
Received July 10, 2019, accepted July 30, 2019, date of publication August 5, 2019, date of current version August 19, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2933353

Big Data Analysis Approach for Real-Time Carbon
Efficiency Evaluation of Discrete
Manufacturing Workshops
CHAOYANG ZHANG AND WEIXI JI
School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China

Corresponding author: Chaoyang Zhang (cyzhang@jiangnan.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 51805213, in part by the Natural
Science Foundation of Jiangsu Province under Grant BK20170190, and in part by the Fundamental Research Funds for the Central
Universities under Grant JUSRP11828.

ABSTRACT Due to the huge consumption of materials and energy during machining processes, reduction
of manufacturing carbon emission is an essential key to decrease the environmental burden of various
manufacturing systems. To achieve this target, one critical step is to calculate and evaluate the carbon
emissions of machining processes. However, this step is a little difficult for discrete manufacturing processes,
because they are always complex and the data sources are diverse. Considering the complexity of discrete
manufacturingworkshops, a BigData analysis approach for real-time carbon efficiency evaluation of discrete
manufacturing workshops is proposed in an internet of things-enabled ubiquitous environment. Firstly,
the deployment of data acquisition devices is introduced to create a ubiquitous manufacturing workshop, and
data modeling of production state and carbon emission is described to realize data acquisition and storage.
Then, a data-driven multi-level carbon efficiency evaluation of manufacturing workshop is established based
on Big Data analysis approaches. Finally, an auto parts manufacturing workshop is studied to verify the
feasibility and applicability of the proposedmethods. This method realizes the combination ofmanufacturing
Big Data and low-carbon production. Meanwhile, the evaluation method can be used in other production
information systems and then assist the production decision-making.

INDEX TERMS Big data analysis, data acquisition network, carbon emission, carbon efficiency evaluation,
discrete manufacturing workshops.

I. INTRODUCTION
The growing energy and resource consumption has led to
concerns about economic development in many countries.
Manufacturing, as the backbone of industrialized society,
is one of the main energy consumers and greenhouse gas
contributors [1]. Statistics have shown that the greenhouse
gas from manufacturing accounts for more than 37% even
50% of the world’s total greenhouse gas emissions [2].
Additionally, the rising carbon emission reduction awareness
of customers always drives them to choose a product with
lower life-cycle carbon emission. Therefore, it is imperative
for the manufacturing companies to take low carbon emission
measures to achieve sustainable manufacturing.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shih-Wei Lin.

In academia, the study related to carbon emission reduction
in the manufacturing industry has gradually been a focus.
The concept of low-carbon manufacturing was proposed as
well, which is referred to the manufacturing process that
generates low carbon emission intensity and utilizes energy
and resources efficiently and effectively. In order to reduce
the energy consumption or carbon emission, carbon emis-
sion or carbon efficiency evaluation is an effective way,
and many researchers have concentrated on this topic. The
research mainly covers three levels, i.e., machine tool level,
workpiece level and workshop level. For the machine tool
level, the effects of machining parameters on the energy
consumption or carbon emission are researched [3]. A multi-
granularity numerical control (NC) program optimization
approach for energy efficient machining has been devel-
oped [4]. For the workpiece level, Ciceri et al. proposed an
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easy-to-use methodology to estimate the materials embodied
energy and manufacturing energy for a product [5]. And for
the workshop level, a systematic approach is proposed to
assess the carbon emissions in production systems by using a
hybrid emission analysis model [6].

However, there are mainly two research gaps in the state-
of-the-art studies. Firstly, the study on manufacturing carbon
emission and carbon efficiency evaluation based on real-
time data and Big Data analysis is not enough, especially
for discrete manufacturing workshops. Secondly, since dis-
crete manufacturing processes are always complex, their data
sources are diverse and the quantity of data are huge. Thus
there need special methods to process the vast data and
the complex relationship between manufacturing resources.
In order to bridge these gaps, a Big Data analysis approach
for real-time carbon efficiency evaluation of discrete manu-
facturing workshops is proposed. The approach focuses on
the real-time data analysis and processing of manufactur-
ing carbon emission, and mainly contains two contributions:
1) a Big Data analysis about production states and carbon
emission is proposed to filter and compress the raw data,
which will provide data support for carbon emission evalu-
ation; 2) Considering the complexity of manufacturing pro-
cesses, a data-driven multi-level carbon efficiency evaluation
method is proposed.

The rest of the study is organized as follows. In Section II,
a literature survey on manufacturing carbon emission eval-
uation and manufacturing Big Data analysis is reviewed.
Section III introduces the construction of data acquisition net-
work to create a ubiquitous manufacturing environment, and
a data modeling of production state and carbon emission is
described. Then, the data-drivenmulti-level carbon efficiency
evaluation of manufacturing workshop is established based
on Big Data analysis for production in Section IV. Section V
gives a typical case study to verify the feasibility and applica-
bility of the proposed model. Section VI concludes with the
main contributions and future research directions.

II. LITERATURE REVIEW
A. MANUFACTURING CARBON EMISSION EVALUATION
Since manufacturing processes consume a large amount of
energy and raw materials, the manufacturing carbon emis-
sion evaluation has attracted much attention. Firstly, a large
number of studies have been undertaken from the perspec-
tive of energy consumption analysis and optimization. Some
researchers conducted machining experiments and regres-
sion analysis to minimize the power or energy consumption.
For example, Campatelli et al. focused on the efficiency of
the machining centers, and developed a quadratic regression
model through an experimental approach to evaluate and
optimize the process parameters in order to minimize the
power consumption in a milling process [7]. Experimen-
tal investigations were conducted to establish relationships
between cutting speed, feed rate, depth of cut and nose radius
and power consumption and tool life in computer numerical

control (CNC) turning of 7075 Al alloy 15 wt% SiC compos-
ite by using the response surface analysis [8]. Lv et al. aims to
model the spindle acceleration energy consumption of CNC
lathes, and to investigate potential approaches to reduce this
part of consumption [9]. Meanwhile, Rahimifard et al. mod-
eled the detailed breakdown of energy required to produce
a single product to provide greater transparency on energy
inefficiencies throughout a manufacturing system and find
the improvements in production and product design [10].
In addition, with the development of sensor networks and
information technologies, some real-time data processing
methods of energy consumption are researched. He et al.
analyzed the energy consumption characteristics driven by
task flow in machining manufacturing system and proposed
a modeling method of task-oriented energy consumption
for machining manufacturing system [11]. A manufactur-
ing energy consumption model for the order fulfilment is
constructed according to the bill of materials, in which the
computation is triggered by a radio frequency identification
device (RFID) read event [12]. An internet-of-things (IoT)
and cloud-based novel approach for product energy consump-
tion and evaluation analysis is proposed in which the IoT
technologies are employed for real-time and dynamic collec-
tion of energy consumption-related data, and various energy
consumption evaluation and analysis functions are devel-
oped and encapsulated into services [13]. Wang et al. pre-
sented a real-time energy efficiency optimization method for
energy-intensive manufacturing enterprises based on internet
of things technology [14].

Except the above energy consumption analysis, many
researchers studied the carbon emission of manufacturing
processes from the viewpoint of carbon footprint and carbon
efficiency. Winter et al. presented a generic regression model
to describe and analyze the influence of grinding process
parameters in conjunction with different cutting fluids on
surface roughness, cost and carbon footprint, and applied
the sensitivity analysis to reveal the trends of each process
parameter in relation to the preference of technological, eco-
nomic and environmental objectives [15]. In the aspect of
carbon emission assessment of machining processes, Branker
and Jeswiet proposed a new economic model for optimum
machining parameter selection in a milling example [16].
Cao et al. presented a carbon efficiency approach to quantita-
tively characterize the life-cycle carbon emissions of machine
tools, in which carbon efficiency is defined as the ratio of
capacity or service value provided by a machine tool to
the corresponding carbon emissions [17]. And Fang et al.
established a new mathematical programming model of the
flow shop scheduling problem, which considers peak power
load, energy consumption, and associated carbon footprint
in addition to cycle time [18]. Narita et al. developed an
environmental burden analyzer for machine tool operations,
which can evaluate an NC program from the view point of
an environment burden by simulating a cutting process and
using emission intensities [19]. In this study, the influence
of the peripheral devices of a machine tool, the spindle and
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TABLE 1. Resent research of manufacturing big data analysis.

the servo motors, the coolant, the lubricant oil, the cutting
tool and the metal chips to global warming is introduced in
detail. In the shop flow level, in order to meet the increas-
ing requirement of practical low-carbon thinking in manu-
facturing, a systematic approach is proposed to assess the
carbon emissions in production systems by using a hybrid
emission analysis model [6]. Li et al. proposed an analytical
method of quantifying carbon emissions of a CNC-based
machining system [20]. In particular, this study discussed
the breakdown of the processes that contribute to the overall
carbon emissions of a CNC-based machining system, such
as electricity, cutting fluid, wear and tear of cutting tools,
material consumption and disposal of chips, etc. In addition,
Zhou et al. proposed a carbon emission quantitation strategy
to quantify the overall carbon emissions of a part machining
process [21].

Although the energy consumption and carbon emission
evaluation methods have been studied in many literatures,
the study on manufacturing carbon emission and carbon
efficiency analysis based on real-time data and Big Data
analysis is not enough, especially for discrete manufacturing
workshops. Meanwhile, the models only consider the theo-
retical perspective. Since discrete manufacturing processes
are always complex, their data sources of carbon emission
are diverse and the quantity of data are huge. Thus special
methods are in demand to process the vast data and the
complex relationship between manufacturing resources.

B. MANUFACTURING BIG DATA ANALYSIS
AND PROCESSING
As the development of the sensing and communications
technology, the manufacturing has the features as highly cor-
related, deep integration, dynamic integration, and huge vol-
ume of data [22]. The range of manufacturing data has been

experiencing an exponential explosive growth, and presents
three characteristics, i.e., volume, variety, and velocity. Since
manufacturing carries huge number of data [23], many man-
ufacturing Big Data analysis methods have been proposed,
as shown in Table 1.

Big Data concern large-volume, complex, growing data
sets with multiple, autonomous sources. Wu et al. presented
a HACE theorem that characterizes the features of the Big
Data revolution, and proposes a Big Data processing model,
from the data mining perspective [24]. Since in an Indus-
try 4.0 factory, machines are connected as a collaborative
community, Lee et al. addressed the trends of manufactur-
ing service transformation in Big Data environment, as well
as the readiness of smart predictive informatics tools to
manage Big Data, thereby achieving transparency and pro-
ductivity [25]. Yang et al. suggested a manufacturing data
analysis system that collects event logs from so-called Big
Data and analyzes the collected logs with process min-
ing [26]. This study considered two kinds of Big Data gener-
ated from manufacturing processes, i.e., structured data and
unstructured data. Zhong et al. proposed a holistic Big Data
approach to excavate frequent trajectory frommassive RFID-
enabled shopfloor logistics data with several innovations
highlighted [23]. Through extending the Physical Internet
concept into manufacturing shop floors by using IoT and
wireless technologies, a Big Data Analytics was introduced
for RFID logistics data by defining different behaviours of
smart manufacturing objects [27]. Considering the current
task schedulingmainly concerns the availability ofmachining
resources, rather than the potential errors after scheduling,
Ji andWang presented a BigData analytics based fault predic-
tion approach for shop floor scheduling [28]. An innovative
Big Data enabled Intelligent Immune System was developed
to monitor, analyze and optimize machining processes over
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lifecycles in order to achieve energy efficient manufactur-
ing [29]. Since energy-intensive industries account for almost
51% of energy consumption in China, a Big Data driven
analytical framework is proposed to reduce the energy con-
sumption and emission for energy-intensive manufacturing
industries [30]. In this study, two key technologies of the
proposed framework, namely energy Big Data acquisition
and energy Big Data mining, are utilized to implement energy
Big Data analytics. A deep learning methodology for energy-
efficient strategies selection of CNC machine tools using
deep belief networks is established to realize the real-time and
accurate control of machine tools [31]. Ding et al. proposed
a manufacturing data processing to realize real-time data-
driven operations control of digital twin-based cyber-physical
production system, which includes two phases, i.e., local data
processing and global data processing [32]. Auto-ID comput-
ing, rule-based reasoning and big data analytics are used for
real-time data processing and analysis of real-time production
and transportation data to monitor task progress and states,
which is helpful to manage the inter-enterprise production
processes [33]. To generalize the energy-aware parametric
optimization for multiple machining configurations, a two-
stage knowledge-driven method was proposed by integrating
data mining (DM) techniques and fuzzy logic theory [34].
In addition, Ren et al. conducted a comprehensive overview
of Big Data in smart manufacturing, and proposed a concep-
tual framework from the perspective of product lifecycle [35].
This framework allows analyzing potential applications and
key advantages, and the discussion of current challenges
and future research directions provides valuable insights for
academia and industry.

From the literature, the current Big Data analysis methods
focused production data, fault data, logistics data and energy
data, but the carbon emission data analysis is lacked, espe-
cially for the real time carbon emission data, which includes
cutting tools and buffers, logistics, etc. Meanwhile, these
analysis methods about manufacturing does not consider the
data complexity of discrete manufacturing workshops.

III. DATA ACQUISITION NETWORK CONSTRUCTION
OF CARBON EMISSION
A. DATA ACQUISITION NETWORK CONSTRUCTION
FOR UBIQUITOUS PRODUCTION SYSTEM
This study is based on a real-time ubiquitous production
system in a discrete manufacturing workshop. For a machine
tool, its carbon mission mainly comes from the energy con-
sumption, the consumption of cutting tools and cutting fluid.
Carbon emission of cutting tools is estimated from the view-
point of tool life. And some cutting tools, particularly those
for a solid endmill, are recovered by regrinding after reaching
their life limit. The data acquisition network construction for
ubiquitous production system is shown in Fig. 1. The logical
flow fromStep 1 to 7 represents discrete production processes
from raw materials to finished products. First, raw materials
will be packaged and delivered to the in-stock of a specific
machine tool via a logistics device. When the machine is

FIGURE 1. Data acquisition network construction for ubiquitous
production system.

ready, a machining operator can clamp a workpiece and carry
on the processing. Once the workpiece is finished, it will be
demounted and put in the out-stock. If a logistics device is
ready, the workpiece in the out-stock will be delivered to
the next machine. The above steps are repeated until all the
processing stages are fulfilled. The finishedworkpiecewill be
delivered to Finished Product Buffer. In this ubiquitous envi-
ronment, the production state and carbon emission data can
be perceived. Carbon emission of different production states
needs to be obtained to evaluate carbon efficiency of machine
tools and workpieces. Carbon emission data are useless if
they are disconnected from the production process, thus the
data of production state and carbon emission are both neces-
sary for carbon emission evaluation. Since the manufacturing
carbon emission mainly comes from the energy consumption
and material consumption, the data acquisition includes four
aspects, i.e., machining process, logistics process, storage
process and supporting process.

For the machining process, energy monitors are deployed
to gather energy consumption data, whereas serial communi-
cation of machine tools and adapters are used to acquire the
data about the usage data of cutting tools and cutting fluid. For
the logistics process, RFID technology is adopted to monitor
the states of workpieces in process. Each workpiece will be
bound with an RIFD tag. Meanwhile, two types of RFID
readers are used. Specifically, each machine tool contains an
in-stock buffer and an out-stock buffer, which are deployed
with a kind of stationary RFID reader to accurately monitor
machining processes. When a machining process is finished,
a batch of jobswill be transferred to the nextmachine tool by a
logistics operator, and a handheld RFID reader is used due to
his frequent movement. Through the deployment of RFID, all
the data of production state and process progress are able to
be acquired. Then for the storage processes, energy monitors
are adopted to obtain the energy data of each buffer and ware-
house. In addition, for the supporting process, gas/liquid flow
sensors are deployed to monitor the usage amount of com-
pressed air and liquids during the manufacturing processes.
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TABLE 2. Deployment information of data acquisition devices.

The deployment information of data acquisition devices is
listed in detail in Table 2.

Through the above deployment of RFID, energy consump-
tion and flow monitors, a ubiquitous production environment
for carbon efficiency evaluation is established. Within this
manufacturing system, machining processes and logistics
operations are reengineered and rationalized. The production
progress and carbon emission data of workpieces can be cap-
tured, which will provide a data support for the later carbon
emission and carbon efficiency evaluation.

B. DATA MODELING OF PRODUCTION STATE
AND CARBON EMISSION
Since the collected original data are isolated and littery, they
cannot be used to evaluate carbon emission directly. In order
to easily access useful information and analyze the carbon
mession, the data modeling of production state and carbon
emission are conducted firstly. The obtained data are stored
in database based on the following data models.
Data Model 1: The energy consumption data of machining

processes are modeled asME =< MEID,MID,EData,T >,
where MEID is the index of machining energy data, MID is
the machine tool index, EData and T denote the collected
energy data and corresponding time, respectively. The fre-
quency of data collection is three in one second, and the
gathered data will be stored in a temporary database.
Data Model 2: The progress data of a workpiece are mod-

eled as WP =< WPID,WID,PID,PName,PData,T >,
where WPID is the index of progress data of a workpiece,
WID is the workpiece index, PID and PName represent the
process index and process name, respectively. PData denotes
the position data of a workpiece at corresponding time T . This
data is collected via a handheld or stationary RFID reader.
The frequency of RFID reader is ten in one second. The
data of WP will be stored in database when a workpiece is
monitored.
Data Model 3: The energy consumption data of a storage

unit are modeled as SE =< SEID,BID,EData,T >, where

SEID is the index of energy consumption data of a storage
unit, BID is the index of a buffer or a warehouse. This data
are collected via energy consumption meters. The frequency
of data collection is three in one second, and the gathered data
will be stored in database.
DataModel 4: The usage data of a cutting tool are modeled

as CT =< CTID,MID, STime,ETime >, where CTID is the
index of a cutting tool, STime andETime represent the starting
usage time and end usage time of a cutting tool. This data are
collected through the serial communication of a machine tool
and adapters.
DataModel 5:The usage data of cutting fluids aremodeled

as CF =< CFID,MID, STime,ETime >, where CFID is the
category index of cutting fluid, STime and ETime represent
the starting usage time and end usage time of the cutting fluid.
Data Model 6: The consumption data of supporting mate-

rials are modeled as SM =< SMID,WID,PID,PName,
SMCategory, STime,ETime >, where SMCategory is the
category index of a supporting material.

FIGURE 2. Framework of big data analysis for carbon efficiency
evaluation.

IV. BIG DATA ANALYSIS APPROACH FOR
CARBON EFFICIENCY EVALUATION
After obtaining the original data, the data are massive,
isolated and littery, and cannot be used to evaluate carbon
efficiency directly. Thus a Big Data analysis approach of pro-
duction state and carbon emission is established. The overall
framework of the Big Data analytics is presented in Fig. 2.
Through the deployment of various data acquisition sensors,
the production process and original data can be obtained.
Through the data model described in Section III.B, the orig-
inal data will be stored in the data warehouse. Then Big
Data analysis methods can be used to acquire manufacturing
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associated knowledge, which includes manufacturing data
cleansing, manufacturing data partition, manufacturing data
reduction and manufacturing data correlation analysis. The
concrete details of each data processing algorithms will be
described in Section IV.A and Section IV.B. For different
kinds of data, different algorithms will be adopted.

For continuous data, e.g., energy data (Data Model 1 and
Data Model 3), supporting material consumption data (Data
Model 6), data reduciton and feature extraction will be used
to compress the amount of data. Whereas for discontinuous
data, e.g., workpiece progress data (Data Model 2), cutting
tool/fluid usage data (Data Model 4 and Data Model 5),
these data will be taken out directly to conduct data corre-
lation analysis. The main purpose of Big Data analysis is
to excavate manufacturing associated knowledge. After the
Big Data analysis for production and carbon emission data,
some applications can be provided, such as carbon efficiency
evaluation, low-carbon decision-making and carbon emission
prediction.

A. DATA PREPRESSING OF PRODUCTION
STATE AND CARBON EMISSION
Since the collected production data and energy consumption
data are continuous and littery, these raw data are unusable
for the carbon emission evaluation directly. Thus, several
preprocessing algorithms are proposed to dispose the original
manufacturing data, which includes three steps: manufactur-
ing data cleansing, manufacturing data partition and manu-
facturing data reduction, as shown in Fig. 3.

1) MANUFACTURING DATA CLEANSING
The purpose is to detect and remove some noise data from
production and energy data, which are incomplete or unrea-
sonable. In this algorithm, each data array will be verified
from the temporal rationality and data range. The data array
which does not meet these conditions will be cleansed. The
Input is a set of raw production and energy data RPED =
{ME,WP, SE,CT ,CF, SM}, and the output is a cleansed
production data CD which are complete and logical.

2) MANUFACTURING PROCESS PARTITION
Since the data are always acquired continuously and automat-
ically, the data of different processes are all mixed together.
This algorithm is to divide the cleansed data to obtain pro-
duction data for specific process or stage. For example,
the energy data for different workpieces should be divided,
because there exist unloading and loading processes between
different workpieces. Similarly, the other data about cut-
ting tool, cutting fluid and buffer defined in Section III.B
also should be divided. The Input is a set of cleansed data
CD = {ME,WP, SE,CT ,CF, SM}, and the output is a
manufacturing data segmentMDS.

3) MANUFACTURING DATA REDUCTION
AND FEATURE EXTRACTION
For a machining process, there are different states of a
machine tool, i.e., downtime, standby, warm up, idle, air

FIGURE 3. Data preprocessing of production state and carbon emission.

cutting, and cutting [37]. And only the energy consumption
during cutting state is valuable for a machining process,
whereas energy consumption of other states are auxiliary
power consumption. In order to analyze carbon efficiency
of a machine process, it is necessary to reduce the amount
of data and extract the energy feature of different states.
Its purpose is to form an advanced and succinct data structure
of energy so that further query, classification, and analysis
could be carried out easily. The data reduction approach thus
aggregates and condenses the data record from the partition
energy data of single process, then improve the data with high
information density. The output is the feature data FCD. The
data reduction process contains two steps: data clustering and
feature extraction.

The data clustering is mainly aimed to obtain the energy
data of different states. Clustering is a method to divide a
set of data into a specific number of groups. Since the power
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curves are dynamic and some data of transient processes can-
not be divided into a certain stage absolutely, this clustering
problem is a fuzzy one. The most successful technique in
fuzzy cluster analysis is fuzzy C-means (FCM) clustering,
and it is widely used in both theory and practical applications
of fuzzy clustering techniques, especially time-series data
[38], [39]. FCM clustering is a fuzzy clustering method and
proposed by Bezdek [40].

In the FCM clustering method, the energy data are divided
into fuzzy sets by minimizing sum of square error for groups.
Let upq, vp and n represent membership value, cluster center
and the number of data sets, respectively. Thus, the form
of the objective function tried to be minimized is shown as
follows:

Jβ (X ,V ,U) =
∑c

p=1

∑n

q=1
uβpq d

2(xq, vp) (1)

where β is weighting exponent (β > 1) of fuzzy degree, c
is the number of cluster centers, and xq represent the input
energy data. Through analyzing the energy consumption data,
four manufacturing states are important for energy consump-
tion, i.e., standby, idle, air cutting, and cutting (as shown
in Fig. 5). Thus c = 4. d(xq, vp) is distance measure between
the observation and the cluster center. Jβ is tried to be mini-
mized under the constraints given below:

0 ≤ upq ≤ 1, ∀p, q (2)

0 ≤
∑n

q=1
upq ≤ n, ∀p (3)∑4

p=1
upq = 1, ∀q (4)

Minimization process in the FCM is performed by using
an iterative algorithm. In each iteration, the values of upq and
vp are updated by using the formulas given below.

vp =

∑n
q=1 u

β
pqxq∑n

q=1 u
β
pq

(5)

upq =
1∑4

k=1 (
d(xq,vp)
d(xq,vk )

)
2/(β−1) (6)

After the above clustering process, the energy consumption
data is divided into 4 fuzzy sets. Then energy consumption
features can be obtained by multiplying energy data by sam-
pling interval, that is, energy consumption of different stages.

The data reduction and feature extraction algorithm is
shown in Algorithm 3 in Fig. 3.

B. MANUFACTURING DATA CORRELATION ANALYSIS
FOR CARBON EMISSION EVALUATION
After the above data preprocessing algorithms, the feature
carbon data are still disconnected with the production infor-
mation, i.e., process, machine tool or workpiece. And the
carbon emission of different machine tools or workpiece
is also uncertain. So the data correlation analysis of the
above preprocessed data is required, which is vital for carbon
emission evaluation. In order to obtain the manufacturing

knowledge about carbon emission, two spatio-temporal
sequential patterns are defined firstly.
Definition 1 (Spatio-Temporal Sequential Pattern of

Machine Tool Carbon Emission): Let MCEPj denotes a
pattern of machine tool carbon emission, which involves
p machining stages. Then this pattern can be described as
follows:

MCEPj = {< WID1,PID1,AE1,ME1,CT 1,FT 1 >, . . .

< WIDk ,PIDk ,AEk ,MEk ,CT k ,FT k >, . . .

< WIDp,PIDp,AEp,MEp,CT p,FT p >} (7)

where WIDi indicates the ith workpiece, PIDik is the kth
process ofWIDi, AEk is the auxiliary energy consumption of
PIDk during standby, idle and air-cutting stages, MEk is the
material removal energy consumption of PIDk during cutting
stage, CT k denotes the cutting tool usage time of PIDk , and
FT k represents the cutting fluid usage time of PIDk .
Definition 2(Spatio-Temporal Sequential Pattern of Work-

piece Carbon Emission): Let WCE i denotes a pattern of
workpiece carbon emission, which involves nmachining pro-
cesses. Then this pattern can be described as follows:

WCEPi= {< WIDi,PIDi1,AE i1,ME i1,CT i1,FT i1,BUF i1,

LOGi1 >, . . . < WIDi,PIDik ,AE ik ,ME ik ,CT ik ,

FT ik ,BUF ik ,LOGik>, . . . < WIDi,PIDin,AE in,

ME in,CT in,FT in >} (8)

where AE ik and ME ik denote the auxiliary energy consump-
tion and material removal energy consumption of the kth
process of the ith workpiece,CT ik and FT ik represent the
cutting tool usage time and the cutting fluid usage time of the
kth process, BUF ik is buffer usage time between PIDik and
PIDik+1, and LOGik is logistics distance between PIDik and
PIDik+1. Since there are not buffer and logistics after PIDin,
BUF in and LOGin are removed.

In order to mine the above production patterns, a data
correlation analysis method is proposed, as shown in Fig. 4.
Here, the RFID data are used to determine the start time and
end time of each process or machining stage, and then bind
the production data and carbon emission data according to
time nodes. The energy consumption data AEk andMEk can
be obtained through the above manufacturing data reduction
algorithm. The cutting tool usage time CT k and the cutting
fluid usage timeFT k can be gathered through serial com. and
adapters of a machine tool. The buffer usage time BUF ik and
logistics distance LOGik can be gathered via the configured
RFID readers in Table 2. Finally, the spatio-temporal sequen-
tial patterns of machine tool carbon emission and workpiece
carbon emission can be obtained through the iterative process.

Through the above definitions and the data correlation
analysis method, some invaluable knowledge about carbon
emission can be deduced. The carbon emission evaluation
can be used to analyze its utilization efficiency and impact
on the environment. For example, through comparing the
carbon emission at different periods, the changing situations
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FIGURE 4. Data correlation analysis method of carbon emission pattern.

FIGURE 5. Raw energy consumption data and reduction results of test
data with 750.

of machine tools can be obtained. And through comparing
carbon emission of different objects, the inefficient machine
tools or products can be found out.

1) CARBON EMISSION OF A MACHINE TOOL
For a machine tool, its carbon mission mainly comes from
the energy consumption, the consumption of cutting tools and
cutting fluid. Since raw material is not related to machine
tools, it is not counted in carbon emission of machine
tools. Fixture are usually recycled, so its carbon emission is
neglected. Carbon emission of cutting tools is estimated from
the viewpoint of tool life. And some cutting tools, particularly
those for a solid end mill, are recovered by regrinding after
reaching their life limit [41]. Based on the Definition 1,
the carbon emission of a machine tool can be obtained as
follows:

MCE j =
∑p

k=1
((AEk +MEk ) · emf el + CT k · ωtool

+FT k · ωau) (9)

where emf el is the emission factor of electric energy, ωtool

and ωaudenote carbon emission coefficient of cutting tools
and cutting fluid.

2) CARBON EMISSION OF A WORKPIECE
The carbon emission of a workpiece contains the carbon
emission during machining processes, logistics processes and
the buffer. The energy consumption due to transportation
processes in a workshop is related to the mode and the dis-
tance of transportation. Furthermore, there is a buffer to place
workpieces temporarily for each machine tool, and a process
will go through a number of buffers which also consume
energy. Based on the Definition 2, the carbon emission of
a wrokpiece can be obtained as follows:

WCE i =
∑n

k=1

(
(AE ik +ME ik) · emf el + CT ik · ωtool

+FT ik · ωau
)
+

∑n−1

k=1
((BUF ik ∗ PBUF ik

+LOGik ∗ PLOGik ) · emf el) (10)

where PBUF ik and PLOGik denote the power of buffer and
energy consumption per unit distance.

3) CARBON EMISSION OF THE WHOLE WORKSHOP
Except the carbon emission of workpiece, carbon emission of
the whole workshop is also related with the warehouse energy
consumption and some energy dissipating materials, which is
expressed in (11). For a warehouse, its energy consumption
is similar to the buffer. Apart from the energy consumption,
many resources are consumed in a workshop, such as water,
oxygen etc.

WSCE =
∑

WCE i +
∑

SM l · Tl · emf sml (11)

where emf sml denotes the emission factor of an energy dissi-
pating material.

C. DATA-DRIVEN MULTI-LEVEL CARBON
EFFICIENCY EVALUATION
For amanufacturingworkshop, there aremany kinds of work-
pieces which have different production lot sizes, and their
production quantity may change with the market demand.
Considering these situations, it is not objective enough to only
use carbon emission to evaluate the environmental burden
of a workpiece or a manufacturing workshop. Here, the car-
bon emission only reflects the environmental influence of a
workpiece or a machine tool. But their carbon efficiency can
consider energy utilization ratio, production quantity or cre-
ative values per carbon emission. Therefore, based on the
concept of eco-efficiency, some carbon efficiency indicators
which consider production lot sizes and economic return are
proposed, e.g., carbon emission efficiency, processing carbon
efficiency, production carbon efficiency and economic carbon
efficiency, etc. The definitions of these carbon efficiencies are
show as flowers.
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TABLE 3. Data-driven carbon efficiency evaluation indicators.

Definition 3: Energy efficiency is defined as the ratio of
material removal energy consumption to the total energy
consumption of a machine tool.
Definition: Carbon emission efficiency is defined as the

ratio of carbon emission caused by material removal energy
consumption to the total carbon emissions of a machine
tool or a workpiece.
Definition 5: Processing carbon efficiency is defined as

the ratio of material removal volumes to the total carbon
emissions of a machine tool or a workpiece.
Definition 6: Production carbon efficiency is defined as

the ratio of production rate of a product to the total carbon
emissions of a workpiece or the whole manufacturing shop.
This efficiency combines the production rate and carbon
emission.
Definition 7: Economic carbon efficiency is defined as the

ratio of economic return of a workpiece or a workshop to their
total carbon emissions. Economic return can be understood
as the economic benefits created by all the products during a
certain time, which may vary with the change of the market
demand.

The detailed indicators in different levels are listed
in Table 3. Through the indicators, the carbon efficiency of
different products in different periods can be estimated, which
can be used to adjust the productive process of a workshop,
such as batch configuration, production scheduling, process
planning and so on.

V. CASE STUDY
A. CASE DESCRIPTION
In this paper, an auto parts manufacturing workshop which
mainly conducts the rough machining of gears is researched
to demonstrating the feasibility of the proposed carbon emis-
sion evaluation approach. The manufacturing shop contains
three machine tools, i.e., a CNC lathe (M1), a drilling
machine (M2), a gear-hobbing machine (M3).

To evaluate the carbon emission of this workshop, the fol-
lowing parameters are set:

1) Since the AE of a machine tool have little effect on the
total carbon emission of the machine tool, it’s assumed
that they are constant when processing different kinds
of workpieces. The main parameters of the machine
tools are listed in Table 4. In addition, the water con-
sumption is considered, which is also listed in Table 4.

TABLE 4. The main parameters of the workshop.

TABLE 5. The main parameters of three types of gears.

2) In this case study, three typical types of gears are
selected to evaluate the carbon emission and carbon
efficiency of the workshop. The main parameters of
these gears are listed in Table 5. In order to analyze
the carbon emission, three different periods are chosen,
and the production quantities of the gears in different
periods are listed in Table 6.

3) Since the machining processes are complex, three key
processes are chosen to make analysis, i.e. turning,
drilling and gear-hobbing, and each process could be
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FIGURE 6. Prototype system of big data analysis and carbon efficiency evaluation.

TABLE 6. The production quantities of the gears in different periods.

TABLE 7. The processing parameters of each process.

executed on the corresponding machines. The process-
ing parameters of each process are listed in Table 7,
which include the processing time t(s), the removal
volume V (cm3) and ωtool(kgCO2 − e/h) of cutting
tools.

B. PROTOTYPE SYSTEM FOR THE REAL-TIME
CARBON EFFICIENCY EVALUATION
For the manufacturing workshop, data acquisition networks
are established firstly through monitoring devices in Table 2.
The energy consumption data of machine tools and buffers
are monitored by Janitza UMG 604E, whereas Gears are
located through Alien ALR-F800 RFIDs. Meanwhile, some

flowmeters are deployed to record the quantity of flow. Based
on the data acquisition networks, a prototype system is devel-
oped to realize the carbon efficiency evaluation, as show
in Fig. 6. This prototype system is a browser/server (B/S)
architecture, which is developed by using Spring–Struts2–
Hibernate (SSH2) framework under Java Web environment
on the server side, and HTML5/ CSS/JavaScript on the
browser side. It is recommended to use Google browser for
browsing. There are mainly six function blocks, i.e., sensor
network construction, production monitoring and data acqui-
sition, data cleansing and partition, data reduction and feature
extraction, data correlation analysis and multi-level carbon
efficiency evaluation.

The operation procedures of the prototype system are
described as follows:

1) SENSOR NETWORK CONSTRUCTION
Several sensors are deployed on machine tools, buffers and
transportation facilities, and the connection between equip-
ment and sensors is built.

2) PRODUCTION MONITORING AND DATA ACQUISITION
After the sensor configuration, the production state data can
be acquired through the stationary RFID readers and hand-
held RFID readers. Meanwhile, the data of energy consump-
tion, cutting tool and cutting fluid about a machine tool
can be gathered. And then the real-time energy curve will
be plotted and the frequency of data collection is three in
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one second. The workshop has been monitored and analyzed
for two weeks continuously to achieve carbon efficiency
evaluation.Measured data is transmitted through the Internet-
router embedded in monitoring devices, and then stored in
Hadoop for Big Data processing and analysis.

3) DATA CLEANSING AND PARTITION
The rural data are detected and remove some noise data
for production and energy data, which are incomplete or
unreasonable.

4) DATA REDUCTION AND FEATURE EXTRACTION
For the cleansed data, the data reduction algorithm based on
FCM clustering is used to divide the continuous energy con-
sumption data according tomachining process andmachining
stage of a machine tool.

TABLE 8. Validity test of the data reduction algorithm.

In order to verify the efficiency of the proposed algorithm,
three test data with different sizes during turning process are
used, i.e, 750, 4685 and 8325. The weighting exponent of
fuzzy degree β is set as 2, the number of cluster centersc is 4,
and the minimum amount of improvement for FCM is 10−7.
The test results are listed in Table 8. From the results, it can
be seen that the average time is 0.12s for sample data with
750, which means the algorithm is efficient for the energy
consumption data clustering.Meanwhile, for these three tests,
all the average accuracies are above 98%, and for sample data
with 750, the average accuracy reaches 99.5.

And then the energy consumption of each process and each
machining stage can be deduces. For sample data with 750,
the raw energy consumption data and reduction results are
shown in Fig. 5. The energy consumption of standy, idle, air
cutting and cutting states are 7.7W·h, 28.5W·h, 88.4W·h and
201.1W·h, respectively.Meanwhile, it can be clearly seen that
there ismuch energy consumptionwhich is not used to cutting
workpiece, which will be analyzed in detail in Section V.C.
This algorithm can aggregate and condense the data record,
then improve the data with high information density.

5) DATA CORRELATION ANALYSIS FOR
CARBON EMISSION PATTERN
Based on the feature data, the data correlation analysis is
conducted to mine the spatio-temporal sequential patterns of
carbon emission. Also, carbon emission of different levels can
be obtained.

6) MULTI-LEVEL CARBON EFFICIENCY EVALUATION
Based on the proposed evaluation method in Section IV.C, the
carbon efficiency evaluation can be conducted to calculate the

carbon efficiency of each machine tool, a workpiece or the
whole workshop. The evaluation results will be used to sup-
port production control decision.

FIGURE 7. Carbon emission of the three gears and their processes.

C. CARBON EFFICIENCY EVALUATION AND DISCUSSIONS
Based on the proposed Big Data analysis and carbon effi-
ciency evaluation methods, the carbon emission and carbon
efficiency are analyzed from three aspects, i.e., machine tool,
processes, workpiece and workshop. Firstly, the carbon emis-
sion of the gears and their processes are obtained as illustrated
in Fig. 7. It can be clearly seen that the carbon emission of
Gear 1 is more than that of other gears, and Gear 3 generates
the least carbon emission, which is about 0.171 kgCO2 − e.
In terms of processes, the gear-hobbing process is the most
carbon-intensive in the machining processes of a gear, which
is responsible for about 40%-50% of carbon emission of
each gear. And the second is drilling process. Therefore,
the machining parameter adjustment and optimization of the
gear-hobbing and drilling process aremore effective to reduce
the carbon emissions of gears, especially for Gear 3.

FIGURE 8. Carbon emission of the three gears in different periods.

Then, the carbon emission of the gears in different periods
are analyzed, as shown in Fig. 8. The carbon emission in
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FIGURE 9. Carbon efficiency of machine tools in Period 1.

different periods are various, and that of Period 2 are themost,
which reaches 142.51kgCO2− e. Whereas that of Period 1 is
the least. In terms of workpieces, Gear 3 is always the least
in the three periods. Gear 2 takes the highest proportion in
Period 1 and Period 2. Whereas Gear 1 takes the highest pro-
portion in Period 3, which reaches 60.46kgCO2−e. Although
the total carbon emission is related to the quantity of each
gear, the carbon emission of each gear has a bigger influence.
For example, in Period 1, the quantity of Gear 1 and Gear 3
is the same, but the carbon emission of them is different.
Meanwhile, from the total carbon emission, it can be also
seen that Gear 2 takes a larger carbon proportion, and some
methods should be taken to improve its carbon efficiency to
reduce the total carbon emission.

The carbon efficiency of machine tools in Period 1 is
analyzed in Fig. 9. From the results, it can be seen that the
energy efficiency of M2 are the best, which reaches 0.546,
and that of the other two machine tools cannot surpass 50%.
Similar to the energy efficiency, the carbon efficiency of
M2 are the highest, which is 0.561. The results show that
the efficiency of M2, that is, the drilling machine, is the best
in the workshop. Most of the energy consumption or carbon
emission of M2 are used in machining processes. For the pro-
cessing carbon efficiency, M2 is also the best, which reaches
145.9cm3/kgCO2 − e. In above, M2 is the most efficient in
this workshop. M3 is the least and should be improved.

In Period 1, the carbon efficiency and economic efficiency
of gears are calculated, which is shown in Fig. 10. It’s obvious
that the carbon efficiency of Gear 1 is the highest, which
reaches 0.53. That of Gear 3 is the least, which means Gear 3
wasted lots of carbon emissions. For production carbon effi-
ciency, Gear 3 is the best, which is 5.85 set/kgCO2 − e.
By comparing the production carbon efficiency with the
carbon emission of a gear, they have an inverse proportion
relationship. For the workshop, its production carbon effi-
ciency has a linear combination relationship with the pro-
duction quantities of the gears, and varies with time because
the production carbon efficiency of each gear is different.

FIGURE 10. Carbon efficiency of the three gears in Period 1.

Moreover, the economic carbon efficiency of Gear 1 is the
best, which is 30.60 yuan/kgCO2 − e. That means Gear
1 will create the most economic value by generating the same
carbon emission.

FIGURE 11. Carbon efficiency of the workshop in different periods.

In addition, the carbon efficiency of workshop in different
periods is analyzed in Figure 11. The workshop in Period 2
realizes the most carbon efficiency, which is 0.493. But
the carbon efficiency of the workshop in different periods
change little, which is 46.8%, 49.3% and 48.8% succes-
sively. Moreover, it’s found that the economic efficiency
of the workshop increases from 27.8 Yuan/kgCO2 − e to
29.53 Yuan/kgCO2− e from Period 1 to Period 2. Since only
Gear 1 and Gear 2 increase from Period 1 to Period 2, these
two gears have a positive influence on the whole economic
efficiency. Therefore, it is an efficient method to increase the
production quantity of Gear 1 and Gear 2 to improve the
economic carbon efficiency of the whole workshop.

From the above comparison and analysis, the proposed Big
Data analysis and carbon efficiency evaluation approach is an
efficient one for solving the carbon emission evaluation prob-
lem. In the real implementation process, some observations
and insights can be drawn as follows:

1) The proposedmethod integrates IoT, Big Data analysis,
and low-carbon manufacturing, which is an important
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content of intelligent manufacturing. This method will
have a wide application prospect under the background
of industrial Internet and low-carbon manufacturing.

2) The method can be used to evaluate the carbon emis-
sion of mechanical product, which can also be inte-
grated into low-carbon design of products. Meanwhile,
the carbon efficiency evaluation can be used as a
performance evaluation index of a machine tool or a
workshop to realize the improvement of a production
system.

3) In addition, there are also some drawbacks in the
proposed method which will be researched in the
future work. For example, even though the proposed
method can apply to discrete manufacturing shops,
some complicated situations have been neglected, such
as machine tool fault, production halts, or process
adjustment, etc.

VI. CONCLUSION
In order to reduce the carbon emission of a discrete manufac-
turing workshop, a Big Data analysis approach for real-time
carbon efficiency evaluation of discrete manufacturing work-
shops is proposed. Firstly, the deployment of data acquisition
devices is introduced to create a ubiquitous manufacturing
workshop, and a datamodeling of production state and carbon
emission is described. Then, a real-time multi-level carbon
efficiency evaluation method of manufacturing workshops
is established based on Big Data analysis approach. This
method involvesmanufacturing data cleansing, data partition,
data reduction and data correlation analysis. The proposed
method in this paper realizes the combination of manu-
facturing Big Data and low-carbon production. Meanwhile,
the evaluation method can be used in other production
information systems and then assist the production decision-
making, e.g., product design, process planning and produc-
tion scheduling.

Future research in this area will include the establishment
of association relationship between carbon efficiency and
critical production parameter to find the carbon-intensive
factors at the bottom of a workshop. Although the pro-
posed method can apply to discrete manufacturing shops,
some complicated situations have been neglected, such as
machine tool fault, production halts, or process adjustment,
etc. So more pragmatic approaches need to be estab-
lished. Furthermore, based on the proposed carbon efficiency
method, some optimization methods can be adopted to opti-
mize the production lot size or the scheduling plan to reduce
the carbon emission.
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