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ABSTRACT Fine-grained visual classification tasks often suffer from that the subordinate categories
within a basic-level category have low inter-class discrepancy and high intra-class variances, which is still
challenging research for traditional deep neural networks (DNNs). However, different models extract local
parts’ features in isolation and neglect the inherent correlations and distribution in high-dimensional space,
which limit the single model to achieve better accuracy. In this paper, we propose a novel probability fusion
decision framework (named as PFDM-Net) for fine-grained visual classification. More specifically, it first
employs data-augmented tricks to enlarge the dataset and pretrain the basic VGG19 and ResNet networks
on high-quality images datasets to learn common and domain knowledge simultaneously while fine-tuning
with professional skill. Next, refined multiple DNNs with transfer learning are applied to design a multi-
stream feature extractor, which utilizes the mixture-granularity information to exploit high-dimensionality
features for distinguishing interclass discrepancy and tolerating intra-class variances. Finally, a probability
fusion module equipped with gating network and probability fusion layer is developed to fuse different
components model with Gaussian distribution as a unified probability representation for the ultimate fine-
grained recognition. The input of this module is the various features of multi-models and the output is
the fused classification probability. The end-to-end implementation of our framework contain an inner
loop about the EM algorithm within an outer loop with the gradient back-propagation optimization of the
whole network. Experimental results demonstrate the outperforming performance of PFDM-Net with higher
classification accuracy on different fine-grained datasets compared with the state-of-the-arts methods. More
discussions are provided to indicate the potential applications in combination with other work.

INDEX TERMS Deep neural network, weakly-supervised learning, multi-steam feature extractor,
probability fusion module.

I. INTRODUCTION
Deep neural networks (DNNs) are the most important
research branches in machine learning. Thanks to the break-
throughs in the design and training of DNNs with complex
structures consisting of multiple processing layers or non-
linear transformations, unprecedented improvements have
penetrated into many aspects of artificial intelligence, espe-
cially the performances of visual classification on large-scale
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datasets (such as ImageNet [1], MSCOCO [2]). Such fast-
pacing progresses in research have also drawn attention of
the related research corporations and industries like Google,
Facebook to build software and hardware to recognize every-
thing snapshotted by the consumers in real life [3].

Although great successes have been achieved for basic-
level classification in the last few years, fine-grained visual
classification (FGVC) aiming to identify the subordinate-
level categories under a basic-level category of daily objects
such as animal species or aircraft types is still a quite
challenging task for existing DNNs-based methods [4]–[9],
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such as AlexNet, VGGNet, DenseNet. For example,
the subordinate-level recognition between a ‘‘Yellow breasted
chat’’ and a ‘‘Yellow headed Blackbird’’ with similar appear-
ance is significantly more difficult than the basic-level recog-
nition divided as a coarse basic-level category ‘‘bird’’. It is
hard to obtain accurate classification results only by the state-
of-the-art coarse-grained DNNs because of three main rea-
sons: (1)Minor interclass variances. The global geometry and
appearances of samples belong to different categories may
be very similar apart from some subtle differences of several
key parts, which is a vital identification puzzle for DNNs;
(2) Major intra-class variances. Samples that belong to the
same category usually present significantly different poses,
viewpoints and locations in different images; (3) Limited
magnitudes of training data. The sample number of each
fine-gained category cannot meet the basic requirements of
DNNs training for deep features representation and excellent
recognition.

To distinguish fine-grained categories with very similar
outline, it requires specialized knowledge focusing on fea-
ture representation of discriminative object parts to expand
the application of existing DNNs on FGVC. According to
whether the method requires additional part location anno-
tation, current stage-of-the-arts can be divided into two
groups: strongly-supervised learning (SSL) [10] and weakly-
supervised learning (WSL) [11]. In the training process,
the former requires additional location information apart
from image-level category labels, such as bounding-boxes
or key-points of discriminative parts. Location annotation
heavily rely on more expensive manual labeling and time-
cost, whichmakes it hard to be prevalently applied in practice.
Consequently, researchers paymore attention onWSL frame-
works, which only employ image-level annotation to achieve
FGVC tasks. For instance, the attention mechanism can be
implemented to capture local feature in a translationally
invariantmanner, which is particularly suitable for classifying
fine-gained categories without manual location annotations.
Despite the great progresses, these WSL methods univer-
sally suffer lower performance than the best SSL models,
especially when small objects appear in clutter background.
More importantly, most WSL works tend to extract local part
features in isolation, while neglect their inherent correlations
and high-dimensional distribution. Given the learned location
features of objects’ parts, single WSL model is likely to
focus on the constant architecture of parts distribution and
lack the capability to distinguish interclass variances between
similar fine-grained classes. Moreover, diverse WSL models
are interested in multiple object’s parts with different pref-
erences, which aggravate intra-class variances of the same
class. As a consequence, it is very likely to bring about
the wrong category when these parts are occluded due to
pose or viewpoint variances, which lead to the diverse recog-
nition performance of different WSL models.

From extensive experimental studies, it is observed that
WSL models with different location features have potential
information complementary characteristics for each other.

Therefore, the information fusion mechanism is introduced
to integrate multiple WSL model advantages for discover-
ing discriminative parts in fine-grained visual classification.
To verify the application value, an effective probability fusion
framework in decision-level viewpoint named as PFDM-Net
was designed, which aims at utilizing the mixture-granularity
information of multiple DNNs by only using image-level
labels. In detail, the PFDM-Net first generates input images
with various data augmented preprocessing and batch initial-
ized tricks. Next, the framework is trained by themulti-stream
DNNs architecture to exploit the high-dimensional fea-
ture maps representing discriminative and non-discriminative
parts as well for interclass variances. As for each stream,
some advancedWSLmodels were adopted separately achiev-
ing excellent performance on public FGVC datasets. Then,
a novel probability fusion module is developed to fuse
different features as a unified probability representation for
the ultimate fine-grained recognition. The end-to-end imple-
mentation of fusionmodule has an inner loop about the expec-
tation maximization algorithm (EM algorithm) used in fusion
layer and an outer loop about backward gradient propagation
of the whole network in the training process. This optimiza-
tion design offers a high capacity of learning complementary
yet correlated information for intra-class variances among
multi-grained feature maps of different models, which
make the proposed PFDM-Net more suitable for identify-
ing slight discrepancy when distinguishing the fine-grained
categories in FGVC tasks. The experimental results on
CUB-200-2011 [12], Stanford Cars [13] and Stanford
Dogs [14] show the robustness and superiority of PFDM-Net,
which achieves the top performance outperforming state-of-
the-art methods.

The rest of the paper is organized as the follows:
Section II outlines an overview of the related works. The
proposed framework is explained in Section III. Experimental
results and evaluation performance of our technique com-
pared with other state-of-the-art methods are discussed in
Section IV. Finally, Section V make some further discussion
and SectionVI concludes thewholeworkwith future research
prospects.

II. RELATED WORK
At present, there are four main types of fine-grained image
classification methods: strongly-supervised learning meth-
ods, weakly-supervised learning methods, attention mecha-
nism methods, higher order representation learning strategies
and methods. We review recent works in the literature in this
section.

A. STRONGLY-SUPERVISED LEARNING METHODS
To focus on the local features, many strongly-supervised
learning methods rely on the manual annotations of parts
location or attribute. Reference [15] finds that the migra-
tion of Deep Convolutional Activation Feature (DeCAF)
to fine-grained classifications yields better classification
performance. Reference [16] is another early work based
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on the point of view of deep-learning migration, which
transfers the object detection model(R-CNN) as novel Part
R-CNN [17] to extracting important local information for
fine-grained classification. The Part R-CNN follows the rou-
tine of generating semantic part prediction (head, body, etc.)
of the object (bird) with geometric constraints and classifying
images by use of pose-normalized representation. It shows
that better localization of parts does lead to further improve-
ment of classification, yet greatly affect the arithmetic
speed. Reference [18] proposes a feedback-control frame-
work Deep-LACwith a valve linkage function connecting the
localization and classification modules to back-propagate
alignment and classification errors to localization.
Reference [19] introduces the collaborative segmentation
into fine-grained image classification, and propose a novel
local region detection algorithm. The algorithm named
SPDA-CNN only relies on the label box to segment object
parts and combines them with alignment operations for fine-
grained classification. Nevertheless, it is also dependent on
extra location annotation with expensive manual labeling,
which makes it hard to be prevalently applied in practice.

B. WEAKLY-SUPERVISED LEARNING METHODS
In order to reduce the human labeling cost, many weakly-
supervised learning methods that only require image-level
annotation has gradually been proposed in recent years.
Reference [20] proposes the Two-Level Attention models
(TLAN) to extract object-level and part-level features in
bottom-to-up way at the same time. Reference [21] designs a
novel bilinear network model (Bilinear CNN) is to combine
two stream features at each location using the outer product,
which considers their pairwise interactions in the end-to-end
training process. Similarly, reference [22] proposes the
object-part attention model (OPAM) for weakly supervised
FGVC without neither object or part annotations, which
avoids the heavy labor consumption of labeling This model
integrates two level attentions: object-level attention localizes
objects of images and part-level attention selects discrimi-
native parts. Both are jointly employed to learn multi-view
and multi-scale features to enhance their mutual promotion.
Spatial Transformer Network (ST-CNN) [23] also chooses a
weakly-supervised way. The model can also locate several
object parts simultaneously to achieve more accurate clas-
sification performance by first learning a proper geometric
transformation and align the image before classifying.

C. ATTENTION MECHANISM METHODS
There are also many other models based on attention
mechanism in fine-grained classification. Reference [24]
proposes Recurrent Attention CNN (RA-CNN) and progres-
sively learns coarse to fine region attention areas by train-
ing an attention sub-network. To generate multiple attention
locations in a mutually reinforced way, reference [25] pro-
poses Multi-Attention CNN (MA-CNN) to locate multiple
part attentions from feature channels at same time. However,
the number of object’s parts is still limited, which might

constrain further accuracy improvement. Reference [26]
proposes Weakly Supervised Bilinear Attention Network
(WS-BAN) to solve the above issue. It jointly generates a
set of attention maps to indicate the locations of object’s
parts and extracts sequential part features by bilinear atten-
tion pooling. The generating process of attention maps is
flexibly adjusted according to the parts quantity. However,
training by softmax with cross entropy loss usually leads the
model to pay attention to the most discriminative location,
whose output neglect that inter-layer part feature interaction
and fine-grained feature learning are mutually correlated.
To reinforce locations of the whole object and parts, refer-
ence [27] propose a hierarchical bilinear pooling framework
(HBP) to integrate multiple cross-layer bilinear features to
enhance their representation capability, which results in supe-
rior performance compared with other bilinear pooling-based
approaches.

D. HIGHER ORDER REPRESENTATION LEARNING
STRATEGIES AND METHODS
Besides attention models, higher order representation learn-
ing strategies and methods are also explored. On basis
of object-level and part-level features, reference [28] pro-
poses a discriminative filter bank of convolutional fil-
ters (DFL) to capture mid-level class-specific patches.
Reference [29] develops the deep metric learning to construct
a novel multi-attention multi-class constraint neural network
(MAMC), which regulates multiple object parts and extracts
high level abstractions from different input images-pairs.
Reference [30] applies clustering mechanism to utilize dis-
criminative parts from feature maps of CNN’s mid-layers,
and a Gaussian mixture layer (GMNet) is proposed to
model distribution of part features, which are treated as data
points to generate output features based on combination of
cluster center. Hence, reference [31] have shown increas-
ing interests in generalizing average pooling and bilinear
pooling to covariance pooling layers, which is identified as
Matrix Power Normalized Covariance (MPN-COV) method.
Reference [32] further expand second-order pooling to
higher-order global covariance pooling, and proposes
an iterative matrix square root normalization method
designed with loop-embedded directed graph structure
for fast end-to-end training of global covariance pooling
networks (iSQRT-COV).

Despite the great progresses, these WSL methods
universally suffer lower performance. However, diverse
WSL models are interested in multiple object parts with
different preferences, which could make up for each
other to predict better results. Therefore, several recent
works have developed a great progress in investigation
of information fusion strategies with different models.
Reference [33] and [34] attempt to fuse different models as a
two-branch HybridNet architecture. Reference [35] proposes
a novel self-supervision model termed Navigator-Teacher-
Scrutinizer Network (NTSN) to effectively localize infor-
mative regions. However, multi-scale fine-grained image
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classification remains a challenging task because multiple
WLS models cannot be guided with an effective fusion
strategy, which will reduce the overall classification accuracy
especially when low-quality image distortion occurs. Inspired
by the mixture-of-experts layer [36], an effective probability
fusion decision framework named PFDM-Net was designed
to integrate multipleWSLmodels for discovering discrimina-
tive parts in fine-grained visual classification. Different from
the previous studies, this work presents a probability fusion
module by combing differentmodels for each example, where
model capacity is critical for absorbing the vast quantities
of knowledge available in the training corpora. The experi-
mental results show that the proposed PFDM-Net performs
better in terms of classification accuracy. This work can be
also combined with other newly updated models for yielding
better results in the future.

III. METHODOLOGY
In this section, we first introduce the motivation of the whole
framework. Then, we focus on the proposed model named
PFDM-Net, and the details of model training are chaired in
the end.

A. MOTIVATION
It is well known that more abstract features are performed to
describe the structure, shape and sketch of objects in a more
complete manner as the depth of the CNN layer increases.
Therefore, DNNs with flexible CNN layers and tricks
become the foundational instruments for feature extraction of
WLS models. However, images of fine-grained visual task
usually contain more complex texture, rich color and compli-
cated spatial relationship than ones of basic-level classifica-
tion in which one or more objects are dominated. At the same
time, detailed information becomes gradually lost in deeper
CNN layers, and consequently most regions in a scene image
possess no longer discriminative property.

To further illustrate the above analysis, we take three mod-
els including ResNet101, WS-BAN and iSQRT-COV cur-
rently performing well on fine-grained image classification
as an example. As aforementioned, the ResNet model is
employed to mitigate network training with deeper structure
owing to its well-designed architecture, impressive perfor-
mance and low model complexity. This model explicitly
reformulates the CNN layers as residual functions with refer-
ence to the basic rule that partial data of the input goes directly
to the output without passing through the neural network,
which is proven to preserve some original information and
prevent effectively the gradient dispersion problem in back
propagation. In addition, there are off-the-shelf pre-trained
ResNet models including various auxiliary branches, which
are convenient for implementation of coarse-grained classi-
fication. Hence, the ResNet-101 model was taken, which the
major novel component of ResNet, as the traditional DNNs
without special design focusing on subtle differences of local
information compared with other WSL models. Moreover,
WS-BAN jointly learns the location of a large num ber of

FIGURE 1. Feature maps from 1st, 3rd, 5th, 7th and 9th (from left to right)
convolutional layers of ResNet-101(a), WS-BAN(b) and iSQRT-COV(c)
models are markedly different, which illustrates that various models have
different learning preferences to the same object.

discriminative object’s parts and their feature representa-
tion to improve the accuracy of FGVC. This architecture
generates feature maps and attention maps by using the
lightweight VGG16 as the basic feature extractor, which has
a good effect on small target features with adequate semantic
information. Reversely, iSQRT-COV modifies the first-order
convolutional pooling with ResNet architectures as the
second-order matrix power normalized covariance pooling.
This has shown that, given an order through compact explicit
low-dimensional features, matrix power is consistent with a
robust feature extractor characterizing higher order feature
interactions, which achieves impressive improvements over
traditional WSL models.

In this work, we use these above models trained on
the fine-grained CUB-200-2011 image dataset to demon-
strate that the feature maps obtained from coarse-grained
extractor, first-order fine-grained extractor and second-order
fine-grained extractor are distinctly different. The visualized
feature results of the same image extracted from different
layers of various models are shown in Figure 1.

Although feature maps from different models exhibiting
multi-view visual characteristics, all above models obtain
inherent representation abilities to achieve preeminent per-
formance on the fine-grained recognition task. Experiments
are presented on fine-grained datasets of birds. Various fea-
ture extraction architectures are initialized by using models
trained on the ImageNet. Without additional local informa-
tion and tricks, the fine-tune ResNet101 does remarkably
well and features prior to classifier achieve 86.57% accuracy
on the CUB-200-2011 dataset. Fine-tuning bilinear atten-
tions improve the performance of WS-BAN model in certain
degree, outperforming a number of existing methods that
additionally rely on object or part annotations. In compari-
son a bilinear model consisting of first-order convolutional
pooling, the second-order matrix covariance pooling applied
in the training process makes iSQRT-COVmodel achieve the
better outperforming accuracy.
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FIGURE 2. Accuracy results of each category offered by ResNet101, WS-BAN and iSQRT-COV models on the CUB-200-2011 dataset.

However, theWSLmodels do not achieve the highest accu-
racy at present, which extract location features of objects’
parts in isolation, neglecting their inherent correlations and
high-dimensional distribution. Therefore, single model is
likely to focus on the constant architecture of parts dis-
tribution and lack the capability to distinguish interclass
variances between similar fine-grained classes. Moreover,
various models with discrepant distribution architecture are
interested in different categories with inconsistent preference.
The accuracy differences of above WSL models for each
category are illustrated as following Figure 2. It is shown that
different models have different recognition capabilities for
each category, and the single model has discrepant accuracy
performance for different categories. For example, WS-BAN
only obtains 16.7% accuracy for the 59th category, then get
the accuracy up to 66.7% for the 67th class and 100% for
the 122th class. As a result, the relatively large accuracy
difference limits the overall accuracy of the single model
to further enhance. Correspondingly, ResNet101 achieves
the accuracy to 40% for the 59th category and iSQRT-COV
obtains the accuracy up to 45.4%. The accuracy difference
of the same category among three models is relatively large
due to layer depth of feature extractor, object discriminative
attributes and detailed information loss. Since features from
different models exhibit different visual characteristics and
discernible recognition accuracies, we consider to combine
the inherent representation capabilities of several WSLmeth-
ods to construct a novel fused model for further improving
fine-grained image recognition performance. The idea of the
fused method is similar to the idea of multi-view learning,
which takes advantage of features from different views, since
multi-view features can complement each other and acquire
better understanding of intra-class differences.

On the other hand, each model is interested in multi-
ple parts of objects with different preferences, which bring
about intra-class variances among quantity-changed images
of the same category. Moreover, complicated background
with discriminative properties including color, illumination,

FIGURE 3. Testing classification results of different WLS models on the
101st class.

poses or viewpoint further aggravate the diverse recogni-
tion performance of different WSL models for each fine-
grained class. An example of the intra-class recognition
achieved from different models is experimented to further
demonstrate the above discussion. The experimental analy-
sis is depending on the 101st class (biological category is
Western Wood Pewee) with a total of 30 test images in the
CUB-200-2011 dataset. Then, the variant results predicted
by ResNet101, WS-BAN and iSQRT-COV are illustrated in
following Figure 3. Pewee) with a total of 30 test images in
the CUB-200-2011.

As Figure 3 shown, the red pictures belonging to the
101st class represent the wrong recognition result of corre-
sponding model, which mistakenly divide these images into
other bird categories. Yet, the grey images are predicted as
the correct category with the guide of image-level anno-
tations. It is obviously known than different models have
different recognition capabilities for the same category and
focus on the dominant parts of the same species object with
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FIGURE 4. Schematic diagram of the fusion model structure.

significant differences. Another interesting analysis is that
ResNet101 and iSQRT-COV don’t perform as well as the
WS-BAN model with a shallower VGG structure of feature
extractor for this 101st class, even though both of them have
the deeper feature extractor with better representation ability.

However, excepting for a few same cases where every-
one makes mistakes, various models make most mistakes at
different points, which contain the potential rule that infor-
mation complementation of multiple models can reduce the
predicted error of test image samples. Thus, the addition rule
should be assigned to fusing prediction probability scores of
multiple models’ classifiers, which are relatively independent
from each other, to compute the global weighted score for bet-
ter intra-class representation of various images and samples in
the same category. Therefore, the probability fusion strategy
applicable to amplifying interclass discrepancies and sup-
pressing intra-class differences is adopted to design the pro-
posed PFDM-Net model on basis of ResNet101, WS-BAN
and iSQRT-COV models. The fusion framework takes paral-
lel advantages of multi-models in multi-dimensional feature
extraction and multi-view decision complementation, which
is experimentally proven to improve the overall accuracy of
FGVC task. The following presents how to incorporate the
probability fusion rule into our multi-models framework.

B. PFDM-Net ARCHITECTURE
By analyzing the differences in the recognition ability of
individual models for different categories and the recognition
of multiple models in the same category, we find that there are
different feature extraction capabilities of various models for
pictures. Therefore, a fusion strategy was designed to fuse
the feature results of the multi-stream models through the
fully connected layer output, so that the models complement
each other and improve the whole accuracy. The fusionmodel
diagram is shown in Figure 4.

1) DATA AUGMENTATION
To avoid over-fitting of the network, some data augmenta-
tions are applied to enhance a larger number of dataset’s
images with high quality before training. Generally, various
adjusted forms and distortion are needed to resize the input
images before sending them to the network. Hence, the more
complicated the tasks are, the more images the DNN models
need to nonlinearly estimate massive parameters adopted by
most classification works, especially when using images with
low resolution. To address this problem, we formulate a series
of augmented methods to increase the general training datum,
which consists of following six steps one-by-one:

1) Randomly crop a rectangular region whose aspect ratio
is randomly sampled in [3/4, 4/3] and area randomly
sampled in [8%, 92%], then resize the cropped region
into a 448-by-448 square image.

2) Randomly flip each image 180 degrees horizontally
and vertically with 0.5 probability in order to increase
the diversity of the image.

3) Randomly rotate each image in 90, 180, and 270 clock-
wise in order to improve distortion adaptability.

4) In the HSV color space of the image, exponentially
changing the saturation S and brightness V components
of each pixel, keeping the hue H constant, to increasing
the illumination variation. The S and V channels are
respectively scaled with coefficients uniformly drawn
from [0.25, 4].

5) Randomly sample an image and decode it into 32-bit
floating point raw pixel values in [0, 255]. And ran-
domly add PCA, salt-pepper and Gaussian noises with
a coefficient [37] sampled from a normal distribution
N(0, 0.1) to increase the perturbation resistance of each
pixel.

6) Finally, the mixup augmentation method proposed
in [38] is select to regularize the network models to
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favor simple linear behavior in-between training exam-
ples for alleviating undesirable behaviors. In the mixup
step, each time two examples (xa, ya) and (xb, yb)
are randomly sampled from training data to form a
new virtual training example by a weighted linear
interpolation:

x̃ = λxa+(1-λ)xb
ỹ = λya+(1-λ)yb (1)

where xa and xb are raw input image vectors, ya and
yb are one-hot encoding labels, λ is a random num-
ber drawn from the Beta(α, α) distribution with the
value range [0,1]. And the mixup hyper-parameter α
controls the strength of interpolation between vector-
label pairs, of which value is recommended as tending
to 0. In this paper, we set α = 0.18 in the Beta
distribution and increase the epoch number asking for
a longer training progress to converge better perfor-
mance. Thus, we achieve additional high-quality exam-
ples (̃x, ỹ) through the enhanced data augmentation for
subsequent model training.

Those above steps can obtain improved generalization and
robustness abilities of the network architecture by the aug-
mented datum.

2) MULTI-STEAM FEATURE EXTRACTOR
The feature extractor of the proposed PFDM-Net con-
sists of multiple classification deep neural networks which
are trained concurrently on the augmented datum from
the first stage. In this section, ResNet101, WS-BAN and
iSQRT-COV models will be used to obtain multi-stream
feature maps. For each componential model, some minor
adjustments were made to the network architecture, such as
changing the stride or kernel size of a particular convolution
layer. Such a tweak often barely changes the computational
complexity but might have a non-negligible effect on the
model accuracy.

Firstly, we briefly present the ResNet architecture as a
coarse-fined feature extractor to investigate the effects of
model tweaks. A basic ResNet network consists of an input
stem, four subsequent stages and a final output layer, which is
detailed illustrated in [5]. The input stem has a 7×7 convolu-
tion with an output of 64 channels and stride 2, followed by a
3× 3 max pooling layer also with a stride of 2. Starting from
conv2_x stage, the input stem begins with a downsampling
block, which is then followed by several residual blocks.
There two path candidates in the downsampling block, where
the path-A respectively consist of 1 × 1, 3 × 3 and 1 × 1
kernel and the path-B uses a 1 × 1 convolution to transform
the input shape to be the output shape of path-A. A residual
block is similar to a downsampling block except for only
using convolutions with a stride of 1. In this paper, the highly
rated ResNet-101was selected as the first pipeline of multiple
architecture with 3, 4, 23, 3 residual blocks respectively in
conv2_x, conv3_x, conv4_x, conv5_x stages. Especially, we

revisit some popular ResNet model tweaks. One basic tweak
is replacing the 7× 7 convolution in the input stem with five
conservative 3 × 3 convolutions, which lower the computa-
tional cost and permit the input of augmented datum with
larger 448 × 448 size. Then, we introduce the Inception-
v4 module with residual connections module as the simi-
lar implementations of [39] and adopt batch normalization
module right after each convolution and before activation to
improve the single-frame recognition performance. Finally,
the eventual average pooling layer was abandoned, the
1000-d full convolution layer and the softmax layer to extract
the feature map vector F1 as shown in Equation (2).

F1 = Hresnet (̃x, ỹ, {W1, b1, δ}) (2)

where the function Hresnet can represent multiple convo-
lutional layers of the ResNet architecture with the inputs
(̃x, ỹ) denoted to the first of these layers. W1 denotes a
square weight matrix asymptotically approximating compli-
cated combination of multiple layers. b1 can perform the
biases of linear projection by the shortcut connections to
match the dimensions, channel by channel. And δ denotes the
nonlinear activation functions, which was selected as ReLU.
We initialize the weights and train all plain/residual nets
from scratch with a weight decay of 0.0001 and a momen-
tum of 0.9. The learning rate starts from 0.1 and is divided
by 10 when the error plateaus. Then, the feature map vector
F1 was obtained performed onN×c1×w1×h1 dimensional-
ity, where N represents the mini-batch size, c1 represents the
channel number of feature map, w1 and h1 denote the width
and height of eachmap. Thus, the SGDwith a mini-batch size
of 512 was used, and feature map is converted to the size as
w1 × h1 = 7× 7 and the channel number as c1 = 2048.
Then, the iSQRT-COV is employed to extract fine-grained

feature maps of small-scale object’s parts. This model is
an iterative matrix square root normalization method for
fast end-to-end training of global covariance pooling net-
works, which consists of a basic classification network
(AlexNet or ResNet), some covariance pooling layers and an
iSQRT-COVMeta-layer. To further improve the performance
and efficiency of our proposed architecture, we adopt the
transfer-learning strategy to learn professional representation
capability of object’s parts on the basis of the coarse-grained
domain knowledge from abovementioned ResNet model.
Therefore, the trained ResNet101 network was transferred as
the classification network of iSQRT-COV, which avoids the
repeated parameter calculation in much less epochs, further
accelerating network training. After the last convolutional
layer of ResNet101, some 11 convolution with c2 = 256
channels were added to down sample the outputted feature
tensor, which outputs a 14 × 14 × 256 tensor. Then a
second-order pooling is performed to estimate the covari-
ance matrix. Subsequently, the model designs a meta-layer
with loop-embedded directed graph structure for computing
approximate square root of covariancematrix. Themeta-layer
consists of three nonlinear structured layers, performing
pre-normalization, coupled Newton-Schulz iteration and
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post-compensation, respectively. The first pre-normalization
layer is to guarantee the following iteration convergence,
achieved by dividing the covariance matrix by its trace.
The second layer is of loop structure, repeating the cou-
pled matrix equations involved in Newton-Schulz iteration
a fixed number of times, for computing approximate matrix
square root. Then the third post-compensation layer is set
to counteract the adverse effect by multiplying trace of the
square root of the covariance matrix. In this work, we erases
the subsequent ConvNet layers of iSQRT-COV and directly
take the outputting symmetric matrix of the meta-layer as an
c2(c2+ 1)/2 dimensional vector F2 as shown in Equation(3).

F2 = HiSORT (̃x, ỹ, {Hresnet ,
∑

cova
,Yns,Zns}) (3)

where the function HiSORT can represent multiple iterative
layers of the iSQRT-COVwith the inputs (̃x, ỹ) and the trains-
fering papermeters Hresnet of ResNet101.

∑
cova denotes the

covariance matrix of the output of the last convolution layer.
Based on the pre-normalization of

∑
cova by trace norm, Yns

and Zns are intermediate variables of Newton-Schulz itera-
tion, which are suitable for parallel implementation on GPU,
deriving the corresponding gradients of back propagation.
Hence, with both architectures, the covariance matrix

∑
cova

is of size 256 × 256 and F2 outputs an 32,896-dimensional
vector as the image representation.

Subsequently, the WS-BAN model was described, which
consists of bilinear attention pooling, weakly supervised
attention learning and post-processing, to complete the pro-
posed overall network structure for the fine-grained classi-
fication and object localization. The WS-BAN applies the
VGG19 neural network backbone to generate feature maps
and attention maps in two-steam parallel structure size by
one or several convolutional operations from input image
batches. Attentionmaps ak are then split intoMmaps, reflect-
ing the region of kth object’s part. After that, feature maps FV
are element-wise multiplied by each attention map ak with
the same size in order to generate M part feature maps,
which then are injected into additional local feature extraction
function g() to extract discriminative local feature represen-
tation. The final part feature matrix F3 is concatenated by
concatenating these local features with the bilinear attention
pooling 0,which can be represented by Equation(4)

F3 = 0(5M
k=1g(ak � FV {̃x, ỹ,Hvgg})) (4)

where Hvgg presents the hyper-parameters of VGG19 net-
work.� indicates element-wisemultiplication for two feature
tensors. In the following experiments, g() is set as the global
average pooling operation. During training, the initial learn-
ing rate is set to 0.001, with exponential decay of 0.85 after
every 5 epochs. The weight of attention regularization is
set to 1.0 and attention dropout factor is set to 80%. Then,
the local feature map vector F3 was obtained performed on
c3×w3× h3 dimensionality, where the size of feature map is
w3× h3 = 14× 14 and the channel number is c3 = NM with
N = 512 andM = 7.

In addition to the proposed multi-stream structure, we also
propose pre-training strategy to learn professional domain
knowledge from the large-scale dataset. We initially pre-
train our ResNet101 and VGG19 models on the ImageNet
2012 classification dataset [1] that consists of 1000 classes
with the 1.28 million training images and the 50k validation
images. Then fine-tune those models on a small-scale fine-
grained dataset (i.e. CUB-200-201)). In this way, the network
learns the common classification information and acquires
domain knowledge during the pre-training process, and mas-
ters the fine-grained discriminative information during the
fine-tuning process. This strategy enables the network to
learn the features of the target dataset accurately and compre-
hensively, which can effectively improve the representation
performance of neural networks on fine-grained small-scale
datasets.

3) PROBABILITY FUSION MODULE
Given aforementioned feature extractor offering multi-
dimensional object and part feature maps, we further propose
a probability fusion module for decision fusion of various
models. Our work aim to construct a general neural network
component allowing for different gating decisions at each
parts, and demonstrate its use as a practical way to massively
increasemodel capacity. In this fusionmodule, the input is the
various features of multi-models and the output is the fused
classification probability, while the whole structure is divided
as three main steps:

The first kernel step is to train a gating network which
selects a sparse combination of three models to process each
input and the inherent relations. The motivation behind this
step is that we wish to recalibrate the strengths of different
input representations of three feature extractors through a
self-gating mechanism. Thus, a gating network was proposed
inspired by the MOE introduced recently in reference [39],
which considers complex non-linear interactions among acti-
vations of the input representation. To combine the input
feature maps of the various size offered by different models,
a concatenation layer is added in front of the gating network,
which concatenates all features maps as an integral feature
vector f = concat(F1,F2,F3). Then, the feature vector was
passed to the gating network to capture the prior structure of
the output label. For the output j-th samples of the i-th feature
extractor, we denote the output of the gating network by Gij
on basis of the non-sparse softmax as Equation (5):

Gij = Softmax(TopK (f ·Wg, k)) (5)

where Wg present a trainable weight, matrix multiplied by
the input vector for parameterizing the dependencies among
each feature activations. Before taking the softmax function,
a sparsity operation TopKi was added to keep only the top
k values. Otherwise, this above form of sparsity set the
rest to −∞, which causes the corresponding gate values
to equal 0. If we choose k > 1, the gate values for the
top k model have nonzero derivatives with respect to the
weights of the gating network, which can be trained by simple
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back-propagation, along with the rest of the model. With
creating some theoretically scary discontinuities, the gating
network chooses a sparse weighted combination of each
extractor with computation save, whose output is a sparse
N × 3n dimensions vector.

The second important step is to obtain the prediction
scores of these three models, which respectively indicates
the probability that the input belongs to the corresponding
category in the i-th extractor. Based on the sparsity weighted
vector, the gating network was used to transform the feature
maps of each model before passing them to the fusion layers.
We compute the output prediction probabilities of eachmodel
independently by written as

Si = Gij � Eij(Fi) (6)

where i is the number of component model with i = {1, 2, 3}
and j is the number of samples in the mini-batch with the
upper limit value 512. Gij is the sparsity component weight

for the i-th model. There is a constraint that
3∑
i=1

Gij = 1,

so that the total probability distribution is normalized.
Si indicates the probability score of the i-th componentmodel,
and Eij represents the information distribution representation
of the corresponding i-th model extracted from input feature
vector Fi, which should be defined to the same size matching
with theGij dimension. Each of the three models will produce
a feature vector with N × n dimensions variable uniformly,
which is set as n = 2048.
However, as above Equation(2)-(4), F1 and F3 have more

input channels comparing to F2, which will increase time
consumption if be calculated completely by convolution lay-
ers. Specifically, we employ the channel shuffle units [40]
incorporate with convolution layers to encode the coarse-
grained object features from ResNet101 and the fine-grained
part features from WS-BAN synchronously. The channel
shuffle operation first reshapes output channel dimension of
F1 and F3 into several groups, transposing and flattening
them back as the input of next convolution layer, which
still takes effect even if the two convolutions have different
numbers of groups. Moreover, channel shuffle is also dif-
ferentiable, which means it can be embedded into network
structures for end-to-end training. Taking advantage of this
operation, the proposed probability fusionmodule can encode
more information to compute the corresponding distributions
Eij efficiently with lightweight computational budget and low
theoretical complexity. After statistical analysis, we choose
the Gaussian distribution functions to fit multimodal distribu-
tions Eij of each models for extracting key information from
input data. The i-th component model’s Gaussian distribution
is defined as follows equation:

Eij(ỹ|θi) =
1

√
2πσi

exp(−
(ỹ− µi)2

2σ 2
i

) (7)

where θi = (µi, σ 2
i ) is estimated parameters consisting of

the mean vector µi and covariance matrix σ 2
i respectively.

ỹ = {ỹ1, ỹ2, · · · , ỹN } is the output label vector corresponding
to input feature maps, which are supposed to reflect sub-
stantive characteristics of original images. Though different
features coming from different local parts and samples from
three models exhibit tend to be more similar for the same
category with semantic relevance, which helps to distinguish
the small inter-class differences and combine the diversiform
intra-class variations.

Therefore, the third step of the proposed module is apply-
ing Gaussian mixture method to construct the probabilistic
fusion-based layer, which aims at adaptively clustering sim-
ilar features at different models cluster centers and further
combining three models probability scores to generate the
final classification estimation. With the gated importance
allocation of each models’ Gaussian distribution in the whole
architecture, the final perdition probability is defined as the
linear combination of each model center. Let S denote the
final output score, and it is calculated as follows:

S(ỹ|θ ) =
3∑
i=1

Si =
N∏
j=1

3∏
i=1

GijEij(ỹ|θi) (8)

where θ = (θ1, θ2, θ3) represents the Gaussian mixture
parameters of the fusion layer. Thought the observation label
vector ỹ is known, the detail translation from the i-th model’s
features to ỹj is still uncleaned. Thus, we introduce implicit
variables γji to represent this relation. By integrating the
joint probabilities between ỹj and γij, the fusion score S in
Equation (8) is redefined to solve the likelihood function as
follows:

S(ỹ, γ |θ ) =
3∏
i=1

S
(
ỹ, γj1, γj2, γj2|θ

)
=

3∏
i=1

N∏
j=1

[
GijEij

(
yj|θi

)]γji (9)

Perform a log operation on the above expression, and take
account of expression (7) to get the log likelihood expression:

log S(ỹ, γ |θ ) =
3∑
i=1


N∑
j=1

γji logGij +
N∑
j=1

γji

[
log

(
1
√
2π

)

− log σi −
1

2σ 2
i

(
yj − µi

)2]} (10)

Then, we choose the EM algorithm to estimate the hyper-
dimensional parameters of the fusion layer. It can approach a
local minimum of the maximum likelihood through differen-
tiating the log likelihood strictly increases during iterations.
The EM algorithm consists of two repeatedly iterative steps:
E-step and M-step. Given the gating weight Gij, the E-step
calculates the expectation of implicit variables γji defined
as γ̂jk = E

(
γji|ỹ, θ

)
, which denotes the responsivity of the

i-th component model to the label yj. Subsequently, The
M-step updates the parameters by maximizing the expecta-
tions of the given log likelihood function in Equation (10).
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We run EM algorithm for several iterations until parame-
ters reaching the convergence value in fusion layer. There-
fore, we obtain the detailed responsivity in E-step shown
as following:

γ̂ji = E
(
γji|ỹ, θ

)
=

S
(
γji = 1, ỹj|θ

)
3∑
i=1

S
(
γji = 1, ỹj|θ

) = GijEij
(
yj|θi

)
3∑
i=1

GijEij
(
yj|θi

) (11)

Then in the M-step, we define the expectations of
log S(y, γ |θ ) asM function as following:

M
(
θ, θ (t)

)
= E

[
log S(ỹ, γ |θ )|ỹ, θ (t)

]
=

3∑
i=1


N∑
j=1

γ̂ji logGij +
N∑
j=1

γ̂ji

[
log

(
1
√
2π

)

− log σi −
1

2σ 2
i

(
yj − µi

)2]} (12)

After t-step iteration, we hope that the new parameter
estimation θ (t) could make the log S(y, γ |θ ) function keep
increasing until to the maximum. Otherwise, the parameters
need to be continuously updated during each iteration, and
the new iteration parameters are calculated in Equation (13):

θ (t+1) = argmaxθ M
(
θ, θ (t)

)
(13)

Since θi is consisting of the mean vector and covariance
matrix, we acquire the corresponding parameters µ̂i and σ̂ 2

i
by finding the partial derivative of variable µi and σ 2

i with
respect to Equation(12) set to 0. Similarly, we also update the

gating parameter Ĝi under the constraint
3∑
i=1

Gij = 1. The

overall process of two-step loops from Equation (11) to (14)
is terminated if any parameters move will no longer lead to
further minimization of the M function, leading to the final
estimation of labeling result. Therefore, the next iteration
parameters are rewritten as Equation (14).

Notice that the inner EM-iteration loop is inside the fusion
layer for parameter estimation, which is conducted in every
external forward loop of the whole network’s training. There-
fore, the fusion layer with Gaussian mixture optimization
is particularly independent, but it still can back propagate
gradient through neighboring layers of the whole probability
fusion module in a jointly trained way. With aforementioned
operations, our proposed PFDM-Net gain an overall represen-
tation of prediction score in decision-level perspective, which
actually is the joint posterior probabilities by integrating sev-
eral prior probabilities from each component model of Multi-
DNNs feature extractor. Finally, a min-max normalization
layer and a softmax layer after the fusion layer were added

to output the normalized classification result.

∂M
(
θ, θ (t)

)
∂µi

→ µ̂i =

N∑
j=1
γ̂jiỹj

N∑
j=1
γ̂ji

∂M
(
θ, θ (t)

)
∂σ 2

i

→ σ̂ 2
i =

N∑
j=1
γ̂ji
(
ỹj − µi

)2
N∑
j=1
γ̂ji

∂M
(
θ, θ (t)

)
∂Gi

→ Ĝi =

N∑
j=1
γ̂ji

N
(14)

As the softmax operator obtaining predicted probabilities,
the cross entropy loss is used to estimate the inconsistency
degree between the predicted score and the true label. The
optimal solution of CE loss is to minimize the error gap
to small enough value with some regularization constraints
including L1 or L2 terms. However, CE updates model
parameters tomake these two probability distributions similar
to each other. It encourages the output scores dramatically
distinctive, which potentially leads to overfitting for intra-
class description. This easily leads to the low inter-class
recognition in dealing with other categories. Thus, during
training we optimize the following multi-part loss function:

Loss = Lfuse + λ1Lgate + λ2Lfeature

= −

W∑
c=1

ỹc log(Sc)− λ1
3∑
i=1

N∑
j=1

GijTopKi

− λ2

3∑
i=1

W∑
c=1

ỹc softmax(Fi) (15)

whereLfeature indicates the loss ofmulti-DNNs feature extrac-
tor, Lgate indicates the information loss representation for the
gating network, and Lfuse denotes the partial loss of proba-
bility fusion module. Moreover, we introduce two weighting
factors λ1 ∈ [0, 0.5] and λ2 ∈ [0, 0.5] to balances the impor-
tance of each loss. Our proposed loss is a simple extension to
CE that we consider as an experimental baseline to differen-
tiate inter-class discrepancy among fine-grained categories.
Specifically, W indicates the number of categories. ỹc indi-
cates the indicator variable (0 or 1) if the category and sample
have the same category, otherwise 0. Sc denotes the predicted
probability that the observed sample belongs to category c.
Similarly, we obtain the whole loss of three models extracting
various feature maps Fi with the softmax function. Then
we construct the gating loss based on the Equation (5) by
comparingGij and TopKi. In subsequent experimental results,
the above loss form was used to optimize the entire model
structure, which is demonstrated to be effective to improve
the performance for FGVC tasks.
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TABLE 1. The statistics of three fine-grained datasets.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
We conduct experiments on three challenging fine-grained
image recognition datasets, including CUB-200-2011
(Caltech-UCSD Birds), Stanford Cars and Stanford Dogs.
The detailed statistics with category numbers and data splits
are summarized in Table 1.

1) CUB-200-2011
It is one of the most popular datasets for fine-grained image
classification. It has 11,788 images from 200 bird subordi-
nates. 5,994 images are selected for training, while the rest
5,794 images for testing. Approximately, 30 images are used
in training for each subordinate, and 11 to 30 images for
testing. In addition, it provides the most detailed annotations
among datasets, including a subordinate label, a bounding
box, 15-part locations and 312 binary attributes for each
image.

2) STANFORD CARS
It is a collection of car models, which contains 16,185 images
of 196 subordinates. 8,144 and 8,041 images are selected
as training set and testing set respectively. Each subordinate
has 24-68 training images and 24-68 testing images variably.
Labels at the level of Make, Model and Year, along with a
bounding box, are provided.

3) STANFORD DOGS
It has 20,580 images of 120 dog breeds. It is divided as fol-
lows: 12,000 images for training and 8,580 images for testing.
Each breed has 100 training images and 48-to-152 testing
images. Class labels and bounding boxes are annotated.

To avoid over-fitting of the network, aforementioned aug-
mentations consist of geometrical transformations (resiz-
ing, random crop, rotation and horizontal flipping, aspect
ratio, encoding, mixup) and intensity transformations (con-
trast and brightness enhancement, color, noise) are applied
to enhance a larger number of images in the dataset before
training and testing on three datasets. With the pre-training
of ResNet101 and VGG19 on ImageNet, the WSL models
consisting of ResNet101, WS-BAN and iSQRT-COV are
training performed on three Fine-grained image classifica-
tion datasets. All models are trained and tested on an Intel
Core i7 3.6 GHz processor with four NVIDIA Tesla
p40 GPUs and 512G RAM. The training is proceeded on
the training set, after that the evaluation is performed on
the validation set for minimizing overfitting. When the

TABLE 2. Comparison of results on CUB-200-2011.

training process and parameter selection are achieved,
the final evaluation is done on the unknown testing set for
evaluating the performance. Training batches of size 512 are
created by uniformly sampling from all available training
images as opposed to sampling uniformly from the classes.
We fine-tuned all networks from pretrained weights with a
learning rate of 0.0001, decayed exponentially by 0.94 every
four epochs, and RMSProp optimization withmomentum and
decay both set to 0.9. Images are performed within 448 pixels
in size, with a single centered crop at test time.

B. EXPERIMENTS ON CUB-200-2011
Our proposed PFDM-Net model is performed to achieve
better or comparable results for fine-grained image classi-
fication on the CUB-200-2011 dataset. The feature maps
of the three models ResNet101, WS-BAN, iSQRT-COV is
fused to obtain the final classification results. The accuracy
(the ratio between the number of correctly classified images
and the number of testing images) is used to evaluate the
performance. The whole accuracy of the proposed model
comparing with some previous methods are shown in follow-
ing Table 2.

As shown in Table 3, the results obtained by using the
probability fusion decision model are much higher than the
current excellent models. The accuracy result obtained by
the PFDM-Net model after gating weighted fusing multi-
stream component models is 91.2 %. In contrast, the best
strong supervised method (SPDA-CNN) using the training
label box to classify the fine-grained data only obtain 85.2%
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FIGURE 5. Accuracy of Each type achieved by ResNet101, WS-BAN, iSQRT-COV and PFDM-Net models on CUB-200-2011 dataset.

TABLE 3. Comparison of results on stanford cars.

accuracy with 6% lower than the accuracy of our fusion
model, which only need subordinate labels and performs even
better than those requiring extra information. For weak super-
vision training without training box, two baselines NTS-Net
and GMNet achieve the accuracies with 87.5% and 86.3%
respectively, which also prove the higher effectiveness of our
framework.

As for each component model of multi-stream feature
extractor, the accuracy of the ResNet101 model is 86.6%
only rely on the coarse image-level labels. It is proven that
the deeper structure of ResNet101 could extract impres-
sive and effective feature maps, which is suitable for focus-
ing on further local information. Similarly, the accuracy
of WS-BAN is 88.8% and the accuracy of iSQRT-COV
is 87.2%, which illustrates the actual rule that more tricks
and operations acquiring abundant local feature representa-
tion of discriminative object’s parts do improve the higher
accuracy for solve FGVC tasks. After our fusing processing,

the accuracy relying on the proposed probability fusion mod-
ule increase much higher in the range of 2.4% to 4.6%
than the previous single model. Even with two models
merged, our fusion module can still play the important role
in excavating complementary characteristic of different mod-
els to get higher precision performance. Among the results,
the combining form of WS-BAN and iSQRT-COV acquires
the 90.3% accuracy, and the other accuracy by combining
WS-BAN and ResNet101 is up to 89.7%, both of which per-
form better than single component model or otherWLSmeth-
ods. It is certified that the designed probability fusion module
in decision-level viewpoint do utilize the mixture-granularity
information of multiple DNNs by only using image-level
labels. And the end-to-end implementation of fusion module
with an inner-to-outer loop effectively improve the overall
accuracy of the FGVC problem well.

Based on the obtained results, we farther analyze the detail
accuracy of each subclass offered by our PFDM-Net and three
baseline models before fusion on the CUB-200-2011 dataset.
Quantitative analysis of each model are as shown in Figure 5.
Although the individual models have different recognition
capabilities for different categories, it can be seen that the
trend of accuracy curve owing to the PFDM-Net (red line) is
relatively flat and stable. It means that the fusion strategy can
mine some small inter-class differences which is not available
for a single model to improve the recognition rate of differ-
ent sub-classes, further balance uncertainty among different
models. With combining complemental feature maps, our
model performs the high capabilities of distinguishing inter-
class discrepancy for each image of different fine-grained
type. For example, ResNet101 has an accuracy of 16.7% in
the 58th category and 66.7% in the 66th category. After fusion
module, the accuracy of the 58th category is improved up
to 53.3% and the corresponding accuracy of the 66th category
is up to 83.3%. The probability fusion module sincerely
reduces the recognition difference of an individual models
covering different categories, thereby improving the overall
accuracy.
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FIGURE 6. Model classification results on the 102nd class of CUB-200-2011.

Relatively, the accuracy of different models in the same
category is obvious large. For example, in the 102nd cat-
egory with the species name as Sayornis, the accuracy of
ResNet101 is 80.3%, while the accuracy of WS-BAN and
iSQRT-COV is 86.7% and 90.2% respectively. It can be
found that the intra-class variables among different images
and samples of the same sub-class are effectively suppressed
by the fusion technology. The interference factors such as
position changes or lighting varieties preventing the accuracy
improvement are limited in a certain degree for all categories
in our fusion method, which leads to the surprising accu-
racy up to 100% in the 102nd category. We detailed ana-
lyze the complementation process of intra-class error in the
102nd class as shown in Figure 6. For the 20 images of
Sayornis class, the red boxes represent that the model predicts
the inside picture as other wrong categories, and the rest rep-
resent the right predicted images. The results show that three
component models all make some mistakes, and only our
PFDM-Net model is completely correct. It is demonstrated
that the fusion layer weighted by the gating network could
reasonably select domain information from various feature
maps extracted from each individual model, and enhance
the controllability of interclass and intra-class variables to
improve the holistic performance of FGVC task.

C. EXPERIMENTS ON STANFORD CARS
Similarly, we used PFDM-Net model to perform
FGVC experiments in the Stanford Cars dataset. The final
accuracy of the PFDM-Net model and some state-of-the-arts
competitors as listed in Table 3.

As above shown. each accuracy of different models are
relatively higher than their results on CUB-200-2011. The
main reason is that there are more trainable and testable
images and fewer categories, which meets the needs of deep
learning training to maximize their performance. Moreover,
the differences between vehicles are obvious compared to
birds in complex environmental background, which make
it easy to achieve the better accuracy results. Even so, our
proposed PFDM-Net model still obtains the best performance

on the accuracy indicator with 95.2%, which is 1.3% higher
than the current NTS-Net with 93.9% accuracy. This illus-
trates that our model is adapted to different datasets and tasks
with good generalization performance, which also provides
an effective way to solve other practical FGVC applications
with more complex backgrounds.

In contrast, each component model in the multi-stream
architecture also acquire decent result severally. The accuracy
of the ResNet101 model is 92.9%, which is close to the
93.1% accuracy of SPDA-CNN with affluent part annota-
tions. while, the accuracy of WS-BAN is 93.6% and the
accuracy of iSQRT-COV is 93.3%. After comparison, it can
be found that the accuracy of the two model merged is
still much higher than that of the previous single model,
and can be increased by up to 94.1% (combining WS-BAN
and iSQRT-COV) and 93.9% (combining WS-BAN and
ResNet101). Both of two results are better or as good as other
single WLS models.

As shown in Figure 7, it shows that each single model
has different preference in recognizing different analogical
categories. However, the fusion model can balance the advan-
tages and disadvantages of each component model to achieve
better local performance in the same category. For example,
in the 70th category with the basic-level label ‘‘Chevrolet
Express Van 2007’’, the accuracy of iSQRT-COV is 58%, and
the accuracy of WS-BAN is 51.4%. while ResNet101 only
achieve the 40.0% accuracy, which is relatedly low prob-
ability even less than random guessing 50%. Thought the
fusion operation with iteration and gradient back-propagation
optimization, the accuracy of the 70th category is improved up
to 69.6%. Similar result is illustrated in Figure 8 by analyzing
the 24th class car named as ‘‘Audi TT RS Coupe 2012’’.
As shown 20 pictures of this category, ResNet101 incorrectly
identifies 9 samples as other categories, such as Tesla and
BMW types. WS-BAN and iSQRT-COV also have simi-
lar poor performance on Audi prediction with 5 red wrong
images and 4 representatives severally. It shows that our
PFDM-Net model can fuse the feature extraction capabilities
for better fine-grained car type classification.
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FIGURE 7. Accuracy of each type achieved by the ResNet101, WS-BAN, iSQRT-COV and Fusion models on Stanford Cars dataset.

TABLE 4. Comparison of results on stanford dogs.

D. EXPERIMENTS ON STANFORD DOGS
Further, we take the comparable experiments to demonstrate
the classification results on Stanford Dogs in Table 4. Part
R-CNN is one of the early works in this field. It extracts
traditional features for different parts of image and intro-
duces both some supervised alignments to the object. It only
gets a 79.8% accuracy on this dataset, which demon-
strates that the feature extraction process is crucial for fine-
grained classification. RA-CNN designs an unsupervised part
model discovery method by selecting prominent parts, it
obtains 87.3% accuracy. Currently, the best result is achieved
by the GMNet with 88.1% accuracy. While the three
component models consisting of ResNet101 WS-BAN and
iSQRT-COV achieve the approximate results with 84.9%,
87.5% and 88.1%. On this dataset, PFDM-Net also outper-
forms all state-of-the-arts SSL and WSL methods, reaching
89.6% accuracy increased by at least 1.5%.

The identification curves of PFDM-Net and its component
models for each type are illustrated in Figure 9. The red curve

denoting our models is relatively stable without much fluc-
tuation, which indicates the better ability for distinguishing
small interclass differences. Thought the fusion model can
perform well overall on the Stanford Dogs with more training
data, but the result does not match the better performance
comparing with the abovementioned databases in each cat-
egory. This is because the image number of each type is very
unbalanced, and the biological morphology of pet dogs varies
greatly and changes with the growth cycle. What’s worse,
the background of this dataset is more complicated filled
with vehicles, humans, and daily necessities, which extend
the intra-class variation and make it more difficult for fine-
grained recognition.

Figure 10 illustrates the 1st class in the Stanford Dogs
dataset, the category name is Chihuahua. For the 20 pictures
selected randomly, our PFDM-Net model outperforms other
methods and only make two mistakes represented by red
boxes. One wrong image of them has a dog with black and
white pattern, which is significantly different from the other
samples. And in another wrong image, the dog is blocked
by its master and could not be seen, which made all net-
works invalid. These special cases frequently occurrence in
this Stanford Dogs dataset, which limited the farther perfor-
mance improvement in the local and global accuracy of our
PFDM-Net model.

V. DISCUSSION
A. LOSS FUNCTION
The loss function is used to estimate the degree of inconsis-
tency between the predicted value f(x) of your model and
the true value Y. It is a non-negative real-valued function,
usually expressed by L (Y, f(x)). The smaller the loss func-
tion, the better the robustness of the model. The loss function
is the core part of the empirical risk function. Figure 11 shows
the loss function diagram for the four models in the
CUB-200-2011 dataset.

Figure 11 shows the loss function diagram for the four
models. A comparison of the loss functions shows that the
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FIGURE 8. Model classification results on the 24th class of Stanford Cars.

FIGURE 9. Accuracy of each type achieved by the ResNet101, WS-BAN, iSQRT-COV and Fusion models on the Stanford Cars dataset.

FIGURE 10. Model classification results on the 1st class of Stanford Dogs.

trend of the loss function values of the four classification
networks is decreasing in the CUB-200-2011 dataset. It stabi-
lizes for about 90 generations and the predicted value is closer
to the true value. Between them, the PFDM-Net model has
the fastest loss function, and the final loss function drops to
about 0.0084. The loss function of ResNet101, WS-BAN and

iSQRT-COV decreases slowly, and the loss function drops to
around 0.0186. The PFDM-Net model fuses the confidence
of the three baseline models, combining the ability of the
three baselinemodels to extract features. The ability to extract
features from the fusion model is enhanced, and the model
has better generalization. The fusion model is more capable
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FIGURE 11. Loss function graphs of each classification network.

of extracting features of fine-grained images, and can better
classify fine-grained images, thereby improving the accuracy
of model classification.

B. COMPLEXITY ANALYSIS
The PFDM-Net model developed a probabilistic fusion mod-
ule with a gating network and a probabilistic fusion layer
to fuse different component models with a Gaussian dis-
tribution. This process produces a relatively large number
of parameters, which increases the time for picture testing.
Table 5 shows the parameter quantities and classification
times for each model. Experiments show that the classifi-
cation time of the PFDM-Net model is 25MS per picture,
compared with ResNet101, WS-BAN and iSQRT-COV, the
classification time is about 14ms slower. But this speed can
still achieve real-time classification.

The complexity of ResNet101, WS-BAN, iSQRT-COV
and PFDMnet models was analyzed, while we also used
other weakly supervised models and four models for multi-
stream feature extraction. It is found that the model fusion
of ResNet101, WS-BAN and iSQRT-COV has the highest
classification accuracy compared with other models. At the
same time, the classification accuracy of the four models
used for multi-stream feature extraction is not significantly

TABLE 5. Model complexity and time analysis.

improved, but the model complexity becomes very large.
Therefore, we decided to use three models as multi-stream
feature extraction to find a balance between accuracy and
model complexity.

C. CONFUSION MATRIX
Because the patterns displayed in each category have dif-
ferent complexity, especially in terms of categories and
backgrounds, the system does not accurately distinguish
between several categories, resulting in reduced accuracy.
In Figure 12, we present a confusion matrix for the final
CUB-200-2011 test results. Four confusion matrixes, which
compared the true category (Ordinate) against the predicted
category (Abscissa), were calculated to describe the indi-
vidual classification rate of each model. By analyzing the
confusion matrix, we can directly evaluate the performance
of the network. In addition, the confusion matrix helps us
further analyze the program to avoid re-confusion between
these different classes. It can be seen from the Figure 13 that
some of the Resnet101, WS-BAN and iSQRT-COV models
have lower predictions and true correlations. This indi-
cates that the network has some confusion for the similar-
ity category, resulting in low detection accuracy. For our
PFDM-Net model, the PFDM-Net network can be well clas-
sified for the similarity categories, so that the prediction and
the true correlation are relatively high, thus improving the
detection accuracy.

The results of the confusion matrix for the test set of
the Stanford Cars dataset and the Stanford Dogs dataset
are shown in Figure 13 and Figure 14. By analyzing the
following two figures, the confusion matrix helps us further
analyze the program and avoid re-ambiguity between these

FIGURE 12. Confusion matrix of detection results on the CUB-200-2011.
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FIGURE 13. Confusion matrix of detection results on the Stanford Cars.

FIGURE 14. Confusion matrix of detection results on the Stanford Dogs.

different classes. As seen from those figures, the Resnet101,
WS-BAN and iSQRT-COV models have lower predictions
and true correlations in the Stanford Cars dataset and the
Stanford Dogs dataset, resulting in lower classification accu-
racy. The PFDM-Net model fuses the characteristics of its
baseline model, so it has high prediction and true correlation
in the Stanford Cars dataset and Stanford Dogs dataset, thus
improving classification accuracy.

VI. CONCLUSION
In this paper, we design a novel probability fusion decision
framework named as PFDM-Net for fine-grained visual clas-
sification tasks. It contains three elements, Data Augmenta-
tion, Multi-steam Feature Extractor and Probability fusion
module. The image can be accurately classified through
these three parts. Where Data Augmentation employs data
augmentation tricks including mixup to enlarge the dataset.
In addition, refined multiple DNNs consisting of ResNet101,
WS-BAN and iSQRT-COV are applied to design a multi-
stream feature extractor, which utilizes the mixture-
granularity information to exploit features distinguishing
interclass and intra-class variances. Finally, a probability
fusion module equipped with gating network and probability
fusion layer is developed to fuse different components model
with Gaussian distribution. It constructs a general neural
network component allowing for different gating decisions
at each part, and demonstrate its use as a practical way to
massively increase model capacity. The whole framework
contains an inner loop about the EM algorithm and an
outer loop with the gradient back-propagation optimization.

Experiments demonstrate the effectiveness of the PFDM-Net
with higher accuracy up to 91.2% on CUB-200-2011, 95.2%
on Stanford Cars, and 89.6% on Stanford Dogs, which out-
perform state-of-the-arts FGVC methods.

The network generates large number of parameters,
which increases the time for model classification. Therefore,
the model can only be trained on the GPU and the image
cannot be classified online on a convenient mobile device.
Our future works are to try lightweight network to compress
the model parameters and speed. And we will attempt to
combine our method with the newly updated works for other
practical FGVC applications, such as agricultural Internet of
Things, food supply chain security.
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