
Received July 9, 2019, accepted July 26, 2019, date of publication August 6, 2019, date of current version September 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2933589

A New Framework for Hyperspectral Image
Classification Using Multiple Semisupervised
Collaborative Classification Algorithm
YING CUI, XIAOWEI JI , (Student Member, IEEE), HENG WANG, KAI XU,
SHAOQIAO WU, AND LIGUO WANG , (Member, IEEE)
College of Information and Communications Engineering, Harbin Engineering University, Harbin 150001, China

Corresponding author: Xiaowei Ji (jixiaowei@ hrbeu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61675051 and fundamental scientific
research funds for the Central Universities under Grant 3072019CF0801.

ABSTRACT Hyperspectral images (HSIs) have evident advantages in image understanding because of
enormous spectral bands, and rich spatial information. However, applying the limited labeled samples to
obtain satisfactory classification results is a challenging task. Secondary screening algorithm and semisu-
pervised learning are two promising methods to address this problem. Secondary screening algorithm
exploits different query functions, which are on the basis of the evaluation of two criteria: uncertainty and
diversity. The advantage of semisupervised learning is that with a small number of samples, classifiers could
learn the structure of whole data sets without significant costs and efforts. Hence, combining secondary
screening algorithm and semisupervised learning is a natural consideration. We firstly investigate nine
secondary screening algorithms and compare their performance. Next, two novel frameworks are proposed
in this paper. They are named the syncretic one-fold secondary screening algorithm and semisupervised
learning framework (OFSS-SL) and syncretic multiple secondary screening algorithms and multiple-
verification semisupervised learning framework (MSS-MVSL), respectively.We evaluate the performance of
OFSS-SL andMSS-MVSL on three hyperspectral data sets and compare themwith that of three state-of-the-
art classification methods. In general, our results suggest that two proposed frameworks can apply limited
labeled samples to achieve excellent classification results. And the computational costs of them are cheaper
than previous methods.

INDEX TERMS Active learning, hyperspectral image classification, semisupervised learning.

I. INTRODUCTION
With the development of spectral imaging techniques and
optical sensor systems in recent years, hyperspectral images,
which contain a lot of information in hundreds of continuous
and narrow spectral bands, have been widely used for many
applications, such as image fusion, change detection, and
classification, etc [1]–[3]. To better characterize complex
scenes of remote sensing images, classification is a crucial
processing step in many applications. It is widely acknowl-
edged that a hyperspectral image data set usually contains
limited labeled samples and a large number of unlabeled
samples. As for supervised learning, the quality and quan-
tity of the labeled samples determine the performance of
the classification. A variety of machine learning techniques
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have been used for HSI classification [4], including support
vector machines [5], [6], neural networks [7], [8] and regres-
sion methods [9], [10]. However, labeling a large number
of samples is time-consuming and obtaining high-quality
labeled samples is a difficult task. Therefore, a direct idea is
designing a technique that requires little or no labeled training
data. On the other end of the spectrum from classification,
unsupervised learning also has ability to address spectral-
spatial joint feature calculation and classification. Whereas,
the problem of unsupervised learning of hyperspectral images
is also a significant challenge [11]. Clustering technique is
usually applied in unsupervised learning for data classifica-
tion. Recent techniques for hyperspectral clustering include
these based on particle swarm optimization [12], density
analysis [13], nearest neighbor clustering [14], total variation
methods [15], and sparse manifold models [16], [17].
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How to use the least labeled samples to minimize the
time consumption and improve the performance of clas-
sifiers have become crucial issues in hyperspectral image
classification. Active learning (AL), semisupervised learning
(SSL) and clustering techniques provide promising meth-
ods to improve the performance. Unlike supervised learning,
semisupervised learning can effectively enhance the classifi-
cation result by deploying limited labeled samples [18], [19].
This can be attributed to the fact that semisupervised learn-
ing pays more attention to the unlabeled data in unsu-
pervised approach. Simultaneously, semisupervised learning
facilitates the supervised model by increasing the quantity
of the training samples, and improves the generalization
ability of the classifier by applying both labeled data and
unlabeled data. Another interesting modality is active learn-
ing. As a subfield of machine learning, AL has been suc-
cessfully applied to select training sample sets. Because
it can minimize the number of training samples and keep
the discriminative capabilities of classifiers as high as
possibly [20], [21]. The AL process is conducted according to
an iterative process. It utilizes a query function to inspect the
whole unlabeled data and select the most informative one or a
batch of samples for manual labeling at each iteration, then
the labeled data set and the unlabeled data set are updated
by adding the new labeled samples to the labeled set and
removing them from the unlabeled set. AL can obtain high
quality classification results with fewer labeled samples than
in the case of randomly selected training samples.

On the basis of the aforementioned considerations, in order
tomitigate the computational costs and improve the pseudola-
beling accuracy, we investigate different AL techniques to
build a buffer pool which embrace the batch of the most infor-
mative sample, then apply the different clustering algorithms
for secondary selection, which confirm the selected unla-
beled are diverse. Moreover, we propose two novel semisu-
pervised learning frameworks which combine unsupervised
secondary screening algorithms for guaranteeing the diversity
of samples. The first one is syncretic one-fold secondary
screening algorithm and semisupervised learning framework
(OFSS-SL). The second one is syncretic multiple secondary
screening algorithms and multiple-verification semisuper-
vised learning framework (MSS-MVSL). The investigated
techniques and proposed frameworks are compared with
related algorithms in the classification of hyperspectral
images.

The results on three widely used hyperspectral data sets
verify the effectiveness of the proposed frameworks. Com-
pare with the classical collaborative active and semisuper-
vised learning method (CASSL), the proposed frameworks
can effectively train classifiers and sufficiently improve
the classification performance with small sized number of
labeled samples. Different from single batch-mode active-
learning methods, such as MCLU-ECBD, we implement
multiple secondary screening strategy to mine representative
and discriminative information from the unlabeled samples,
the most valuable samples also are diverse. Simultaneously,

by multiple validation part, we can acquire more confidently
pseudolabeled samples to facilitate SSL.

The rest of this paper is organized as follows. Section II
presents details of the related works on hyperspectral image
classification. In Section III, first, we specifically introduce
the methods applied in this paper. Then we exploit and
compare nine unsupervised secondary screening algorithms,
which mine the representative information and diversity of
samples. In Section IV, we propose two novel frameworks.
Section V specifically describes the effectiveness of two
proposed frameworks from experimental results. Section VI
summarizes this paper.

II. RELATED WORK
The aim of this section is to briefly introduce the present
active learning algorithms and clustering techniques devel-
oped for hyperspectral image classification. It is, moreover,
important to technically precise the relationships between
semisupervised learning and active learning and exploit the
intimately related watershed.

A. ACTIVE LEARNING FOR HYPERSPECTRAL IMAGE
CLASSIFICATION
Active learning is an effective method to solve the problem of
less training samples, which is a challenge for hyperspectral
image classification. According to the active learning litera-
tures, an active learner can be modeled as a quintuple [22],
Q is a query function and applied to select the most informa-
tive unlabeled samples from unlabeled data set and the unla-
beled data set is denoted as U . At the initial stage, an initial
training set T of few labeled samples is required for the first
training of the classifier G. S is a supervisor who can assign
the true class label to the unlabeled samples.

At the beginning of the iteration loop, active learning uti-
lizes a query function to select the most informative sam-
ples, then these most informative samples are labeled by
human experts. At the same time, the labeled data set and
the unlabeled data set are updated. In this way, only the most
informative samples are to be labeled, the noninformative
samples are ignored. Hence, the time consumption and the
cost of data collection can be significantly decreased. From
this procedure, we observe that the query function is a key to
the active learning. There are two main criteria used to design
a query function: the uncertainty and the diversity [23]–[26].
Recently, there are many researches on the uncertainty crite-
rion, such as query by committee, the posterior probability-
based methods and the large margin heuristic-based methods.
Query by committee which measures the uncertainty of the
samples by the maximum variance among the committee
of learners [27]–[29]. Entropy provides a method to study
and understand the variation of uncertainty in classification
outputs. Tuia et al. [30] proposed an active learning algorithm
with the help of the entropy query-by-bagging algorithm
(EQB), and it is independent on the classifiers and performs
well on remote sensing data sets. EQB has the tendency to
locally over sample complex areas, leading to search the
regional feature space. Li et al. [31] proposed an improved
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EQB algorithm named averaged entropy query-by-bagging
algorithm (aEQB). Copa et al. [32] proposed a normalized
entropy query-by-bagging algorithm (nEQB). This method
yields more reliable results than EQB. Compared with the
query by committee, Rajan et al. [33] firstly proposed an
active-learning method based on posterior probability. This
method by contrasting the maximum difference of the poste-
rior probability between before and after adding the samples
to the training set. The information gain is measured by the
Kullback–Leibler (KL) divergence. The KL-Maximization
(KL-Max) technique can be implemented with any classifier,
but it only select one sample at each iteration. As for the large
margin heuristic-based methods, Mitra et al. [34] proposed
an active SVM learning method based on margin sampling
(MS) for object-oriented remote sensing image segmentation.
This method selects the data points that are closest to the
current separating hyperplane. In order to solve the problem
of multi-classification, Multiclass level uncertainty (MCLU)
was be proposed by Demir et al. [35] and Shi et al. [36]. This
technique effectively selects the most informative samples
according to the confidence values c(x) and is widely used
in remote-sensing image classification.

B. CLUSTERING TECHNIQUES FOR HYPERSPECTRAL
IMAGE CLASSIFICATION
Clustering is also an essential step in many ways, such as
data mining and pattern recognition, which aims to divide a
large number of unlabeled data into several clusters based on
similarity [11], [38], [39]. By evaluating the distribution of
the samples in a feature space, clustering techniques assign
the same label for the data in the same cluster, and it is an
effective technique to exploit representative information in
large-scale data set. Many clustering methods have been pre-
sented in the literatures. K-means clustering is a commonly
used data clustering for performing unsupervised learning
tasks [40]. It should be underlined that k-means clustering
offers no accuracy guarantees, but the simplicity and efficient
of k-means are very appealing in practice. Fuzzy c-means
(FCM) [41] is one of the most widely used methods in fuzzy
clustering. Given a certain cluster number, it can find the
hidden structure of a data set through optimization of the
objective function. Hierarchical clustering constructs a hier-
archy of clusters by either iteratively integrating two smaller
clusters into a larger one or dividing a larger cluster into
smaller ones. And the crucial step of Hierarchical clustering is
how to best select the next cluster to split or merge [42]. Com-
pared with other clustering techniques, spectral clustering has
good performance in dealing with irregularly-shaped clusters
and gradual variation within groups. Because its capability of
high-quality clustering and handling non-convex clusters that
are typically be superior to many methods [43]. This method
takes the similarity matrix as the input and applies k-means to
top eigenvectors of the graph Laplacian matrix in the cluster-
ing process. Nowadays, spectral clustering has been utilized
in many domains such as computer vision, classification, and
speech separation with promising performance [44]–[46].

Compared with the uncertainty, less attention has been
paid on the diversity criterion in remote sensing image
classification. The main idea of using diversity criterion is
to select a batch of samples, which are the most infor-
mative and, simultaneously, are diverse from each other.
Demir et al. [35] first selected m most uncertain sam-
ples with several SVM-based techniques and clustered the
m samples into h clusters (h < m). Then, these selected
samples are labeled by human experts. The advantage of
this approach is that selecting the most uncertain sample
from each cluster greatly ensures the diversity criterion.
Patra and Bruzzone [37] presented an algorithm based
on SVM and a self-organizing map (SOM) neural net-
work, which firstly selected m most uncertain samples by
SVM technique, and then selected h samples that corre-
spond with the SOM mapping neurons from the m samples.
Multiclass level uncertainty-enhanced cluster-based diversity
method is proposed in [35]. It has been employed in an inter-
active domain adaptation approach for applying the classifier
trained on a remote sensing image to a different but related
target image.

C. SEMISUPERVISED LEARNING FOR HYPERSPECTRAL
IMAGE CLASSIFICATION
In hyperspectral image classification, during the past few
decades, the semisupervised learning methods has drawn
great interests in remote sensing [47], [48]. Generally speak-
ing, semi-supervised learning can be classified into the gener-
ative model [49], the co-training model [50], the graph-based
method [51], [52], etc. Wang et al. proposed a novel graph-
based semisupervised learning approach based on a linear
neighborhood model to propagate the labels from the labeled
samples to the whole data set using linear neighborhoods with
sufficient smoothness [53]. Bruzzone et al. [54] proposed
progressive semisupervised SVM. This approach improves
the SVM classifiers iteratively by assigning pseudolabels to
the unlabeled samples that are closest to the margin bound.
In [55], de Morsier et al. presented a graph representation
that is discriminative of the cluster structure of the data and it
assumes multiple possible intersecting manifold. In order to
avoid assigning incorrect pseudolabels to unlabeled data by
human labeling, in [56], Wang et al. proposed a method to
address the special problematic characteristics of hyperspec-
tral images. First, as a semisupervised approach, it exploits
the structure of unlabeled samples by evaluating the confi-
dence probability of the predicted labels. Then, this method
jointly optimizes the classifier parameters and the dictionary
atoms by a task-driven formulation, which aims at learning
features that are optimal for the trained classifier. Finally,
it incorporates spatial information through adding a Lapla-
cian smoothness regularization to the output of the classifier.

D. COMBINATION OF AL AND SSL FOR HYPERSPECTRAL
IMAGE CLASSIFICATION
The problem of less training samples has become an
active investigation orientation in hyperspectral image
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classification. To complement active learning and semisu-
pervised learning for each other becomes a natural choice.
Most of the previous studies have demonstrated that the
combination of them is an excellent approach for hyper-
spectral images classification. Dópidoa et al. [57] proposed
a novel semisupervised active-learning method for urban
hyperspectral image classification. Initially, utilizing active
learning methods to select the most informative samples with
achieving a great improvement in the classification results.
Then, the classifier estimates the labels of the selected sam-
ples with no extra cost for labeling the selected samples.
A novel algorithm embedded into the multi-view active learn-
ing was proposed by Di and Crawford [58]. In this paper, the
first regularizer studies the intrinsic multi-view information
embedded in the hyperspectral data. The second regularizer is
based on the ‘‘consistency assumption’’. In [59], this method
combines AL and SSL to invoke a collaborative labeling
process by both human experts and classifiers. Firstly, an
AL-based pseudolabel verification procedure is performed
for constantly increasing the pseudolabeling accuracy to
facilitate SSL. Then, only those unlabeled data with low
pseudolabeling confidence will become the query candidates
in AL.

It is important to observe that the aforementioned methods
have many similarities. Firstly, these methods apply active-
learning approach to label informative samples. Then the
remaining unlabeled samples are assigned by the current
classifiers. In the process of labeling the samples, the per-
formance of the classifiers is improved gradually. However,
some other limitations can compromise their effectiveness:
1) They paymore attention on discriminative information and
ignored the representative information, leading to the infor-
mation bias. 2) These methods apply the single classifier as
validation model and use single active learning algorithm to
select informative samples, which have the disadvantage that
the difference between the base classifier and the verification
classifier is confined to their updated samples. It should be
mentioned that the difference of models can directly decide
the reliability of the pseudolabels. It indicates that if the char-
acteristics of base classifier and the verification classifier are
similar, which can lead to the algorithm has a limited ability
to improve the discriminative information. Meanwhile, these
algorithm may be immediately end and cannot reach the
desired accuracy.

To alleviate these aforementioned issues, nine unsuper-
vised secondary screening algorithms are exploited, which
mine the representative information of samples. Section III
specifically introduces the unsupervised secondary screening
algorithms.

III. INVESTIGATED UNSUPERVISED SECONDARY
SCREENING ALGORITHMS
This section mainly introduces the main structure of the
proposed algorithm. Representative information and discrim-
inative information, which denote the quality of the labeled
samples, are vital to improve the generalization ability for

classifiers. However, it is widely acknowledged that the unla-
beled samples are numerous. Therefore, using the unlabeled
samples to enhance the training samples is an advisable
selection. In order to adequately exploit the representative
information, we combine active learning methods and unsu-
pervised clustering techniques. We implement the averaged
entropy query-by-bagging algorithm (aEQB), normalized
entropy query-by-bagging algorithm (nEQB) and Multiclass
level uncertainty algorithm (MCLU), to select informative
samples and put these samples into first-level buffer pool.
Then, samples in the pool are clustered by clustering meth-
ods, in each cluster, we select the most informative sam-
ples to label by human experts. As for clustering methods,
we apply three typical methods, k-means clustering, spectral
clustering algorithms and hierarchical clustering algorithms.
Simultaneously, the labeled data set and the unlabeled data
set are updated by adding these informative samples to the
labeled data set and removing them from the unlabeled data
set. We combine three active learning algorithms with three
clustering algorithms, respectively. Hence, we obtain nine
unsupervised secondary screening algorithms to compare
their performance, then sort out the unsupervised secondary
screening algorithms with greatest performance.

A. QUERY FUNCTION FOR ACTIVE LEARNING
Entropy is a criterion that summarizes the classification
uncertainty in a single number, per pixel, per class or per
image. Query by bagging (EQB), proposed by Tuia, is a
classifier-independent approach based on the selection of
unlabeled samples according to the maximum disagree-
ment between a committee of classifiers. In order to ensure
the diversity of committee member, the internal committee
classifier adopted Bootstrap sampling [60]. The process of
EQB can be divided into the following steps: firstly, the orig-
inal training set is divided into the some training subsets,
the number of training subsets isK . Each training set is imple-
mented to train the one-against-all (OAA) SVM architecture
to predict the different labels for each unlabeled sample [34].
After training, for each sample xi ∈ U has K labels, which
can be seen as a classification frequency and as the probability
for the candidate xi to be labeled in the class ω. We could
observe that the entropy of the distribution of the different
labels associated to each sample is calculated to evaluate
the disagreement among the classifiers. The EQB function
is expressed as:

xEQB = argmax
xi∈U

H (xi) (1)

H (xi) =
Ni∑
ω=1

p
(
y∗i = ω|xi

)
log

[
p
(
y∗i = ω|xi

)]
(2)

y∗i is the class label predicted for the i-th pixel. Ni is the
number of classes predicted for xi by the committee and 1 ≤
Ni ≤ N , whereN is the total number of classes. p

(
y∗i = ω|xi

)
is the observed probability to obtain class ω predicted for the
candidate. The experiment by Demir et al. [35] indicates that,
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in batch sampling process, the performance of EQB algorithm
has poor performance when the number of samples is small.
However, the performance of EQB algorithm is improved
when extracts more samples, which means that EQB algo-
rithm only determines the approximate segmentation range
of information, and it can’t accurately arrange the samples
according to the amount of information entropy. For the
multi-classification, a sample may has high confidence when
the committee classifiers maintains the same prediction. It is
also indicate that this sample has low uncertainty and small
entropy value. Reversely, a sample may has high uncertainty
when the committee classifiers maintains the different pre-
diction. It is assumed that the entropy value of this sample is
large. Accordingly, the unlabeled sample with the maximum
disagreement be worth labeling by human experts. However,
some scholars [61] have found that, with regard to the multi-
classification problem, in some cases, the entropy value can’t
represent the uncertainty of samples. Sometimes, the uncer-
tainty of samples with smaller entropy value will be higher
than these of larger entropy value. Han et al. [62] proved
that information entropy had multi-value bias in theory, due
to the fact that in the process of classifier training iterative
prediction. EQB has the tendency to locally over sample
complex areas, implying a large number of classes among
which the committee is uncertain. In classification field,
diversity in the training set is a key element to obtain good
predictions. Successful studies have been carried out to solve
this problem. Copa et al. proposed nEQB algorithm in [32].
nEQB adopts a normalization to lead to the identification
of more relevant samples independently from the number of
classes predicted for each candidate xi, as shown in (3).

xnEQB = argmax
xi∈U

{
H (xi)
log(Ni)

}
(3)

Li et al. [31] put forward an improved algorithm called
averaged entropy query-by-bagging algorithm (aEQB). This
algorithm can also ensure the diversity of sampling process
by averaging the entropy and punish the multi-value attribute
by adding classification information. The aEQB as follows:

xaEQB = argmax
xi∈U

{
H (xi)
Ni

}
(4)

The essence of nEQB and aEQB are similar, both of them can
punish the information entropy from the prediction category
perspective, and it is difficult to set the penalty items. In dif-
ferent iteration stages, the performance of the penalty relies
on the ability of classifier.

The MCLU technique chooses the most uncertain sam-
ples according to a confidence value c (x), x ∈ U , which
are defined on their functional distance

{
f1 (x) , f2 (x) ,

. . . . . . , fn (x)
}
to the n decision boundaries of the binary

SVM classifiers. The classifiers are built in the one-against-
all (OAA) architecture. Then, the confidence value c (x) can
be calculated by applying different strategies. Two strategies
are commonly used, the first one is the minimum distance

FIGURE 1. Architecture adopted for the MCLU technique.

function cmin (x) strategy. The cmin (x) function applies a
simple strategy that computes the confidence of a sample x by
calculating the minimum distance to the hyperplanes evalu-
ated on the basis of the most uncertain binary SVM classifier.

cmin (x) = min
i=1,2,......n

{abs [fi(x)]} (5)

The second one is the difference function cdiff (x) strategy,
which considers the difference between the first and second
largest distance values to the hyperplanes, i.e., [35].

r1max = argmax
i=1,2,...,n

{fi(x)} (6)

r2max = argmax
j=1,2,...,n,j6=r1max

{fi(x)} (7)

cdiff (x) = fr1max(x)− fr2max(x) (8)

Compared with cmin (x), the cdiff (x) strategy compares the
uncertainty between the two most likely categories. If the
value of cdiff (x) is high, the sample x is assigned to r1max
with high confidence. On the contrary, if this value is low,
it means that the decision for r1max is not reliable, and
there is a possible contradiction with the class r2max. Hence,
this sample is selected by the query function for more
appropriate modeling the decision function in the feature
space. When the value of c (x) , (x ∈ U ) is acquired by
one of the two aforementioned strategies, the m samples
xMCLU1 , xMCLU2 , . . . . . . , xMCLUm with lower c (x) are selected
to be forwarded to the diversity step. It should be mentioned
that xMCLUj represents that the selected j th most uncertain
sample based on the MCLU strategy. Fig. 1 shows the archi-
tecture of the MCLU technique [35].

Multiclass level uncertainty-enhanced cluster-based diver-
sity (MCLU-ECBD), is employed as the query heuristic.
In MCLU-ECBD, the aforementioned MS heuristic is
extended to the multiclass scenario using the one-against-
all architecture. Specifically, MCLU-ECBD consists of two
steps, i.e., MCLU and ECBD. MCLU has been introduced in
this section. The ECBD technique works in the kernel space
by utilizing the kernel k-means clustering to select the h < m
most diverse patterns [64].

In detail, the kernel k-means clustering iteratively divides
the m samples into k clusters in the kernel space, (k = h).
When the clusters are constructed, assigning initial cluster
labels to each sample. In next iterations, a pseudo-center is
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FIGURE 2. Flowchart of the proposed secondary screening algorithms.

chosen as the cluster center. The distance of each sample from
all cluster centers in the kernel space is calculated and each
sample is assigned to the nearest cluster.

B. DETAILS OF INVESTIGATED METHODS
The flowchart of the investigated algorithm is shown in Fig. 2.
It can be divided into two parts, one is the supervised learning
of the samples, the other is the act labeling and updating of
the unlabeled samples. Moreover, the samples are divided
into training set and test set. The test set is used to verify
the training effect of the model, and it does not partici-
pate in training classifiers. And the training set is divided
into labeled set and unlabeled set. We apply the aEQB,
nEQB and MCLU, which are widely used to select the most
informative samples in remote-sensing image classification.
By implementing above-mentioned active learning
approaches, we select the top M samples, and puts them
into the first level buffer pool. It should be mentioned that,
the number of top M samples is m, (m ≥ M ), and we
don’t label the samples in the first level buffer pool. Then
we utilizing different unsupervised clustering techniques to
classify them according to the distribution of spectral features
of theHSIs.We apply k-means (KM), spectral clustering (SC)
and hierarchical clustering (HC), to compresses candidate
sample pool. we add the KM, SC and HC to represent the
investigated algorithm, respectively. Hence, we evaluate nine
possible unsupervised secondary screening algorithms in this
paper: 1) MCLU with K-means (denoted by MCLU-KM);
2) MCLU with Spectral clustering algorithms (denoted by
MCLU-SC); 3) MCLU with Hierarchical clustering algo-
rithms (denoted by MCLU-HC); 4) nEQB with K-means
algorithms (denoted by nEQB-KM); 5) nEQB with Spectral
clustering algorithms (denoted by nEQB-SC); 6) nEQB with
Hierarchical clustering algorithms (denoted by nEQB-HC);
7) aEQB with K-means algorithms (denoted by aEQB-KM);

8) aEQBwithwith Spectral clustering algorithms (denoted by
aEQB-SC); 9) aEQB with Hierarchical clustering algorithms
(denoted by aEQB-HC).

It should be underlined that, in the k-means algorithm, the
value of k will determines the effect of clustering, and it is dif-
ficult tomake a reasonable setting for k value. In this selecting
process, the k value sets to h. (h is the number of samples to
be labeled). Using clustering algorithm compresses candidate
sample pool, to force samples to cluster, and similar samples
can be clustered into the same class. The m most informative
samples divides into h clusters. Adopting the principle of
‘‘first come, first served’’ to cluster samples from the top-
ranking samples. As shown in Fig. 3, for samples selection
process, if Data 1 andData 2 belong to the same class, we only
choose one with higher information entropy in the same class.
We choose Data 1 and Data 3, although the information of
Data 2 is higher than that of Data 3. And we summarize the
algorithm in Algorithm 1.

IV. PROPOSED METHODOLOGY
In this section, we propose two novel frameworks that inte-
grate secondary screening algorithms and the semisupervised
learning in a collaborative manner for hyperspectral image
classification. They are OFSS-SL andMSS-MVSL. It should
be stressed that integrating secondary screening algorithms
and semisupervised learning is a novel concept and not a
simple combination of two methods. The first novelty of
proposed framework is that applying the combination of sec-
ondary screening algorithms to mine the representative infor-
mation of unlabeled samples at each iteration. The second
novelty is that implementing double verification classifier to
learn the composition and distribution of unlabeled data set
without significant cost. Then, the classifier approximates the
model and structure of the remaining unlabeled data. In this
case, proposed framework can avoid introducing many
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FIGURE 3. Flowchart of the joint selection strategy.

Algorithm 1 Secondary Screening Algorithms
Input: Labeled sample L, unlabeled sample U , T is the
limited number of iteration.
While t < T :
1.Use L to train Model.
2.Use U as a test set and utilize the Model to classification
prediction.
3.Use the active learning strategy to pick out the m most
informative samples.
4.Use unsupervised clustering algorithm to cluster m sam-
ples, and the number of cluster is h.
5.According to the sample selection strategy, pick out h
samples.
6.Label the h samples, updating L and U .
7.Update iteration times t = t +1.
Output: Trained Model

incorrect pseudolabels. Meanwhile, the main advantage of
proposed framework is that utilizing a limited labeled sam-
ples to effectively train verification classifiers. We can obtain
the excellent classification results with the least computa-
tional cost.

A. PROPOSED OFSS-SL ALGORITHM
The traditional framework combines single active learning
algorithm and semisupervised learning to invoke a collabo-
rative labeling process by both human experts and classifiers.
However, applying single active learning algorithm to select
unlabeled samples will ignore diversity and discriminative
information. Discriminative information and the diversity of
samples are vital to improve the accuracy and robustness
of the final classifiers. Discriminative information, which
represents the quality of the training data, is very important to
improve the generalization ability for the classifier. And the

diversity and uncertainty of the samples are also as criterion to
assess evaluate whether an algorithm can select valuable and
representative samples or not. Hence, considering the tradeoff
between uncertainty and diversity, we first proposed the one-
fold secondary screening algorithm based on semisupervised
learning framework (OFSS-SL).

1) DIVERSITY AND DISCRIMINATIVE INFORMATION
EXCAVATION
In our experiment, the active learning algorithm is promoted
by the unsupervised clustering algorithm. To the best of our
knowledge, there are a few works exploited different types
of information in the unlabeled data. The traditional methods
tend to explore one type of information of the unlabeled data
without considering the advantages of various types of infor-
mation, resulting in information bias. However, secondary
screening algorithms can exploit the representative samples
that has higher information from different categories.

2) DETAILS OF THE PROPOSED METHOD (OFSS-SL)
Suppose we have a hyperspectral image with n samples
D = {x1, x2, . . . . . . , xn} of d dimensions. We first select
m samples from hyperspectral image by applying MCLU,
and then cluster them into h groups. We select the most
informative samples from each group, that also means we
select one representative samples from each category.

After that, we label h samples according to the ground
truth as the initial training data L =

{
(x1, y1), (x2, y2),

. . . . . . , (xh, yh)
}
with yi ∈ {1, 2, . . . . . . ,C} where C is the

number of classes in the image. Simultaneously, the labeled
data set and the unlabeled data set are updated by adding
these newly labeled samples to the labeled set and removing
them from the unlabeled set. And the newly labeled sam-
ples will train the classifiers. The flowchart and the pseu-
docode of the OFSS-SL algorithm are illustrated in Fig. 4 and
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FIGURE 4. Flowchart of the one-fold secondary screening algorithm based on semisupervised learning framework (OFSS-SL).

and Algorithm 2, respectively. Given an initial labeled data
set L and an initial unlabeled data set U , the OFSS-SL algo-
rithm starts from an empty set Spseudo, which represents the
set of pseudolabeled data. At each iteration, an base classifier
is trained using both L and Spseudo. Then, h unlabeled data
are selected according to the unsupervised secondary screen-
ing algorithms and are labeled by human experts. It should
be mention that the h newly labeled samples data will be
removed from U and added into L. After that, we utilize a
base classifier to classify the samples in both Spseudo and U
and obtain result named Label1. Next, we use the expanded
labeled data set L to train verification classifier and then
applied it to classify the data in both Spseudo and U . Finally,
we will obtain two classification results from base classifier
and verification classifier, respectively. If the unlabeled data
receives the same classification results from two classifiers,
it will be assigned with pseudolabels and added into Spseudo.
Simultaneously, when the unlabeled samples receive different
classification results will be put back into U . The algorithm
will terminate until the limit iteration times or becomes an
empty set.

B. PROPOSED MSS-MVSL ALGORITHM
The traditional collaborative active and semisupervised
learning (CASSL) applies single confidence threshold and
AL algorithm for pseudolabeling procedure judgment, which
will not be able to meet the changing model. When the
initial labeled samples is too few, CASSL may invoke so
many wrong pseudolabels and deteriorate the performance
of the final classifier. And the effectiveness of classical
AL methods relies on whether the unlabeled data that most
influence the classification performance can be adopted

Algorithm 2 OFSS-SL Framework
Input:
Initial training set: L =

{
(xi, yi)li=1

}
Initial unlabeled data set: U =

(
xj
)u
j=1

Initial pseudolabeled data set: Spseudo = φ
Initial iteration times: t = 0
Query size: h
the number of iterations: T
While t ≤ T:
1. Repeat:
2. Train base classifier using Spseudo ∪ L.
3. Applying unsupervised secondary screening algo-

rithm to select h unlabeled samples UQ= (xk)hk=1.
4. LabelUQ by human experts, and update the following

two data sets: L = L ∪ UQ and U = U\UQ.
5. Classify U ∪ Spseudo using Base Classifier with the

classification results being Label1. Classify U ∪
Spseudo using Verification Classifier with the classi-
fication results being Label2.

6. Update:
Spseudo = {(xi,Label1(xi))|Label1(xi) = Label2(xi),
xi ∈ U ∪ Spseudo}
U =

{
xi|Label1(xi) 6= Label2(xi), xi ∈ U ∪ Spseudo

}
iteration times t = t + 1.

7. Until T rounds are reached.
Output: Trained Model

for human labeling. In order to address these problem,
we propose an intensive collaborative framework, a novel
multiple-verification semisupervised learning framework
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FIGURE 5. Combination of different unsupervised secondary screening algorithm (CUSS).

which combines multiple secondary screening algorithms
for guaranteeing the representative and discriminative
information.

1) COMBINATION OF SECONDARY SCREENING
ALGORITHMS FOR HYPERSPECTRAL IMAGES
CLASSIFICATION
We can choose two effective secondary screening algorithms
from previous section to obtain valuable samples for man-
ual labeling, respectively. Can we integrate two effective
unsupervised secondary screening algorithms? The answer is
yes. As an indispensable part in MSS-MVSL, we present an
effective framework named combination of unsupervised sec-
ondary screening algorithm (CUSS) for joint selecting sam-
ples. The idea comes fromweighted combination of ensemble
learning classifier [65], [66]. The combination of the model is
extended to the combination of the strategy so as to achieve
the fusion of multiple strategies in a single framework and
achieves higher stability. We apply the CUSS to improve the
performance of base classifiers, while at the same time as
a complementary process to take over the convergence of
primary algorithm [59]. The process of the CUSS algorithm is
illustrated in Fig. 5 and Algorithm 3. The CUSS significantly
improves the generalization abilities of classifiers by apply-
ing different unsupervised secondary screening algorithms.
Combining all the classification results of multiple classifiers
determines the final classification results.

2) DISCRIMINATIVE INFORMATION EXCAVATION AND
MULTIPLE VERIFICATION
In the above-mentioned methods, secondary screening algo-
rithms can exploit the representative samples that has higher
information from different categories.MSS-MVSL algorithm
is proposed with two active learning techniques, two clus-
tering techniques and three classifiers are adopted to assign

pseudolabels for the unlabeled data, which can enhance the
performance of active learning. Most of the previous studies
in active learning process, the generalization ability of classi-
fiers is enhanced gradually at each iteration by adding a set of
informative samples to the labeled data set with query func-
tion, e.g., MCLU technique. As a result, their effectiveness is
highly reliant on adding a set of informative samples and they
have a limited ability to excavate discriminative information.

Discriminative information, which represents the quality
of the training data, is also vital to improve the general-
ization ability of the classifier. Because the labeled data is
limited. Selecting the unlabeled data as the training data set is
an inevitable choice. Therefore, In MSS-MVSL framework,
we improve the discriminative information by adding the
newly labeled data in the unsupervised secondary screening
process and the unlabeled data with pseudolabels. By deploy-
ing the unlabeled data with pseudolabels and the labeled data
as training data, the discriminative information is enhanced
for the classifiers at each iteration to design query function.
Another foremost task is that: How to assign pseudolabels
to unlabeled data and then retrain the classifiers using both
the initially labeled and pseudolabeled data? Deploying an
appropriate confidence threshold of the unlabeled sample is
a vital step for entire algorithm. On the one hand, a good
threshold can guarantee high classification accuracy. While,
the high threshold will result in fewer samples satisfying
criteria at each iteration, and "empty loop" phenomenon at the
beginning of the iteration. On the other hand, a low threshold
may result in unlabeled data with low confidence are assigned
labels by the classifiers. And the wrong pseudolabels may be
implemented into the training procedure and degrade the per-
formance of the final classifier. In addition, the effectiveness
of the pseudolabeling procedure also depends on the initial
labeled data set. If the initial training set does not match
the underlying class distributions, it is difficult to train an
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effective classifier at the initial stage and the judgment of
unlabeled samples is constantly changing.

In MSS-MVSL, we apply multiple verification model to
train two verification classifiers and the discriminative infor-
mation is improved for the classifiers at each iteration by both
the unlabeled data with pseudolabels and the labeled data.
Based on the classification results of the three classifiers,
we assign the pseudolabels to the unlabeled data if they
receive the same labels. Otherwise, we put this samples back
to the unlabeled data set.

3) DETAILED STEPS OF MSS-MVSL FRAMEWORK
In this part, we introduce the details of the proposed MSS-
MVSL framework. This framework is divided into two parts.
The first one is combination of different unsupervised sec-
ondary screening algorithm (CUSS). CUSS is the base of the
verification part and also reinforces the performance of base
classifier. Comparedwith the single strategies, CUSS deploys
the integration of two secondary screening algorithms as joint
selection. The other part is double verification to check and
classify each unlabeled sample. From the comparison among
nine secondary screening algorithms, we select MCLU-KM
and nEQB-KM as part in proposed frameworks. We assume
that the number of samples to be labeled isQ at each iteration,
and the samples contributed by the MCLU-KM is q1 and
the samples contributed by the nEQB-KM strategy is q2.
Designing an appropriate function is a primary task. In this
paper, the fitness function of the CUSS is defined as follows.

q1 = Q×WA (9)

q1 = Q×WB (10)

Q = q1Uq2 + R (11)

where WA and WB are weight parameters for MCLU-KM
and nEQB-KM, The value of q1 determines the number of the
representative samples selected by MCLU-KM and the value
of q2 determines the number of the representative samples
selected by nEQB-KM. We will analyze these parameters in
the next section. R is a random factor. R = Q − q1 ∪ q2.
If q1 ∩ q2 6= 8, it indicates that the two strategies concur-
rently select the same most valuable sample. We randomly
selected valuable samples withmeeting the criteria are treated
as supplements. It should be underlined that R does not
exist at each iteration, but according to the results of the
iteration. Compared with the traditional collaborative active
and semisupervised method, MVSL-MSS achieves notice-
able improvement. Initially, we utilize the initial labeled
samples and the pseudolabels samples to train base classi-
fiers. And base classifier is used to predict the unlabeled
data. It should be mentioned that, at the beginning of the
iteration, the pseudolabels data is empty. Next, we select q1
the most informative unlabeled samples by utilizing
MLCU-KM technique and select q2 the most informative
unlabeled samples by utilizing nEQB-KM algorithm. And
then these unlabeled data are labeled by human experts.
We denote q1 newly labeled samples as LQ1 and the q2 newly

labeled samples as LQ2. When the MLCU-KM algorithm and
nEQB-KM algorithm select the same sample, we will utilize
the random factorR as supplement. Then, these newly labeled
data will be removed from the unlabeled set U and added
into the labeled set L for training two verifiable classifiers,
verification classifier 1 and verification classifier 2. At this
time, the two verification classifiers have a large difference
in sample distribution due to different strategy. Meanwhile,
the unlabeled data with pseudolabels and the unlabeled data
are predicted by base model. And we denote the label to the
unlabeled data as Label1.

We use LQ1 to train verification classifier 1 and use LQ2 to
train verification classifier 2. Lastly, the unlabeled data with
pseudolabels and the unlabeled data are predicted by verifi-
cation classifier 1 and verification classifier 2, respectively.
When base classifier and two verification classifiers obtain
the same results on one unlabeled sample, which denotes
this result is reliable and then this unlabeled sample will be
assigned pseudolabel. On the contrary, when three classifiers
have different classification results on a unlabeled sample,
this unlabeled sample will be put back to the unlabeled data
set for the next iteration. As the algorithm continues to iterate,
the performance of the classifiers are improved constantly.
Differing form traditional methods, when base classifier and
verification classifiers always make same predication on each
unlabeled samples, MSS-MVSL exits the part of semisu-
pervised and enter CUSS for next iteration. MSS-MVSL
only terminates when it reaches the pre-set iteration times.
We believes that three classifiers making the same decision is
not the end of the algorithm, it just shows that the algorithm
can’t obtain more information from unlabeled data with pseu-
dolabels.We still dig out the potential discriminative informa-
tion and representative information from the unlabeled data.
CUSS will be utilized as a backup process to enhance the
imperfect end condition. The flowchart of the MSS-MVSL
algorithm is illustrated in Figure 6, and the pseudo-code of the
MSS-MVSL algorithm is illustrated in Algorithm 3. Lastly,
our final combination leads to performance superior to the
traditional method, namely CASSL, for remote sensing scene
classification.

V. DATASET DESCRIPTION AND DESIGN OF EXPERIMENT
A. DATASET DESCRIPTION
The first hyperspectral data set is Indian pines data set.
In June 1992, the NASA AVIRIS image was acquired over
the Indian pines agricultural site in northwestern Indiana.
AVIRIS is a sophisticated optical sensor system including a
number of major subsystems, components, and characteris-
tics [67]. Taking their results in the AVIRIS data characteris-
tics. The AVIRIS sensor receives white light in the foreoptics,
disperses the light into the spectrum, converts the photons to
electrons, amplifies the signal, digitizes the signal and records
the data to high density tape. This data set contains 145 ×
145 pixels, at 20-m spatial resolution and 10-nm spectral
resolution over the range of 400–2500 nm. Resulting in a
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Algorithm 3MSS-MVSL Framework
Input:
Initial training set: L =

{
(xi, yi)li=1

}
Initial unlabeled data set: U =

(
xj
)u
j=1

Initial pseudolabeled data set: Spseudo = φ
Initial iteration times: K = 0
Query size: Q
Limit iteration times: T
While sizeof (U ) ≥ 10 and K ≤ T:
Repeat:

1 Train Base Classifier using Spseudo ∪ L.
2 Applying Base Model to predict the unlabeled data.
Using unsupervised secondary screening strategy
A to select q1 data from UQ1 = (xs1)

q1
s1=1 and

using unsupervised secondary screening strategy B to
select q2 data from UQ2 = (xs2)

q2
s2=1. Make sure that

Q = q1 + q2.
3 Label UQ = UQ1 ∪ UQ2 by human experts and
update the following four data sets: LQ1 = L ∪ UQ1,
LQ2 = L ∪ UQ2, L = L ∪

(
UQ1 ∪ UQ2

)
, U =

U\
(
UQ1 ∪ UQ2

)
.

4 Using Base Classifier to Classify U ∪ Spseudo and the
classification results being Label1

5 Using LQ1 to train Verification Classifier 1 and using
LQ2 to train Verification Classifier 2.

6 Classify U ∪ Spseudo by using Verification Classifier
1 and the classification results being Label2_c1, Clas-
sifyU ∪Spseudo by using Verification Classifier 2 and
the classification results being Label2_c2.

7 Update:
Spseudo = {(xi,Label1(xi))|Label1(xi) =

Label2_c1(xi) = Label2_c2(xi), xi ∈ U ∪ Spseudo}U ={
xi|(Label1(xi) 6= Label2_c1(xi))or(Label1(xi) 6=

Label2_c2(xi))or(Label2_c1(xi) 6= Label2_c1(xi))
}
,

xi ∈ U ∪ Spseudo
8 K = K + 1
9 While sizeof (U ) < 10 and K ≤ T :

10 Run:
Algorithm 3 CUSS Framework
Return:Trained Model

200-band image, twenty noisy and water absorption bands
(104–108, 150–163, and 220) were removed [59]. It should
be underlined that we select 12 categories that the number
of land cover samples more than 100 for classification. And
10062 available samples.

The second hyperspectral data set is Kennedy Space Center
(KSC), which was acquired over the Kennedy Space Center,
Florida, on March 23, 1996, at a spatial resolution of 18 m.
The original data set consists of 220 bands, and it has a
size of 512 × 614 pixels, after removing water absorption
and low SNR bands, 176 bands are left. The available data
were collected using land-cover maps derived from color

TABLE 1. Numbers of samples for the corresponding classes of the
Indian Pines data set.

TABLE 2. Numbers of samples for the corresponding classes of the
kennedy space center data set.

TABLE 3. Numbers of samples for the corresponding classes of the Pavia
University data set.

infrared photography provided by KSC and Landsat thematic
mapper imagery. This data set contains 13 classes. A total
of 5211 pixels are labeled with the different classes of land
cover [35].

Pavia university data set was acquired by the Reflective
Optics System Imaging Spectrometer (ROSIS) instrument
in 2001, covering the city of Pavia, Italy [68]. The prin-
ciple and performance of ROSIS will be presented in the
following with emphasis on the sensor, signal conditioning
and the related data flow. The panchromatic information
of a ground track with several elements is imaged on a
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FIGURE 6. Flowchart of the syncretic multiple secondary screening algorithms and multi-verification semisupervised learning
framework (MSS-MVSL).

matrix CCD sensor. One line of the track corresponds to one
CCD line. The panchromatic light of this line is diffracted by
means of a grating. The spectral information is represented
by the different CCD lines. The spatial resolution of each
single ground element in flight direction is derived from the
ground orbit velocity multiplied by the exposure time. The
spectral resolution depends primarily on the grating and on
the imaging optics. But the sensitivity and characteristics
of the imaging spectrometer depend on the selection of the
appropriate CCD matrix sensor. The image scene is centered
at the University of Pavia, with a size of 610 × 340 pixels.
It comprises 115 spectral channels in the wave-length range
from 0.43 to 0.68 um with a spatial resolution of 1.3 m, and
103 channels are used in the experiment after noise and water
absorption bands are removed. This data set contains nine
classes representing the different types of land cover, and
there are 42776 available samples [59].

B. DESIGN OF EXPERIMENT
1) EXPERIMENTAL SETUP ON UNSUPERVISED SECONDARY
SCREENING ALGORITHMS
For Indian pines data set, we selected 12 categories for
classification, and has 10062 labeled pixels (the number of

sample more than 100). Firstly, we randomly divided the
total available data into two parts for each image: 70% data
sets used for training and 30% for testing. And for the
70% training data, we randomly selected five samples in each
class as the initial labeled data, and then remaining samples
were used as the unlabeled data for the unsupervised sec-
ondary screening. For KSC data set, we randomly divided the
total available data into two parts: 50% for training and 50%
for testing. And the training data contains the unlabeled sam-
ples and the labeled samples. We randomly selected five sam-
ples from the each large sized class (the number of samples
more than 200) as the initial labeled data. We selected three
labeled samples from slash pine and selected two labeled
samples from hardwood swamp as the initial labeled data.
For Pavia university data set, we randomly divided the total
available data into two parts: 75% for training and 25% for
testing. We randomly selected thirty samples in each class as
the initial labeled data.

In order to provide some guidelines to the users under
different conditions. We assess the compatibility of nine con-
sidered secondary screening algorithms on different data sets.
At each iteration, 10 samples were selected by manual label-
ing, and added to the labeled data set. Each algorithm iterates
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TABLE 4. Performance comparison showing OA obtained from nine algorithms on the indian pines data set.

TABLE 5. Performance comparison showing AA obtained from nine algorithms on the indian pines data set.

TABLE 6. Prformance comparison showing OA and STD obtained from nine algorithms on the KSC data set.

95 times, We have conducted this experiment about 20 times
for each algorithm. For all the comparedmethods, the adopted
classifier was support vector machine (SVM) classifiers
based on the radial-basis-function kernel, SVM is a super-
vised nonparametric statistical learning technique, which is
not constrained to prior assumptions on the distribution of
the input data. There are two parameters for the SVM clas-
sifier, i.e., the Gaussian kernel parameter G and the penalty
coefficient C , which are usually selected via cross validation.
C =

{
2−5, 2−3, . . . . . . , 215

}
is the hunting zone for penalty

coefficient, G =
{
2−15, 2−13, . . . . . . , 23

}
is the hunting

zone for Gaussian kernel parameter. The sample selection
method is TopN. The experimental simulation environment is
Inter(R) Core(TM) i7-6700HQCPU@2.6Ghznotebook, and
its memory is 16G, and the operating system is Win10. Using
the python scikit-learning algorithm package to simulate the
experiment.

2) EXPERIMENTAL SETUP ON PROPOSED METHODOLOGY
With regard to validate the effectiveness of two pro-
posed frameworks, we presents experiments on original
collaborative active and semisupervised learning (CASSL),
nEQB-KM, MCLU-ECBD algorithm with a comparative

study. In the experiments, for every algorithm, twenty runs
were executed on each data set with different initial labeled
data. For all the comparedmethods, the adopted classifier was
SVM based on the radial-basis-function kernel. OFSS-SL,
MSS-MSAL are batch-mode active-learning algorithm. This
will bring two additional parameters, the candidate query set
with m samples is selected by the uncertainty, and the actual
query set with h samples is selected from the the candidate
query set by the diversity. In our experiments, we set h = 10
and m = 40.

C. RESULTS AND ANALYSIS
1) RESULTS ON COMPARISON AMONG SECONDARY
SCREENING ALGORITHMS
In order to analyze the effectiveness of the investigated
techniques, we decided to perform re-estimation for nine
considered secondary screening algorithms. (MCLU-KM,
MCLU-SC, MCLU-HC, nEQB-KM, nEQB-SC, nEQB-HC,
aEQB- KM, aEQB-HC, aEQB-SC). Tables 4–5 shows the
classification performance on the Indian pines data set.
Tables 8 compares the running time of the all the investi-
gated secondary screening algorithms. In the Indian pines
data set. MCLU-KM has the better performance than others.
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TABLE 7. Performance comparison showing AA and STD obtained from nine algorithms on the KSC data set.

TABLE 8. Total training time (in seconds) of nine compared algorithms on
the KSC data set and indian pines data set.

In addition, aEQB-KM achieve the highest accuracy when
the algorithms finish iterating and MCLU-HC needs the least
time for iterating. Tables 6–7 show the classification perfor-
mance on the KSC data set, as for aEQB, both aEQB-HC
and aEQB-KM have better performance on OA, AA and
Kappa. As for nEQB, nEQB-KM is the most efficient and
has the best classification performance. As for MCLU,
MCLU-HC consistently demonstrates statistically better per-
formancewhen compared to each of the other two algorithms.
However, MCLU-HC spends a little more time than other
algorithms. From this comparison, we select MCLU-KM and
nEQB-KM as a part of proposed frameworks.

2) RESULTS ON PROPOSED METHODOLOGY
Taking into account the aforementioned method, for experi-
mental parameters WA and WB, (WB = 1 − WA), a range
of parameters were considered (WA = 0.1,WA = 0.3,
WA = 0.5,WA = 0.7,WA = 0.9). From Fig. 11, we
can observe that WA = 0.5 almost performs better than
other parameters at each iteration. This phenomenon can be
attributed that complementing nEQB-KM and MCLU-KM
for each other will stimulate the performance of overall meth-
ods. Hence, we simply split the data as q1 = q2 = Q/2.
And set the value of WA and WB are the same, both of

them are 0.5. Then, these newly labeled data will be removed
from U and add into L. The quantitative evaluations of
the three data sets are shown in tables 10–12, with overall
accuracy (OA) standard deviation (STD), training time and
paired t-test at 95% significance level with p-value. T-test
is widely used to verify the difference between two data
sets, which can suggest which method is better in the whole

FIGURE 7. False-color composite image of Indian Pines data set and color
map of ground truth. (a) False-color image. (b) Ground truth.

FIGURE 8. False-color composite image of KSC data set and color map of
ground truth. (a) False-color image. (b) Ground truth.

experiments. We regarded the results of MSS-MVAL and
OFSS-SL as the first data set, repesectively. And the other
results of each compared method were regarded as the second
data set. Hence, we obtain two p-values. We donate the
p-value obtained by OFSS-SL as p-value 1. We donate
the p-value obtained by MSS-MVSL as p-value 2. If the
p-value obtained by this test is smaller than or equal to 0.05,
which can be regarded that this algorithm with the bet-
ter performance in this comparison. Both p-value 1 and
p-value 2 confirm that OFSS-SL and MSS-MVSL perform
better than or similar to the competitors.

The principle of active learning is to use fewer labeled sam-
ples to get the better training effect. Therefore, the number
of labeled samples represents the labor cost and measures the
consumption of active learning in the iterative phase. Because
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TABLE 9. Proposed methods versus the comparison methods based on paired t-tests at 95% significance level, and a performance comparison showing
the OA and STD obtained with the indian pines data set.

TABLE 10. Total training time (in seconds) of five compared algorithms on the three data set.

of the technique of batch extraction, the minimum unit cost
of manual labeling is h, and it is the number of batch samples.
The cost of manual labeling as follows:

COST = (N + 1)× h−
1
2
h

= Nh+
1
2
h,P(N ) < p < P(N + 1) (12)

where P(N ) is the model precision at N th iteration, the value
of p can be specified as OA, AA or Kappa coefficient,
respectively.

For human-labeling effort, with respect to the origi-
nal methods, significant decreasing in human labeling are
achieved by two proposed methods. From Tables 9–11,
we can observe that when all the algorithms reach the cer-
tain OA value, the proposed algorithms need less labeling
costs. In Indian pines data set, we can find that proposed
frameworks consistently demonstrate statistically better per-
formance when compared to each of the other three algo-
rithms. From table 9, we can observe that CASSL has worse
classification performance at initial stage, which is known
as the ‘‘old start’’ problem. This is because too few ini-
tial labeled samples will lead to many errors obtained by
inaccurate classifiers at the initial training stage and also
impact the final classification performance. In KSC data set,
CASSL astringes too early. The accuracy of CASSL on the
KSC data set after 250 samples maintains the status quo.
With regard to the verification strategy, the difference of

FIGURE 9. False-color composite image of Pavia University data set and
color map of ground truth. (a) False-color image. (b) Ground truth.

model directly decided the reliability of the pseudolabels.
Moreover, the stopping condition of the CASSL framework
heavily relies on the reliability of the verification proce-
dure, which will result in CASSL framework end so early.
From 12 (c), we can observe that OFSS-SL may have sim-
ilar performance as MSS-MVSL. But the training time of
MSS-MVSL is more shorter. Hence, choosing MSS-MVSL
is unavoidable selection.
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TABLE 11. proposed methods versus the comparison methods based on paired t-tests at 95% significance level, and a performance comparison showing
the OA and STD obtained with the pavia university data set.

FIGURE 10. Class legends for three data sets. (a)Indian Pines. (b) KSC.
(c) Pavia University.

For the time cost, all of the algorithms in our experi-
ments implemented python scikit-learning package. More-
over, compared with CASSL, we can find that MSS-MVSL
and OFSS-SL are more effective from Table 10. Generally
speaking, MSS-MVSL and OFSS-SL may need extra time
to mine the representative information in the unlabeled data.
However, as a parallel programming framework,
MSS-MVSL can exploit multiple architectures. It generates a
set of parallel representative samples selected form different
algorithms and assigns label to each one at each iterations.
By clustering the informative unlabeled samples,
OFSS-SL will find the most representative more quickly and
accurately.

In conclusion, the proposed framework can use less
time to achieve better performance. Fig. 13 shows that the

FIGURE 11. The various value of WA utilized in unsupervised secondary
screening algorithm for (a) Indian pines dataset, and (b) KSC data set.

comparison of the final classification map on the Indian
pines data set, we can apparently observe that OFSS-SL and
MSS-MVSL have better classification results.
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FIGURE 12. Average classification results of the different algorithms on
the two hyperspectral images (a) KSC data set. (b) Indian Pines data set.
(c) Pavia University data set.

3) PARAMETER SENSITIVITY ANALYSIS
We have performed a sensitivity analysis of the parametersm
and h in OFSS-SL, MSS-MVSL. The parameter m controls
the number of unlabeled pixels to be selected and h represents
the number of unlabeled samples to be labeled by human
experts at each iteration. This paper has set differentm values
(20, 40) and h values (10) to conduct OFSS-SL, MSS-MVSL
on the three data sets, respectively.

We design three groups of value (m = 40, h = 10;
m = 40, h = 20;m = 20, h = 10). We analyze

FIGURE 13. Comparison of the final classification map of different
framework on the Indian Pines dataset. (a) CASSL; (b) OFSS-SL;
(c) MSS-MVSL.

these parameters by undertaking experiments on the Indian
pines data set. Fig. 14 shows the results with different spe-
cific parameter values over ten runs. We can observe that
OFSS-SL and MSS-MVSL are sensitive to the batch size.
For MSS-MVSL, when we set m = 40, h = 10, it can
obtain a better performance. It can be noted that when the
value of h are fixed, m = 20, MSS-MVSL will finish
iterating more quickly. When the value of m is same, batch
size h will determine the running time of the framework. The
number of h is lager, the computational time is longer. For,
MSS-MVSL m = 40, h = 10 is also a more appropriate
parameter settings. However, form the figure 12 (a), with the
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TABLE 12. proposed methods versus the comparison methods based on paired t-tests at 95% significance level, and a performance comparison showing
the OA and STD obtained with the KSC data set.

FIGURE 14. Overall classification accuracy versus the number of training
samples obtained by the OFSS-SL and MSS-MVSL framework with
different m and h values for Indian pines data sets. (a) OFSS-SL;
(b) MSS-MVSL.

increasing of iterations, when set m = 20, h = 10, OFSS-SL
also can obtain a promising results.

4) FURTHER ANALYSIS
All of the algorithms in our experiments implemented
the same classifiers (SVM). In MSS-MVSL, we apply

FIGURE 15. Classification accuracy versus the number of training samples
obtained by the MSS-MVSL technique with different verification classifiers
for Indian pines data sets. (a) Overall accuracy. (b) Average accuracy.

two verification classifiers and one base classifier and all of
them are SVM. However, it is important that the classifiers
considered in the module should be diverse, and their per-
formance should be complementary. Hence, we investigate
whether classifiers potentially contribute to improve the final
classification performance.
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TABLE 13. Computational Time of Labeling 900 unlabeled samples
(in seconds) Taken from OFSS-SL and MSS-MVSL Framework with
Respect to Different m and h Values on Indian pines data set.

TABLE 14. Computational time of labeling 900 unlabeled samples
(in seconds) taken from three compared algorithms on
the indian pines data set.

We apply Random forest (RF) [70] and Gradient Boost-
ing Decision Tree (GBDT) [71] as verification classifiers,
respectively. RF is a classifier constructed from an ensemble
of classification and regression trees (CART). It consists of
a combination of classifiers where each classifier contributes
with a single vote for the assignation of the most frequent
class to the input vector (x). Moreover, RF also can handle a
high-dimensional feature space with less computation, but it
is insensitive to noise in training samples. By contrast, GBDT
is a gradient boosting algorithm that utilizes decision stumps
or regression tress as weak classifiers, and it is generated
serially, which is sensitive to abnormal data. In terms of the
previous classification results, we set m = 40, h = 10 in
this group test and the model parameters of RF and GBDT
are the same. The results obtained on the Indian data sets
are shown in Fig. 14. We donate MSS-MVSL with two
SVM verification classifiers as MSS-MVSL(SVM), donate
MSS-MVSL with two GBDT verification classifiers as
MSS-MVSL(GBDT) and donate MSS-MVSL with two
RF verification classifiers as MSS-MVSL(RF). For every
framework, ten runs were executed.

We can observe that MSS-MVSL(SVM) consistently out-
performs MSS-MVSL(GBDT) and MSS-MVSL(RF). From
the table 14, we also observe that the largest computational
time is obtained with MSS-MVSL(GBDT). Although
the smallest computational time is obtained with MSS-
MVSL(RF), the accuracy of MSS-MVSL(RF) is the lowest.
Hence, we apply SVM classifiers as verification classifiers is
an promising choose.

VI. CONCLUSION AND FUTURE WORK
We proposed two novel algorithms OFSS-SL, MSS-MVSL
for hyperspectral image classification, which combine sec-
ondary screening algorithms and semisupervised learning in
a collaborative manner. In order to choose better secondary
screening algorithms for further study, we first investigated
different secondary screening algorithms on two data sets.
Then, we chose two different secondary screening algorithms
with excellent performance and implemented them in our

proposed framework. OFSS-SL exploits both the diversity
and representative information by applying unsupervised
secondary screening, meanwhile, excavating discriminative
information by assigning pseudolabels to the unlabeled data,
thereby gradually improving the classification performance
with the labeled data and the unlabeled data with pseudola-
bels. The main novelty of MSS-MVSL lies in its multiple
verification and the integration of multiple unsupervised sec-
ondary screening algorithms, which aims to ensure the qual-
ity of pseudolabels and complements each other. Differing
from the the traditional combination methods, we consider
the complementary characteristics of the secondary screen-
ing algorithms and mine the multiple validation information,
which makes the proposed technique more robust at the
initial stage. We have compared them with three state-of-
the-art methods by using three real hyperspectral data sets.
By comparison, we can observe that for all the considered
data sets, the proposed techniques consistently provide better
accuracy and stability.

In this framework, we utilize multiple check models
will cause multiple consumptions, and we apply a paral-
lel computing framework to simultaneously train model.
Hence, an important issue deserves to further investigate.
How to reduce computational cost when improve the ver-
ification procedure? We will utilize such as Spark MLlib
framework. Reference [72] and Apache Mahout technique.
Reference [73] to migrate the computational costs in the
future. We also plan to incorporate novel AL techniques into
our framework.
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