IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 21, 2019, accepted August 11, 2019, date of publication August 15, 2019, date of current version August 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2935504

Deep Temporal Convolutional Networks for
Short-Term Traffic Flow Forecasting

WENTIAN ZHAO!, YANYUN GAOZ, TINGXIANG JI', XILI WAN“1,
FENG YE'“3, AND GUANGWEI BAI'

!'School of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
2School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China
3Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH 45469, USA

Corresponding author: Xili Wan (xiliwan@njtech.edu.cn)

This work was supported in part by the National Nature Science Foundation of China under Grant 61602235 and Grant 61802176, and in
part by the Natural Science Foundation of Jiangsu Province of China under Grant BK20161007.

ABSTRACT To reduce the increasingly congestion in cities, it is essential for intelligent transportation
system (ITS) to accurately forecast the short-term traffic flow to identify the potential congestion sites.
In recent years, the emerging deep learning method has been introduced to design traffic flow predictors,
such as recurrent neural network (RNN) and long short-term memory (LSTM), which has demonstrated
its promising results. In this paper, different from existing work, we study the temporal convolutional
network (TCN) and propose a deep learning framework based on TCN model for short-term city-wide
traffic forecast to accurately capture the temporal and spatial evolution of traffic flow. Moreover, we design
the model with the Taguchi method to develop an optimized structure of the TCN model, which not only
reduces the number of experiments, but also yields high accuracy of forecasting results. With the real-world
traffic flow data collected from highways in Birmingham City of U.K., we compare our model with four deep
learning based models including LSTM models, GRU models, SAE models, DeepTrend and CNN-LSTM
models in terms of the mean absolute error (MAE) and mean relative error (MRE) regarding the actual flow
data. The experimental results demonstrate that our framework achieves the state-of-art performance with

superior accuracy in short-term traffic flow forecasting.

INDEX TERMS Deep learning, temporal convolutional networks, short-term forecasting.

I. INTRODUCTION

Intelligent Traffic System (ITS) [1] has become a powerful
approach for traffic control in cities. The accurate and timely
traffic condition information generated from ITS not only
allows residents in cities to make smart commuting decisions,
but also benefits traffic congestion relief in cities [2]. It is
essential to develop a predictor to forecast accurate traffic
flow condition for smart traffic operations and controls in
cities.

In general, traffic flow forecasting can be classified into
two categories, i.e., short-term and long-term traffic flow
forecasting. The long-term forecasting focuses on monthly
or yearly traffic flow forecasting which are useful for city
construction or transportation programming. The short-term
forecasting dedicates to real-time forecast of the potential
traffic flow for a short period time ahead, e.g. a few minutes.
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Its forecasting results are broadly used in traffic control,
congestion anticipation and so on. Since the performance of
ITS largely depends on the accuracy of real-time short-term
traffic flow prediction [3], short-term traffic flow forecasting
has been playing a significant role in ITS. In this paper,
we focuses on developing an accurate short-term traffic flow
predictor, which receives past traffic flow data within the
past short time and outputs the coming future traffic flow
information.

To achieve the high accuracy of traffic flow forecasting,
much work has been done on developing various predict-
ing methods and models for the traffic flow forecasting.
In general, previous studies on short-term traffic prediction
can be roughly divided into two categories, namely para-
metric approaches and non-parametric approaches. Autore-
gressive integrated moving average (ARIMA) model is
one of the typical parametric approach which is currently
widely recognized framework for traffic forecasting [4].
Ding et al. proposed a space-time autogressive integrated
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moving average (STARIMA) model to forecast the traffic
volume in urban areas [5]. Chen et al. proposed an autore-
gressive integrated moving average with generalized autore-
gressive conditional heteroscedasticity (ARIMA-GARCH)
model for traffic flow forecasting [6]. However, this type
of model is limited by its stationary assumption of time
sequences, i.e., it does not take the spatio-temporal correla-
tion into account for traffic flow prediction. Inevitably, this
method may lead to less accuracy when applied for short-term
traffic flow forecasting.

Another typical parametric method is to apply Kalman
filtering model. Adaptive Kalman filtering model has been
demonstrated to have the improved ability to adapt the
volatile traffic [3]. In fact, parametric approaches can achieve
good performance on traffic flow with regular variations.
However, the prediction bias becomes obvious when the traf-
fic shows irregular variations [7].

To avoid the drawback of the parametric approach,
researchers tried to seek non-parametric approaches for the
short-term traffic flow forecasting. Many techniques have
been applied or adapted from different disciplines, includ-
ing Support vector machine (SVM) [8], k-nearest neighbors
(K-NN) algorithm [9], neural network prediction [10]. Many
researchers have attempted to change the choices of the ker-
nel function and parameters for optimizing the SVMs [11],
such as chaos wavelet analysis SVMs [12], genetic algorithm
SVMs [13], novel wavelet-SVM [14] and single-step predic-
tion SVMs [15]. The results of these methods have shown
the superior performance of the non-parametric methods,
compared to traditional parametric methods.

In recent years, the emerging deep learning method, espe-
cially deep Convolutional Neural Networks (CNN), has
achieved great successful applications in traditionally hard
or intractable tasks, including object classification, image
recognition and natural language processing. Also, in the
domain of ITS, attentions have started to shift to utilize deep
learning based methods for traffic flow forecasting [16].

Some deep learning based methods have been proposed
on the short-term traffic flow forecasting and promising
results have been demonstrated. Lv et al. [17] first applied
a deep architecture model with stacked auto-encoder (SAE)
as building blocks to capture the nonlinear spatio-temporal
effects. Polson and Sokolov [16] proposed an deep learn-
ing architecture by combing a linear model fitted with [;
regularization and a sequence of tanh layers to predict the
short-term traffic flow. Although the deep learning technique
is applied in the above mentioned work, their experimental
results shows that the temporal-spatial correlation is not well
captured [16], [17]. Other variants of neural network have
been proposed for traffic forecasting, including feed forward
neural network [18], recurrent neural network (RNN) [19]
and long short-term memory (LSTM) [7]. Among these neu-
ral networks, LSTM [7], [20] has achieved the state-of-art
performance of short-term traffic flow forecasting in various
conditions [16], [21]. Dai et al. [22] proposed a DeepTrend
method which was improved by LSTM. Duan et al. [23]
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proposed a deep hybrid CNN-LSTM model which can
achieve higher prediction accuracy.

By the internal gating method, RNNs and its variants
rely on gated nonlinearities (e.g., LSTM, GRU) to model
deterministic hidden state which actually act as an inter-
nal memory in the model. Information are then propagated
through these hidden states. By this way, RNNs can represent
long-term dependencies in sequential data and demonstrated
their excellent performance in traffic flow forecasting.

However, RNNs and its variants, which are built on recur-
rent architectures, have been found empirically to have a lim-
ited span of attention and are difficult to interpret, although
they can capture latent temporal patterns. As shown from
both the empirical evaluation in [24] and theoretical under-
standing work in [25], RNNs and its variants are hard to
introspect and difficult to correctly train. Moreover, empir-
ical exploration work on RNNs has showed that a network
architecture for better results is not trivial to find [26]. These
issues inevitably affect RNNs and its variants to further
improve their performance when applying on traffic flow
forecasting.

Recent research results suggest that TCNs convincingly
outperform baseline recurrent architectures over a broad
range of sequence modeling tasks, including action segmen-
tation [27] and speech analysis and synthesis tasks [28], [29].
Our work is motivated by the recent success of temporal
convolutional network (TCN) on for these sequence mod-
elling tasks, since traffic flow forecasting falls into the task
of sequence modelling. Without utilizing recurrence archi-
tectures, these work on TCNs [27]-[29] has demonstrated
that TCN's not only achieve better performance and but also
reduce the computational cost for training, compared to that
of RNNs and its variants.

Distinct from previous convolutional architectures for
sequential data [28], [30]-[32], TCNs have the following dis-
tinguishing characteristics:

1) By stacking casual dilated convolutions, TCN is able to
have flexible receptive fields which can be scaled up as
large as the entire sequence length. Moreover, by aug-
menting with residual layers, dilated convolutions can
have longer effective history sizes. Combining residual
layers and dilated convolutions, TCNs can have much
longer memory and model longer time scales up to the
entire sequence [24].

2) Unlike RNN:s, there is no explicit temporal dependency
between predictions for adjacent timesteps and hence
the convolutions can be performed in parallel. Thus,
no matter for training or evaluation, TCNs can process
a long input as a whole sequence.

3) By introducing a hierarchy of temporal convolutional
filters, referred the temporal hierarchy, TCNs can cap-
ture long-range patterns. In particular, the sequence
information learnt from local layers is propagated
through the temporal hierarchy by residual block, while
the upper layers learn representations at a larger time
scale with access to longer input sub-sequences [33].
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The above summarized characteristics enable the TCNs
to have longer memory, large receptive 1Aeld size and the
ability to process the input sequence as a whole such that
the long-range patterns for traffic prediction with high accu-
racy can be captured. Thus, different from previous work,
we develop the TCN model for capturing the temporal and
spatial evolution features of traffic flow, aiming to build
short-term traffic flow predictor for cities. The main contri-
butions of this paper are summarized as the following:

1) We present a deep learning framework based on
the emerging temporal convolutional network without
relying on the recurrent architecture, where the stacked
casual dilated convolutions and the hierarchy of tempo-
ral convolutional filter are used to enable much larger
receptive fields and model longer time scales up to the
entire sequence such that the long-range patterns can
be captured. The framework not only achieves high
accurate forecasting result but also simpler and clearer,
compared to the state-of-art performance and neural
architecture.

2) Traditionally, the topology of a neural network is
determined by trial-and-error method, which is usu-
ally time-consuming and not efficient in yielding high
accuracy. To address this problem, we introduce the
Taguchi method in our framework as a new means of
determining optimal topologies of the Temporal Con-
volutional Networks (TCN), by utilizing an orthogonal
array to simultaneously study the significance of the
design factors of the proposed TCN model. Compared
with the commonly used trial-and-error network train-
ing method, the introduced Taguchi method not only
reduces the number of experiments to find an optimized
structure, but also yields high accuracy of forecasting
results.

3) Extensive experiments on real-world traffic flow data
trace collected from highways in Birmingham City
of U.K. are done to validate the effectiveness of our
deep learning framework for short-term traffic flow
forecasting. The experimental results shows that our
framework achieves the state-of-art performance with
superior accuracy in short-term traffic flow forecasting.

The remainder of this paper is organized as follows. Section II
describes the details of our proposed framework, including
the data acquisition, model training, and model evaluation.
Section III introduces the source of the traffic flow data and
explains the methodologies and designs used in this paper.
Section IV describes the experimental results and evaluates
the performance of the TCN model with an optimized struc-
ture. Finally the conclusion is given in Section V.

Il. THE OVERALL FRAMEWORK

The architecture of our deep learning framework is presented
in Figure 1. To successfully apply the deep learning model,
three phases are included in our framework, i.e., data acqui-
sition, model training, and model evaluation.
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FIGURE 1. The Architecture of the deep learning framework for
short-term traffic flow forecasting.

In our proposed framework, the traffic flow data is first
obtained and reprocessed to train the TCN model. The traffic
flow data is divided into two parts, training data and test-
ing data, which will be used for training and evaluation of
the TCN network, respectively. Moreover, the format of the
traffic flow data must be transformed to the input format of
TCN network. The TCN model is first built and trained with
the prepared training data. Then it is further optimized by
utilizing Taguchi method. In this phase, multiple modes of the
TCN model are trained by adjusting various configurations of
neural network parameters. Finally, the trained and optimized
network is evaluated by the testing data. With the predefined
evaluation metrics, the TCN model with the best performance
is selected for our framework.

A. DATA ACQUISITION AND PREPROCESSING

The dataset of the traffic flow for training the TCN model
in the propposed framework is obtained from the Road Side
Units (RSUs) [34] deployed in Birmingham City of United
Kingdom. According to the vehicle information obtained
by a RSU, the total number of vehicles at the intersection
is achieved every 15 minutes. As shown in Figure 2, each
rectangle represents the sum of vehicles passing through
the intersection in 15 minutes. Then the data preprocess-
ing is done as follows. We can divide the data set into
several groups, each of which contains five ground truths
and a predicted value. As shown in Figure 3, the list
{21,18,35,31,39,47,36,39,33,31,30,27, ... } is the initial traf-
fic flow data. The value of elements in this list represents
the total number of vehicles arriving at the intersection every
15 minutes. We set the first five value {21,18,35,31,39} in the
list as a group of ground truth and we will use this group of
ground truth to predict the sixth value of 47 in the list. Simi-
larly, the next group of ground truth is {36,39,33,31,30} and
the predicted value is 27. Then we can divide the processed
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FIGURE 3. An example of the data processing.

data into two parts, training data and testing data. Finally,
the training data can be sent to the TCN framework for train-
ing and the testing data can be sent to the TCN framework for
testing.

B. TEMPORAL CONVOLUTIONAL NETWORK MODEL
Before defining the network structure, we first describe a
generic architecture for convolutional sequence prediction
which is the key part of network. Suppose that we are given
a series of traffic flow data {xo,...,x7} and apply these
data to predict the traffic flow data {yo, ..., yr/ at the next
period time. Note that we are constrained to utilize the exist-
ing observed data {xg, ..., x;—1/ as the inputs to predict the
outputs y; for some time . A sequence modeling network
can be expressed as a function f: X7 — Y7 that defines the
following mapping

0o, ... yrh =f(xo, ..., x7) ey

If the function f satisfies the causal condition that y,
depends only on {xg,...,x;—1} rather than any ‘“future”
inputs {x;+1, ..., xr/}, we have the function f if we want to
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predict the traffic flow y, at time t,

- X1—1) @

In fact, the short-term traffic flow forecasting can be con-
sidered as the sequence modeling task. The goal of learning
the setting for the sequence modeling is to find a network f
that can minimize the expected loss between the actual data
and the prediction, i.e., L(y;,f(xo, ..., Xr—1)).

The temporal convolutional network (TCN) serves as the
core building block of the proposed deep learning framework.
Our TCN model is inspired and adapted from [27] which was
originally designed for action segmentation and detection.
Different from existing neural networks for short-term traffic
flow forecasting, the TCN has its outstanding characteristics.
First, the causal convolutions is utilized in the TCN, where
an output at time ¢ is convoluted only with the elements from
time ¢ and earlier in the previous layer. This characteristic
naturally corresponds the sequence prediction described in
above. The causal convolutions actually play a role of a filter
at time ¢ which can only see inputs no later than . This
leads to no information leakage from future to past [24]. Sec-
ond, the TCN uses a 1D fully-convolutional network (FCN)
architecture [35] to map an input sequence of any length to
an output sequence of the same length, where each hidden
layer is the same length as the input layer and zero padding is
added to keep the same length for the subsequent layers. This
gives our framework to handle a data sequence input with any
length.

However, to enable accurate the short-term traffic flow pre-
diction, it needs very deep networks and a long effective his-
tory size. This will definitely lead to a complicated network
structure and inevitably heavy computation. Alternatively,
dilated convolutions and residual layers are integrated in the
proposed TCN architecture. Particularly, dilated convolutions
enable an exponentially large receptive field [24]. Formally,
for a 1-D sequence input x € R and a filter f : {0, ...,k —
1} — R, the traffic flow F at time ¢ is defined as

);t =f('x0"'

FOy=GraD0=Y" fO-xai

where d is the dilation factor, & is the filter size, and t — d - i
indicates the direction of the past. The dilation factor is a
fixed step between every two adjacent filter taps. A dilated
convolution with dilation factor d = 1 actually is a regular
convolution. The receptive field of the TCN is adjusted by the
dilation factor. In our framework, d is adjusted exponentially
with the depth of the network, which ensures an extremely
large effective history. Consequently, the increase of dilation
enables the increase of the receptive field. This leads the
output at the top level to represent a wider range of inputs.
Note that filter size k can also be adjusted to increase the
receptive field of the TCN. An illustration from [27] is given
in Figure 4.

Another important component of TCN is the residual
connection [36], which contains a branch leading out to a
series of transformations F, whose outputs are added to the
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FIGURE 4. Architectural elements in a TCN:dilation factors d = 1,2,4 and
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FIGURE 5. TCN residual block.

input x of the block. The residual block for our TCN is
shown in Figure 5. Within a residual block, the TCN has
two weight layers, for which we used the rectified linear unit
(ReLU) [37]. In addition, a spatial dropout [38] is added after
the last weight layer for regularization. Formally, in this paper
we consider the residual block defined as:

y=Fx,W)+x 4)

Here y is the output vector of the layer considered. The func-
tion F(x, W;) represents the residual mapping to be learned,
where W; represents the weights of layer i. For the example
in Figure 5 which has two layers, 7 = Wyo(Wix) + e in
which o denotes ReLLU [37] and e is the bias.

Following the original TCN setting, the TCN architecture
for our framework is constructed based on [27] in this work.
Itis composited by a series of blocks, each of which contains a
sequence of L convolutional layers. Each layer is composited
by dilated convolutions, each of which is associated with a
dilation factor d, a non-linear activation f(.). Also, a residual
connection is added into each dilated convolution to integrate
the convolution result with the layer’s input. Let the activa-
tions for the ith layer and jth block be S € RFw*T Note the
number of filters F, in each layer i is the same. Let S; U and
S,(’ "D be the output of the dilated convolution at time ¢ and the
convolution result after the residual connection, respectively.
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Then we have

§UD = pawlsPlD L w2500 g

SO = g0 4 y§UD 4. 5)

I and W? are the weight parameters. V e RF»*Fv and
e € RPv are a set of weights and biases for the residual,
respectively.

The output of each block is summed by a group of
skip connection with Zt(o) € RT*Fw satisfying Zt(o) =
ReLU(YE | 81,

The latent result Z,(]) is ReLU (VrZ,(O) + e;) for the weight
matrix V, and the bias e,. Then the final forecasting result y;
for each time ¢ is

Vi = softmax(UZt(l) +¢). 6)

with weight matrix U € R(€*F») and bias ¢ € RC.

We choose the equation (7) as our model’s objective func-
tion. We keep training the data to minimize the value of L.
The value of y; represents the forecasting result at time i. The
value of F (i) represents the initial traffic flow at time i. When
we train the TCN model, we set the value of batch size to 128,
the value of epoch to 30, the value of dropout rate to 0.5 and
the value of initial learning rate to 0.002. In the course of
training, we adopt the method of stochastic gradient descent
to reduce the learning rate.

L=1%" Gi—FO” )

The overall model architecture follows nineteen convolu-
tional layers and one fully connected layer which is shown
in Figure 6. The rectangular area with yellow backgroud
in Figure 6 represents the convolutional layer which is shown
in Figure 4. The red rectangle in Figure 6 contains three
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TABLE 1. Model architectures.

Layer(type) Output Shape Connected to
input_layer (None, 6, 1)
initial_conv (None, 6, 12) input_layer[0][0]
dilated_conv_1 (None, 6, 12) initial_conv[0][0]
activation_1 (None, 6, 12) dilated_conv_1[0][0]
lambda_1 (None, 6, 12) activation_1[0][0]
spatial_dropoutld_1 (None, 6, 12) lambda_1[0][0]
convld_1 (None, 6, 12) spatial_dropout1d_1[0][0]
add_1 (None, 6, 12) conv1d_1[0][0]
initial_conv[0][0]
dilated_conv_2 (None, 6, 12) add_1[0][0]
add_19 (None, 6, 12) conv1d_1[0][0]
conv1d_2[0][0]
conv1d_3[0][0]
conv1d_18[0][0]
activation_19 (None, 6, 12) add_19[0][0]
lambda_19 (None, 6) activation_19[0][0]
dense_1 (None, 1) lambda_19[0][0]
output_dense (None, 1) dense_1[0][0]

yellow rectangle areas which represents the input of the
convolutional layerl. Moreover, the output of the convolu-
tional layerl can be used as the input of the convolution
layer3 directly through the residual structure which is shown
in Figure 5. For all convolutional layers, the kernel size is
10 and the filter size is 24. Detailed information is shown
in Table 1. In the next section, we will introduce a way to
vary the factors of the TCN model based on the Taguchi
method [39], to find the optimized structure of TCN model
for building short-term traffic forecasting predictor.

After building the TCN model, we can train the model
with the processed training data. The final TCN with the opti-
mized structure will be send to the central server, and predict
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the total number of vehicles at the intersection in the next
15 minutes based on the input of the historical traffic flow
data sequence. The central server then sends the signal timing
to the traffic signal control system through road side units,
as shown in the Figure 1.

Ill. DATA DESCRIPTION AND STRUCTURE OPTIMIZATION
In this section, we first describe the traffic flow data used for
our modeling training and evaluation in our framework. Then
we introduce the Taguchi method to our framework and show
how it is applied to optimize the structure of our TCN model.

A. DATA DESCRIPTION

We use the traffic flow data collected by loop detectors at
Birmingham City of United Kingdom, which is publicly
available on the website (https://data.gov.uk/). We extract the
traffic volume of days from 01 January 2014 to 31 Decem-
ber 2014 as the original data set. The traffic data are deployed
within the site M42 between M42 J1 and M5 J4A of England
with a frequency of 15 minutes, as shown in Figure 7 (the
intersection marked by the red circle). There are 35040 val-
idated records in total, which are divided into two subsets:
data from the first 9 months are used as the training dataset,
and the others are used as the test dataset.

B. TCN STRUCTURE OPTIMIZATION

WITH TAGUCHI METHOD

To apply the TCN for traffic flow forecasting, the key part is
to search the best topology of the neural network, i.e., param-
eters combinations, including the number of filters, the size
of the kernel, the list of the dilations and the number of stacks
of residual blocks. Traditionally, the topology of a neural
network is determined by trial-and-error method, which is
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TABLE 2. Identified design factors for structure optimization.

- . Level
Design factors 1 5 3
i The number of filters 6 12 24

il The size of the kernel 10 15 20
iii The list of the dilations listl | list2 | list3
The number of stacks

VI of residual blocks to use 2 6 9

usually time-consuming and not efficient in yielding high
accuracy, since it may involve a large number of trail exper-
iments. This motivated us to seek alternative efficient ways
rather than using traditional trial-and-error method.

Instead, The Taguchi method [39] has been successfully
applied for the robust design of high-quality products at low
cost for various manufacturing processes. Actually, we can
consider the determination of topologies of TCN model with
high accuracy as the product design with high quality at low
cost. Driven by this view, we apply the taguchi method as
a means of determining optimal topologies of our neural
network, by utilizing an orthogonal array to simultaneously
study the significance of the design factors of the proposed
TCN model. With this way, a small number of trials are only
conducted to optimize the structure of the proposed TCN
model which is trained with the training dataset. The trial
results indicates the difference between the predicted output
of our TCN model and the practical value. With these trial
results, we can efficiently evaluate the appropriate values of
the design factors with the designed performance metrics.
Then we can finally determine the topology of our TCN
model according to these evaluation results of the design fac-
tors. The structure optimization by Taguchi method involves
the following three parts, i.e., identifying the design factors,
determining performance metrics, trial design and perfor-
mance analysis.

1) IDENTIFICATION OF DESIGN FACTORS

The design factors identified for our TCN model and their
corresponding levels are presented in Table 2. These design
factors are selected since they largely involves the optimal
topology determination of the TCN model.

1) Design Factor i: The number of filters used in the
convolutional layers. The most commonly used number
of filters recommended by [24] for deep structure are 6,
12, and 24. In our work, we follow the practice of using
the same number of filters. 6, 12, and 24 are set as
Levels 1, 2, and 3, respectively.

2) Design Factor ii: The size of the kernel used in each
convolutional layer. In this work, we consider the size
of 10, 15, and 20 as Levels 1, 2, and 3, respectively.

3) Design Factor iii: The number of filters and the list
of the dilation. They are important since they deter-
mine the size of the TCN model. The listl rec-
ommended by [24] is {2°,2!,22232*}. In addition,
we set the list2 as {20212223 ... 2%} and the
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list3 as {1,2,3,...,9}. Therefore, we set listl, list2,
and list3 as Level 1, Level 2, and Level 3, respectively.

4) Design Factor iv: For the number of stacks of resid-
ual blocks, the minimum number of stacks is set as
2 by [40] and the maximum number of stacks suggested
by [41] is 9. Therefore, the number of 2, 6, and 9 are
set as Levels 1, 2, and 3, respectively.

2) SPECIFICATION OF PERFORMANCE MEASUREMENT

To evaluate the effectiveness of the TCN model for traf-
fic forecasting, we use two performance metrics, the mean
absolute error (MAE) and mean relative error (MRE), which
indicate the absolute and mean of the difference between the
actual traffic flow conditions and the outputs of the prediction
from the proposed framework, respectively. MAE and MRE
are formally defined as

N
MAE =Y (8)

_ 1 L
MRE =1 Zi:O‘ : ’ 9)

6 — ¢

2

where éi denotes the observed actual traffic flow condition,
¢; denotes the predicted traffic flow condition, and n is the
number of forecasted points. The lower value of MAE and
MRE indicates less difference between the actual flow and
the prediction result, i.e., the better accuracy of the prediction
result.

3) TRIAL DESIGN AND RESULTS ANALYSIS
Since there are four design factors, each of which has three
levels, we use an orthogonal array L;¢(3) for the trial design.
16 trails from the the combination of the design factors and
corresponding levels are executed to optimize the structure
of the proposed TCN. Each row of the adopted orthogonal
array L16(3*) corresponds to a main trail, in which the training
set of the collected traffic data is used to develop the TCN
model. With respect to the 16 main trails, the results for three
random days (Sept. 1, 2014; Sept. 2, 2014; Sept. 4, 2014) and
the average results of the testing set are shown in Table 3.
By utilizing the Taguchi method, there are 81 trials and
16 main trails executed over 5 days with the collected traf-
fic data, to assessment the performance of the TCN model.
As shown in Table 3, the 16th main trial (shown in bold)
with 24 filters, 2 stacks, a 15-size kernel and the dilation with
listl achieves the smallest MAE and MRE value. The top
three ranked trails are the 7th, 11th, and 16th main trials, all
the dilation of which are configured with list]l configuration.
This indicates that the TCN model with the list1 dilation can
achieve better predicted results than other two lists. Moreover,
the MAE and MRE results of 1st, 4th, and 5th main trials
perform poorly, which indicates that configuration with 6 fil-
ters and little size kernel cannot achieve accurate predication
results. Note that the prediction accuracy is affected by the
topology of the neural network. i.e., the combination of the
various tested parameters, although for some parameters it
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TABLE 3. Orthogonal array L;(3*) and experimental results.

. . Level Average results of 5 days(15% to 5t September 2014
Main Trials (————=1"c—— Day | MAE | MRE [~USCiEeIons, MRIYE( epten )

15¢ 68.713 | 0.799

1 1] 1] 1 1 [ 274 | 18.120 | 0.235 | 60.532 16 0.448 16
4™ 145082 | 0.122
15% 21.999 | 0.256

2 12| 2|2 [27@ 0.129 | 0.003 | 22.732 7 0.101 5
4R 3.682 | 0.048
15% 24323 | 0.283

3 113] 3] 3 [ 2% 1.397 | 0.031 | 25.258 10 0.111 8
4R 1.482 | 0.019
15 (7293602 | 0.344

4 1| 1| 2|3 /[2nd 5967 | 0.133 | 30.729 15 0.166 14
4R 8.239 | 0.107
15% 34211 | 0.398

5 1|1 |3 | 1][2nd 7.522 | 0.167 | 29.502 14 0.164 13
4R 2.617 | 0.034
15% 23394 | 0272

6 201 | 2| 3 [2nrd 1.874 | 0.042 | 20.937 4 0.105 7
4t 1.996 | 0.026
15t 16.302 | 0.190

7 212 | 1| 3 [27@ 1.248 | 0.028 | 20327 3 0.094 3
4R 4959 | 0.064
15% 34.157 | 0.397

8 2 13| 3|1 [2nd 1.771 0.039 | 28.398 11 0.147 11
4t 5.595 | 0.073
15¢ 29.517 | 0.343

9 201 | 3|3 [ 2nd 4285 | 0.095 | 28.499 12 0.163 12
4R 11.494 | 0.149
15t 19.632 | 0.228

10 2 13| 1|3 [27@ 1915 | 0.043 | 21.555 5 0.101 5
4R 3.415 | 0.044
15% 13.915 | 0.162

11 31311 2 [ 2nd 2.837 0.063 | 20.028 2 0.093 2
4R 4.821 0.063
157 39.960 | 0.465

12 3132 |1 [2nd 9739 | 0.216 | 28.754 13 0.198 15
4R 9.857 | 0.128
15% 1.487 | 0.017

13 3011 1 [ ond 5.183 | 0.115 | 21.784 6 0.095 4
4TR 9.102 | 0.118
15% 22775 | 0.265

14 311 2 1 ond 0.436 0.010 | 24.962 9 0.116 9
4T 5.315 | 0.069
15¢ 33.133 | 0.385

15 312 2|2 [2nd 4309 | 0.096 | 24.833 8 0.144 10
4R 2.674 | 0.035
1t | 20.201 | 0.235

16 3|21 |1 [27@ ] 0301 | 0.007 | 16.157 1 0.082 1
4th 1.816 | 0.024

seems reducing the sample numbers can decrease the predic-

tion accuracy in the trial result.

Since the combinations under the Taguchi method in each

trail are orthogonal, the effect for each design factor can be
separately evaluated [42]. For each design factor at a given
level, its effect can be calculated by taking the average of the
corresponding values from Table 3. For example, the Level 3
of the design factor /i is in the 3rd, 8th, 10th, 11th, and 12th
main trails, and its average effects of this level are 24.7986
(MAE) and 0.13 (MRE). The effects of each design factor at
each of the three levels are displayed in Table 4.

VOLUME 7, 2019

In addition, range analysis is applied to indicate the sensi-
tivity of the design factors to the performance values, which is
denoted by the difference between the largest and the smallest
performance values for each design factor. The sensitivity
results are shown in Table 4. The corresponding order of the
sensitivity of the four design factors is i > ii > iv > iii in
terms of MAE and i > ii > iv > iii in terms of MRE. The
above orders indicate that the design factor i is always the
primary factors in the proposed TCN forecasting model no
matter in terms of MAE or MRE, since the lower effect value
indicates better performance.
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TABLE 4. Effects and the sensitivity of each design factor.

Design factor - = MAE - - - MRE -
1 i il iv 1 il il v
Levell 33.7506 | 30.9921 | 26.7305 | 30.0127 | 0.198 | 0.1796 | 0.1522 | 0.1786
Level2 239432 | 21.0123 | 25.4912 | 22.531 0.122 | 0.1053 | 0.1383 | 0.1127
Level3 22.753 | 24.7986 | 27.9143 | 24.5508 | 0.1213 0.13 0.1463 | 0.1233
Sensitivity 10.9976 | 9.9798 2.4231 7.4817 | 0.0767 | 0.0743 | 0.0139 | 0.0659

TABLE 5. Performance of different methods.

Algorithm MAE MRE | Forecasting Accuracy
TCN 8.4257 | 0.0458 95.42%
LSTM 29.6075 | 0.1964 80.36%
GRU 36.0862 | 0.1922 80.78%
SAE 33.4104 | 0.1681 83.19%
DeepTrend 21.4055 | 0.1381 86.19%
CNN-LSTM | 245798 | 0.1403 85.97%

The results shown in Table 3 and Table 4 indicate the opti-
mized structure of the TCN model for short-term traffic flow
forecasting consists of the design factor i with Level 3, design
factor ii with Level 2, design factor iii with Level 2, and
design factor iv with Level 2. That is, the TCN model with 24
filters, 6 residual blocks’ stacks, the kernel size of 15 and the
list of the dilation is {20,21 2223 e 29} generates the most
accurate forecasting results among all the trail experiments.

IV. PERFORMANCE EVALUATION OF THE TCN MODEL
WITH AN OPTIMIZED STRUCTURE

In this section, we evaluate our TCN model with the structure
optimized by the Taguchi method for short-term traffic flow
forecasting.We conduct extensive experiments based on the
prepared traffic data set. To demonstrate the accuracy of
the TCN model, we compare it in terms of the MAE and
MRE performance metrics with another five widely applied
traffic flow predictors, which are the long short-term mem-
ory (LSTM), the Gated Recurrent Units (GRU), the Stacked
Auto-encoder (SAE), DeepTrend and the CNN-LSTM. Note
that the LSTM model achieves the state-of-the-art forecast-
ing result. Also, we calculate the forecasting accuracy rate
based on the the actual traffic flow data. The comparison
methods (or models) use their best performance. In detail,
in our experiments, we use the same training data to train the
comparison models. Also, the same testing data is applied
on the comparison methods to do the comparison on the
performance of the comparison models. All of these methods
are implemented in Python environment on a PC with Intel(R)
Core(TM) E5-2620 CPU, 62 GB memory and NVIDIAGTX
1080 GPU.

Table 5 shows the MAE and the forecasting accuracy rate
of the traffic forecasting with the TCN, LSTM, GRU, SAE,
DeepTrend, and CNN-LSTM models. The results shows
that the proposed TCN model generates much more accu-
racy results than that of the other models for the predic-
tion of the traffic flow. It is worth to mention that our
TCN model with the optimized structure is able to generate
the forecasting results with approximately 95% forecasting
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accuracy rate, which is 15% higher compared with the LSTM
and GRU models and 10% higher compared with the SAE,
CNN-LSTM and DeepTrend models.

Moreover, we can conclude that our TCN model achieves
much lower value in terms of the MAE and MRE perfor-
mance metrics, which indicates the superior forecasting per-
formance. In detail, the MAE result of 8.4257 from our TCN
model is even less than half of the MAE result of 29.6075
from the LSTM model, 24.5798 from the CNN-LSTM model
and 21.4055 from the DeepTrend model. What’s more,
the MAE result from our TCN model is even less than
one-fourth of the MAE result of 36.0862 from the GRU
model and 33.4104 from SAE model. From the MRE result,
similar conclusion can be made. The MRE result of 0.0458
from our TCN model is even less than one-third of the
MRE result of 0.1681 from the SAE model, 0.1403 from the
CNN-LSTM model and 0.1381 from the DeepTrend model.
In addition, the MRE result our TCN model is even less
than one-fourth of the MRE result of 0.1964 from the LSTM
model and 0.1922 from the GRU model.

Figure 9 presents the output of the TCN, LSTM, GRU,
SAE, DeepTrend, and CNN-LSTM models for traffic flow
forecasting for the day of 1% September 2014. The actual
traffic flow is also shown in Figure 9 with the blue line. As can
be seen in Figure 9, the forecasting traffic flow from our TCN
model is highly approximate to the actual data line, which
means the forecasting traffic flow result achieves similar
traffic pattern as the observed traffic flow behaves on that day.
In contrast, the forecasting performance of the LSTM, GRU,
SAE, DeepTrend, and CNN-LSTM shows large difference
and fluctuation from the actual traffic flow, compared to the
TCN model.

To further demonstrate the performance of our TCN model,
we present the difference between the actual data and fore-
casting output of the traffic flow over various days which
begin from Sept. 1th, Sept. 21th and Oct. 15th, 2014, and
the error percentage of the forecasting traffic flow results of
our TCN model, as illustrated in Figure 8 (a), (b), (c), (d), (e)
and (f), respectively. From the Figure 8 (a), (c) and (e), we can
see that the forecasting traffic flow line has almost approx-
imate with the actual data line except for a few individual
points, such as the point at 4" September 2014. The reason
for this phenomenon is that the traffic flow at that day has
changed dramatically, which may be caused by the weather
or the holiday.

Figure 8 (b), (d) and (f) further indicates the difference
between the actual data and our forecasting output. From the
Figure 8 (b), (d) and (f), we can see that most of the
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FIGURE 8. Performance evaluation of the TCN model.

percentage error of the forecasting traffic flow is limited
in about 5% except for the a few points with the dramatic
data fluctuation which may be caused by the weather or the
holiday. Since the severe weather conditions may cause the
burst (or unexpected) traffic flow, this experimental result
inspires us to consider the prediction with weather conditions
into our framework to address this issue. We leave this as our
future work and some discussion about it is presented in next
section.

In addition, we report the training time and the time for
prediction in practice. With our proposed Taguchi method,
we use almost half an hour to train the model to find the best
parameter configurations. Given all previous input sequen-
tial data, it only takes less than one second to output the
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forecasting data, when applying the trained model for traffic
flow prediction for the next time period.

To sum up, the proposed TCN model based deep learning
framework can achieve higher accuracy and much less fore-
casting difference, compared with the state-of-the-art LSTM
and typical GRU models. Therefore, with the evaluation on
the real data trace, our framework is demonstrated to be
more effective and promising for the short-term traffic flow
forecasting in practice than the existing forecasting models.

Driven by this, we will consider this as our future work
which is to design a traffic flow predictor with considering
these unusual situations on the basis of the proposed TCN
based prediction model in this work. We have noticed that
it is not common to have the unusual situations (e.g. severe
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weather conditions causes burst traffic flow) such that the
data-driven method used in this work may not perform very
well on the prediction in this kind of scenario, since less
unusual situations means less available data for training.

V. CONCLUSION AND FUTURE WORK

The short-term traffic flow forecasting is a critical problem in
Intelligent Traffic System. In this paper, different from pre-
vious work, we propose a deep learning framework based on
the Temporal Convolutional Network. Moreover, the Taguchi
method is adopted to improve the effectiveness of the design
of short-term traffic flow forecasting model. With the real
data trace, we compare our model with the LSTM model,
the GRU model, the SAE model, the DeepTrend model and
the CNN-LSTM model to validate that our model can achieve
superior forecasting results. The optimized structure of the
TCN found by the Taguchi method is demonstrated to have
much more improved performance over other methods. The
accuracy rate can reach as high as 95%. Our work demon-
strates that the TCN network can be served as a effective tool
for short-term traffic prediction in cities.

Driven by the experimental result in last section, we will
further improve our model on the basis of the proposed
TCN based prediction model in this work by considering
unusual situations such as severe weather conditions as our
future work. We have noticed that it is not common to have
the unusual situations (e.g. severe weather conditions causes
burst traffic flow) such that the data-driven method used in
this work may not perform very well on the prediction in
this kind of scenario, since less unusual situations means less
available data for training. Our basic idea to address this issue
is to build the predictor with the power of the unsupervised
learning techniques. Moreover, to design a comprehensive
traffic forecast, it can include travel time, traffic speed and
occupancy [7]. As a future work, we will consider the further
design of the TCN network to adapt the different format of
traffic data, and the heavy traffic flow fluctuation influenced
by the weather and holidays factors.
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