in comment generation, they
still have difficulties in modeling multiple complex informa-
tion from source code at the same time. Combined model is
a popular direction in future researches.

D. OTHER COMMENT GENERATION ALGORITHMS
We further present some other technologies for generating
code comments. These technologiesmostly either adopt some
existing models from other research areas to represent source
code or adopt models that exclude the aforementioned mod-
els, such as Software Word Usage Model (SWUM) [29],
Ontology based Resource Description Framework (RDF)
[62] and stereotype identification [22] etc. These models can
represent the structure and semantics of source code. Many
commenting systems [46], [47], [67], [69] apply software
word usage model (SWUM) to represent structural, semantic
and lexical information in source code; some systems [62]
exploit ontology based Resource Description Framework
(RDF) to depict semantic information of source code, and
use heuristic method to find out key facts in the source code,
etc. Several efforts [5], [49], [50] leverage stereotype iden-
tification techniques to generate summaries for Java classes
and methods. Finally these solutions improve the accuracy of
comments and performance in commenting systems to some
extent.

1) SOFTWARE WORD USAGE MODEL BASED COMMENT
GENERATION ALGORITHMS
Software Word Usage Model (SWUM) was proposed by
Emily Hill in 2009. She designs this model in [29], [30].
This model is a new representation model for source code.
Compared with software BOW (short for Bag Of Word),

which is the commonly used model for software in earlier
time, SWUM represents much textual and structural infor-
mation in source code to improve software searching and
program exploration. SWUM combines textual and structural
information of source code into one model.

Hill proposes SWUM model to represent the facts in
source code. An SWUM model is composed of three
layers [29]: SWUMword which models program words,
SWUMprogram which models program structural information,
and SWUMcore which models phrase structure in source
code, and bridge edges connect different layers. Thus SWUM
can not only extract the lexical and structural information
from source code, but also links between the linguistic infor-
mation and structural information. With this model, devel-
opers have designed different score functions in order to
complete the different application tasks. According to score
values calculated by score functions, the focal phrases and
key structural information are selected from source code.
Finally with these focal phrase and key words, comments are
produced with the assistance of designed language templates.

Sridhara et al. [67] utilize SWUM to represent source
code and generate comments automatically for Java methods
and the focal parameters of java classes. Through traditional
program analysis and natural language analysis they first
construct SWUM, then select the content to be included in
the summary comment, and leverage the focal terms and
keywords to construct the natural language text from tem-
plates for method. After combining and smoothing the gen-
erated text, the summary comments are yielded. Similarly,
Sridhara et al. [69] combine SWUMand heuristics to produce
parameter comments for method and add them to the method
summaries. They first leverage structural and linguistic infor-
mation of source code to determine the content to be included
in summary of parameter of method, then generate succinct
description phrases with the assistance of templates. These
description phrases are used to describe the intent of method.

Based on the same model, McBurney and McMillan [47]
combine PageRank algorithm and SWUM to generate sum-
mary for Java method. They use SWUM to represent source
code and extract keywords about the behavior of important
methods. The role of PageRank is to discover the most
important methods in given context. Their summary is of
higher quality owing to the addition of context information of
method. Here, the context information of method is obtained
by the analysis of method calls. These commenting systems
all adopt SWUM to represent source code models.

2) ONTOLOGY-RDF BASED COMMENT GENERATION
ALGORITHMS
Rastkar et al. [62] propose an approach that automatically
produces a natural language summary for crosscutting source
code concerns.1 They extract the structural and lexical infor-
mation from source code and exploit ontology instance

1Crosscutting source code concerns: are concerned with source code that
crosscut the modules defined in the code.
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to store and describe the extracted semantic information,
and they manipulate an ontology instance through an RDF
graph which is used to depict resources originally. In their
approaches, triples (resource, attribute type, attribute value)
are used to represent one attribute of a particular class. Then
they use a set of heuristics to find salient code elements and
patterns from the related code concern. Finally, the infor-
mation extracted in the previous steps is used to construct
summary comments according to templates. Their generated
summaries mainly describe what is the code concern and how
it is implemented.

3) STEREOTYPE IDENTIFICATION BASED COMMENT
GENERATION ALGORITHMS
Stereotypes are a simple abstraction of a class’s role and
responsibility in a system’s design, for instance, an accessor
is one of the method stereotype that returns information [22].

Moreno et al. [49], [50] use stereotype information of Java
classes and methods to select content to be included into the
summary and generate summary for Java class. First, they
identify stereotype information of Java classes and methods.
Next they exploit heuristic rules to determine which infor-
mation in source code to be extracted and added into the
summaries. Their summaries focus on the responsibilities
and content of the classes instead of their relationships with
other classes. In another effort, Abid et al. [5] differentiate
the type of stereotype of C++ methods using stereotype
identification, and employ static analysis to extract the main
components of the method, so as to generate summaries
according to predesigned templates for every type of stereo-
type of methods.

4) OTHER ALGORITHMS
Employing heuristics approach only, Sridhara et al. [68]
generate concise comments for the high-level action in Java
methods. In their commenting system, they design and imple-
ment the rule sets by which code snippets of statement
sequences, conditionals and loops are identified. Next they
develop the corresponding summary templates for generating
comments for Javamethods. Finally they generate summaries
for Java methods according to these templates.

Among many literature on the study of commenting gen-
eration, there are several studies which adopt approaches
initially designed for non-commenting problems. In a differ-
ent effort, Rodeghero et al. [64] introduce an eye-tracking
technique into comment generation researches. Basing on
the related studies of eye-tracking in program comprehen-
sion, they detect eye movements and the amount of gaze
time which programmers spend in scanning source code.
According to these information they adjust the weight value
of words in source code, and identify keywords, which
makes generated summaries more accurate. In another effort,
Wang et al. [81] use some rules mined from open source
projects to identify the object-related action unit within a
method, and generate natural language phrases for action
unit. They exploit data-driven approach to obtain a set of

rules to identify the focal statements and arguments in source
code. In the end, they employ the information obtained in
the previous step to construct natural language description for
action unit according to the predefined templates.

E. SUMMARIZATION OF COMMENT GENERATION
ALGORITHMS
We have described three main categories of comment genera-
tion algorithms, and we further summarize the characteristics
of those algorithms.

The characteristics of Information Retrieval (IR) based
algorithms are salient on three aspects. First, these kinds
of commenting algorithms view source code as plain text,
and construct comments by searching keywords or tokens
from source code or searching comments from similar code.
They attach great importance to lexical semantics of source
code, and neglect the structural information, data dependency
and invoke information of source code. Second, the effec-
tiveness of IR-based algorithms, to a large extent, depends
on the similar code from datasets. Without similar code in
datasets, IR-based algorithms will fail to generate accurate
comments or any comment at all for classes. If the source
code contains poorly named identifiers, they still fail to rec-
ommend accurate comments. Third, for IR-based algorithms,
the quality and quantity of generated comments both depend
on the quality and quantity of source code contained in
datasets.

Among deep neural network based comment generation
algorithms, most of them employ RNN encoder-decoder
model with the assistance of attentionmechanism to represent
the features of input code as the vector. They usually formu-
late comments generation from source code as machine trans-
lation in natural language processing. The role of attention
mechanism lies in adjusting weights of the tokens in source
code, which makes the accuracy of the generated comments
better. When choosing CNN to build comment generation
system, it is necessary to equip it with attention mechanism.
The deep neural network based comment generation algo-
rithms are one type of the supervised learning. So, these
kinds of algorithms require high quality datasets for training
parameters of neural network so as to acquire the generative
model for source code.

Besides information retrieval based algorithms and deep
neural network based algorithms, other comment generation
algorithms mostly either adopt some existing models from
other research areas to represent source code, such as eye-
tracking and semantic ontology based RDF etc., or adopt
models that exclude the aforementioned models, such as
SWUMmodel to represent source code and yield satisfactory
comments for given source code.

IV. QUALITY EVALUATION CRITERIA OF CODE
COMMENTS
As discussed above, most existing commenting algorithms
are evaluated based on different datasets, which causes the
experimental results to be noncomparable. The fundamental
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FIGURE 5. The classification of code comment quality assessment metrics and referenced literature.

reasons lie in the lack of an unified dataset for algorithm eval-
uation. In addition, appropriate comment evaluation criteria
in terms of the efficiency and effectiveness of algorithms are
still missing.

In recent years, some researchers have conducted many
studies on comment evaluation models. The studies on com-
ment quality assessment and reference literature are shown
in Figure 5. Khamis et al. [38] present JavadocMiner, a tool
that can analyze the quality of Javadoc comments automat-
ically. Using a set of heuristics, they evaluate the quality of
comments in terms of quality of language and consistency
between source code and its comments. Steidl et al. [70]
perform the study on quality evaluation for native comments
with a quality assessment model and a set of comprehensive
and systematic metrics. They classify comments into seven
categories: copyright comments, header comments, member
comments, inline comments, section comments, code com-
ments and task comments. Then they propose the correspond-
ing evaluation metrics and a general quality model for each
type of comments according to the code-comment relevance
and the length of comments. Their work mainly focuses
on the quality of inline comments and member comments.
In 2016, Yu et al. [87] propose a source code quality assess-
ment approach based on aggregation of classification algo-
rithms, which evaluates comments in terms of their format,
language form, contents and correlation degree of code. This
method is characterized by introducing machine learning
and natural language processing technologies into comment
quality assessment. They improve the evaluation results by
using the aggregation of the basic classification algorithms.
In general, there are a few studies on quality assessment for
source code comments in existing literature, however, there
is a lack of studies on the quality assessment of analytical
comments.

There are two classes of assessment methods available:
manual evaluation and automatic evaluation. Manual eval-
uation relies on experienced developers to analyze and
rate the generated comments one by one according to pre-
defined quality metrics, such as conciseness, readability,
accuracy, etc. Although the manual assessment methods
avoid the complex technological design of feature selec-
tion and evaluation algorithms, it is usually time-consuming

and costly, thus it is not fit for a vast number of analyt-
ical comments. However, there are no automatic quality
assessment tool available exclusively for code comments,
and researchers in software engineering field generally bor-
row natural language assessment criteria and tools. The
commonly used metrics and tools in automatic assessment
are BLEU [58] and METEOR [13]. Sometimes, ROUGE
and CIDER are also used. To sum up, the comment
quality assessment generally involves the following three
perspectives:
• Experimental datasets, which refers to datasets that are
used for evaluating code commenting algorithms.

• Evaluation methods, which generally include manual
assessment and automatic assessment.

• Evaluation metrics, which refer to the criteria for eval-
uating the quality of comments.

A. DATASETS FOR VALIDATION
The datasets for validation in existing studies usually varies
across commenting systems. These datasets come from three
sources: open source projects from GitHub software reposi-
tories, Q&A sites in Stack Overflow, and communication and
discussion information, like emails, among developers.

Although there only exist three kinds of datasets, every
commenting system collects different projects written in dif-
ferent programming languages as datasets. Even some sys-
tems collect information from the same source such as Q&A
sites in Stack Overflow, there still exist differences in tags
and time segments. As a whole, there is not a uniform public
validation dataset for use.

B. AUTOMATIC EVALUATION
Since comments are sentences written in natural languages,
the comment quality assessment criteria mostly come from
the corresponding evaluation metrics in the field of natural
language processing. These metrics originally are designed
for measuring the quality of sentences generated by machine
translation system, and have been justified to well reflect the
accuracy of test results, and the test results are highly coherent
with human evaluation. Existing automatic evaluation met-
rics for comment quality mainly include BLEU, METEOR,
ROUGE and CIDEr.
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1) BLEU
BLEU [58], standing for Bilingual Evaluation Understudy,
is a method for automatic evaluation of machine transla-
tion, proposed by Papineni et al. in 2002. It can be used to
analyze automatically the degree of common appearance of
candidate texts and reference translations. Since human eval-
uations of machine translation are extensive and expensive,
BLEU is designed as a quick, inexpensive and language-
independent automatic evaluation method for machine trans-
lation. In terms of the reliability of evaluation results,
the results of BLEU highly cohere with human evaluation,
so it is extensively applied to the evaluation of machine trans-
lation and the evaluation understudy of automatic comment-
ing systems [31], [32], [89]. The key assessment contents of
BLEU is n-gram precision, which refers to the proportion of
the matched n-grams out of the total number of n-grams in
the evaluated translation. Precision is calculated separately
for each n-gram order, and the final precision is computed as
weighted geometric mean for each precision. For the candi-
date texts, the more similar they are to the natural language
reference written by human, the higher scores they get. For
n-gram precision, n can be 1, 2, 3, 4. When n = 1, BLEU
has good performance at the sentences with well matched in
corpus level, but the matches in sentence-level become poorer
as the length of the sentences grow longer. BLEU does not
take direct recall into account. That lack of recall and no con-
sideration about explicit word-matches between translation
and reference makes the degree of coherence between human
evaluation and BLEU evaluation advance difficultly.

2) METEOR
METEOR [13], short for Metric for Evaluation of Translation
with Explicit Ordering, is proposed by Lavie in 2005. It is
a supplementary evaluation metric to BLEU, which incorpo-
rates the recall to reflect howmuch the translated results cover
the entire contents of the source sentences. In consideration of
the weakness of BLEU method without reflecting the recall,
METEOR takes the recall into account, and computes a score
based on explicit word-to-word matches between transla-
tion and a reference translation and evaluates the translation
according to the score. The higher the score, the closer it is
to the reference translation, which denotes the higher quality
of the translation. Experiments show [13] that METEOR has
significantly improved coherence between human judgments
in comparison of BLEU. So, METEOR metrics usually are
used to evaluate the quality of machine-generated comments
of code as the complement to BLEU.

3) ROUGE
ROUGE (Recall-Oriented Understudy for Gisting Evalu-
ation) proposed by Lin [43], is an automatic summary
assessment method, and now it is extensively adopted in
the tasks of summary assessment. ROUGE includes several
different metrics, among which four commonly used ones
are ROUGE-N, ROUGE-L, ROUGE-W and ROUGE-S.

They are recall-based methods which measure similarity
between a summary and the ideal summaries written by
human. ROUGE-N and ROUGE-L are generally used as the
metrics for measuring the summary comment quality assess-
ment [41], [80]. ROUGE-L denotes the longest common
subsequence-based precision and recall statistics.

4) CIDER
CIDEr [79], standing for Consensus-based ImageDescription
Evaluation, is proposed by Vedantm in 2015 in the computa-
tional vision and mode recognition conference. Researchers
believe that multiple existing evaluation metrics have high
relevance to human evaluation, but there is no way to unify
them into an uniform metric which can determine the sim-
ilarity between a candidate sentence and reference sen-
tences. In order to solve this issue, a consensus-based metric,
named CIDEr, is proposed. Its primary principle is to mea-
sure the similarity between a test sentence and the majority
of reference sentences. The experiment results demonstrate
that CIDERr metric coheres with human consensus-based
matches better than the existing aforementioned metrics.

Accordingly, researchers generally exploit BLEU to evalu-
ate machine-produced translations automatically firstly, then
METEOR is used as a supplementary to final results of eval-
uation, which makes assessment results more objective and
closer to human evaluation results. And some code summary
generation systems adopt ROUGE and CIDEr metrics to
evaluate generated comments [80], but ROUGE and CIDEr
are not used extensively.

In summary, because of similarities between code com-
menting and machine translation, researchers usually adopt
BLEU, METEOR, ROUGE and CIDEr methods to measure
the quality of computer-produced comments. Among these
metrics BLEU and METEOR are the common used metrics.

C. HUMAN EVALUATION
In the commenting systems summarized in Section III,
researchers ask human evaluators to evaluate the generated
comments on assessment metrics.

Though the scores from human evaluation are subjective
and manual scoring is subject to low efficiency, it is still
one of the important methods for assessing the performance
of many commenting algorithms. There are several manual
assessment metrics for measuring the quality of generated
comments. Although the names of the quality assessment
metrics in different researches are not completely the same,
we group them into three categories according to their char-
acteristics as follows.

First, measuring code comments with their contents: evalu-
ating the generated comments on contents, such as adequacy,
accuracy [46], [67], [69], conciseness, informativeness [33]
and interpretability [89], etc. The meanings of the features in
this group are described as follows.

• Accuracy measures to what extent the generated com-
ments reflect the semantics of the relevant source code.
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• Content adequacy is used to evaluate how much infor-
mation the comments miss with regard to the informa-
tion contained in source code.

• Conciseness is used to evaluate to what extent the com-
ments contains the unnecessary information.

• Informativeness measures the amount of contents car-
ried over from the input code to the NL comment, ignor-
ing fluency in language.

• Interpretability measures to what extent the generated
comments convey the meaning of the source code.

Second, measuring code comments with the features of
natural languages: evaluate the generated comments on gram-
maticality and fluency, ignoring contents of comments. These
modalities are, namely, expressiveness [50], naturalness [33]
and understandability [89] etc. The definition of each feature
in this group is described as follows.

• Naturalness measures the grammaticality and fluency
of comments.

• Expressiveness measures the comments’ readability
and understandability in the respect of their way of
description.

• Understandability is used to evaluate comments
according to their fluency and grammar.

Naturalness and understandability metrics almost have the
same meaning in different names in different researches.

Third, measuring code comments in terms of their effec-
tiveness: judging whether the generated comments are use-
ful [46] and necessary [69], or evaluating to what extent
can the generated comments help developers understand the
programs, namely code understandability. The meanings of
features in this group are described as follows.

• Usefulness measures to what extent the generated com-
ments are useful for developers to understand code.

• Code understandability is used to evaluate to what
degree does the generated comments help developers
understand the programs.

• Necessity measures to what extent the generated com-
ments are necessary.

• Utility measures to what extent the generated comment
can help developers comprehend code.

All modalities discussed above can be rated in different
scale. Some researchers rate comments on a scale between 1
and 5; some rate comments on a scale between 1 and 4,
or on a scale between 1 and 3. For accuracy metric, evalu-
ators can rate comments by answering multiple choice ques-
tions, and each question could be answered as ‘‘Strongly
Agree’’, ‘‘Agree’’, ‘‘Disagree’’, ‘‘Strongly Disagree’’, four
items in total; or answered as ‘‘Strongly Agree’’, ‘‘Agree’’,
‘‘Neural’’, ‘‘Disagree’’, ‘‘Strongly Disagree’’, five items in
total; or ‘‘Accurate’’, ‘‘Slightly Inaccurate’’, ‘‘Very Inaccu-
rate’’, three items in total. The answers are assigned on a scale
between 1 and 5, or between 1 and 4, or between 1 and 3.
For other metrics, the same approach can be adopted to rate
comments.

In addition, there are two assessment metrics worth men-
tioning: precision and recall. These two metrics can be used
to evaluate the usefulness of generated comments. Preci-
sion and recall metrics both come from information retrieval
metrics [53]. Precision [13] is the proportion of the cor-
rect n-grams in the evaluated comments. Recall [13] is the
proportion of the correctly predicted n-grams in reference
comments. Among aforementioned metrics, BLEU is based
on precision metric, and METEOR is based on recall metric.

Evaluators are usually the programmers with five-year
experiences in the corresponding programming language
development or Masters/PhDs in the corresponding field.

Human evaluation is characterized by high accuracy and
convincing assessment results, while it is also subject to high
costs, subjective influence from evaluators and being time-
consuming. However, human evaluation is still a very impor-
tant quality assessment methods for code comments. And it
is not replaced by automatic evaluation. All in all, automatic
evaluation has its own advantages, it can supplement the
weakness of manual evaluation. Till now, there is no mature,
efficient and inexpensive comment quality assessment tools,
which is an important problem to solve in the field of code
comment generation fields.

To sum up, when designing evaluation experiments and
selecting evaluation criteria, we should design and select
the suitable assessment criteria according to the algo-
rithms that are adopted in commenting systems so as to
make the designed experiments and assessment results more
convincing.

V. FUTURE DIRECTIONS
As an important research direction in software engineer-
ing field, the source code commenting technologies have
received much attention from the academics since the last
decade. But it remains a challenge research topic due to its
internal complexity and the limitations of existing technolo-
gies. In recent years, one of the representative efforts is to uti-
lize deep neural networks to solve the problem of automatic
comment generation, and some promising results have been
obtained. However, there still exist some drawbacks such as
low accuracy of generated comments and insufficient gen-
erated comments on the whole. In the following discussion,
we summarize the future research opportunities for automatic
comment generation.

• Exploring the synergy between deep neural network
and other models.At present, the deep neural networks
technology as the emerging technology is adopted to
solve the problem of automatic generation of code com-
ments, and obtains better results than previous methods.
The reason is that the structure of deep neural network
technology is fit for solving the problem of sequences to
sequences. However, the problem of automatic genera-
tion of code comments is not simple translation prob-
lems within the natural language, it is the conversion
problem from structured source code to natural language
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sentences. As a result, exploring the synergy between
deep neural network and other models to represent the
source code remains an open research topic.

• Fusion of different source code models. The combina-
tion of multiple models for representing source code is
well suitable for the solution of code comment genera-
tion problems. Because onemodel is fitter for describing
one feature of source code. Token-based model can be
used to describe lexical information in source code,
which is the words and tokens hidden in identifiers
name or comments of source code, such as BoW model
etc. And statistical language models describe the prob-
abilities for the words to appear in sequences, such as
n-gram model etc. Besides, SWUM model is suitable
for representing the semantic, structural information
and phrases information in source code, but it cannot
represent word sequences in source code. Accordingly,
appropriate fusion of different source code models may
be open for future research.

• Designing a customized, intelligent automatic com-
ment generation system to meet various scenarios.
To solve the problem of automatic code comment gener-
ation, we should perform mainly two tasks: source code
representation and text generation. The goal of code
commenting is to improve readability of source code,
which is to help software developers and maintenance
engineers comprehend programs much faster and better,
and is beneficial for them to perform other tasks; On
the other hand, code commenting can free developers
from writing comments manually, which is laborious
and tedious for developers. So it is one of the impor-
tant directions for automatic code comment generation
to design a customized, intelligent automatic comment
generation system to meet the requirements of different
developers in specific application scenarios.

• Unification of test datasets and comment quality
assessment model. In terms of code comment assess-
ment, the unification of multiple test datasets opens the
future direction first, because if there were no unified
test dataset, there would be no means to compare the
advantages and disadvantages of commenting genera-
tion algorithms, which will certainly affect the devel-
opment of algorithms. So designing and building up
a unified, universal test dataset is an urgent problem
needed to be solved. Second, designing and setting up
an appropriate, objective comment quality assessment
model is another vital research direction. Accordingly,
the study on comment quality assessment metrics is also
an active research direction of comment assessment.

VI. CONCLUSION
This paper provides a survey of the recent development
of automatic code comment generation technology. The
research in this field has explored information retrieval based
code commenting techniques, neural network based code
commenting techniques and other code comment generation

techniques. We introduce the features of code comment-
ing problem, the research framework and the workflow of
automatic code comment generation. By summarizing and
analyzing three main classes of automatic code comment
generation techniques, we present the future research oppor-
tunities. Specifically, exploring the neural network, combina-
tion of multiple technologies and flexible switching in multi-
application scenarios remain open research topics.

In the field of quality assessment research on code com-
ments, we summarize four kinds of automatic assessment
metrics including BLEU, METEOR, ROUGE and CIDER,
which represent the strengths and weaknesses of each com-
ment metric; and we outline the commonly used metrics
in manual evaluation from three aspects: natural language
features, contents of comments and effectiveness of com-
ments. Choosing reasonable automatic assessment criteria
and manual assessment criteria, building the universal valida-
tion datasets are open for future research on comment quality
assessment.
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