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ABSTRACT The face, an important part of the body, conveys a lot of information. When a driver is in a state
of fatigue, the facial expressions, e.g., the frequency of blinking and yawning, are different from those in
the normal state. In this paper, we propose a system called DriCare, which detects the drivers’ fatigue status,
such as yawning, blinking, and duration of eye closure, using video images, without equipping their bodies
with devices. Owing to the shortcomings of previous algorithms, we introduce a new face-tracking algorithm
to improve the tracking accuracy. Further, we designed a new detection method for facial regions based on
68 key points. Then we use these facial regions to evaluate the drivers’ state. By combining the features of
the eyes and mouth, DriCare can alert the driver using a fatigue warning. The experimental results showed
that DriCare achieved around 92% accuracy.

INDEX TERMS convolutional neural network, fatigue detection, feature location, face tracking.

I. INTRODUCTION
In recent years, an increase in the demand for modern trans-
portation necessitates a faster car-parc growth. At present,
the automobile is an essential mode of transportation for
people. In 2017, a total of 97 million vehicles were sold
globally, which was 0.3%more than that in 2016 [1]. In 2018,
the global total estimation of the number of vehicles being
used was more than 1 billion [2]. Although the automo-
bile has changed people’s lifestyle and improved the conve-
nience of conducting daily activities, it is also associated with
numerous negative effects, such as traffic accidents. A report
by the National Highway Traffic Safety Administration [3]
showed that a total of 7,277,000 traffic accidents occurred
in the United States in 2016, resulting in 37,461 deaths
and 3,144,000 injuries. In these accidents, fatigue driving
caused approximately 20% − 30% traffic accidents. Thus,
fatigued driving is a significant and latent danger in traffic
accidents. In recent years, the fatigue-driving-detection sys-
tem has become a hot research topic. The detection meth-
ods are categorized as subjective and objective detection.
In the subjective detection method, a driver must participate
in the evaluation, which is associated with the driver’s sub-
jective perceptions through steps such as self-questioning,
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evaluation and filling in questionnaires. Then, these data are
used to estimate the vehicles being driven by tired drivers,
assisting the drivers to plan their schedules accordingly.
However, drivers’ feedback is not required in the objective
detection method as it monitors the driver’s physiological
state and driving-behavior characteristics in real time [4].
The collected data are used to evaluate the driver’s level of
fatigue. Furthermore, objective detection is categorized into
two: contact and non-contact. Compared with the contact
method, non-contact is cheaper and more convenient because
the system that not require Computer Vision technology or
sophisticate camera allow the use of the device in more cars.

Owing to easy installation and low cost, the non-contact
method has been widely used for fatigue-driving detection.
For instance, Attention Technologies [5] and SmartEye [6]
employ the movement of the driver’s eyes and position of the
driver’s head to determine the level of their fatigue.

In this study, we propose a non-contact method called
DriCare to detect the level of the driver’s fatigue. Our method
employs the use of only the vehicle-mounted camera, making
it unnecessary for the driver to carry any on/in-body devices.
Our design uses each frame image to analyze and detect the
driver’s state.

Technically, DriCare addresses three critical challenges.
First, as drivers’ heights are different, the positions of their
faces in the video are different. Then, when the driver is
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driving, his or her head may be moving; hence, tracking the
trajectory of the head in time is important once the position
of the head changes. To monitor and warn the driver in
real-time, the use of the kernelized correlation filters (KCF)
algorithm [7] is preferred based on our system’s evaluation.

However, the KCF algorithm only uses a single
Felzenszwalb histogram of oriented gradient features [8],
which has poor face-tracking accuracy in a complex environ-
ment. Moreover, the KCF algorithm uses a manual method
to mark the tracked target in the frame. In the case of KCF
tracker cannot immediately retrieve the target, and it cannot
track the human face once the target leaves the detection area
and then returns.

Second, the driver’s eyes and mouth play a vital role in
tracking. Thus, identifying the key facial features of the driver
is important for judging driving fatigue. A previous study [9]
proposes a deep convolutional neural network for detecting
key points. Though some traditional models [9]–[11] can
detect the positions of several facial key points, they cannot
determine the regions of the driver’s eyes and mouth.

Third, defining the driver’s level of drowsiness is cru-
cial for our system. When people are tired, drowsiness is
evident on their faces. According to Walter [12], the rate
of the driver’s eye closure is associated with the degree of
drowsiness. Based on this principle, Grace et al. [13] pro-
posed PERCLOS (percentage of eyelid closure over the pupil
over time) and introduced Copilot to measure the level of the
driver’s fatigue. Constant yawning is a sign of drowsiness,
which may provoke the driver to fall asleep. Li et al. [14],
Abtahi et al. [15], and Fan et al. [16] used this feature to
estimate the level of the driver’s fatigue. However, practically,
the driver may have different and complex facial expressions,
which may distort the identification of these features.

Our core contributions are as follows:
• First, we propose a new face-tracking algorithm named
Multiple Convolutional Neural Networks(CNN)-KCF
(MC-KCF), which optimizes KCF algorithm. We com-
bine CNN with the KCF algorithm [17] to improve the
performance of the latter in a complex environment,
such as low light. Furthermore, we introduce the mul-
titask convolutional neural networks (MTCNN) [18] to
compensate for the inability of the KCF algorithm to
mark the target in the first frame and prevent losing the
target.

• Second, we use CNN to assess the state of the eye.
To improve the accuracy of CNN, DriCare measures
the angle of an opening eye to determine if the eye is
closed. To detect yawning, DriCare assesses the duration
of the mouth opening. Besides, DriCare proposes three
different criteria to evaluate the degree of the driver’s
drowsiness: the blinking frequency, duration of the eyes
closing, and yawning. If the results surpass the thresh-
old, DriCare will alert the driver of drowsiness.

The remainder of this paper is organized as follows.
We review the related research in Section II and present
the DriCare overview in Section III. Section IV presents

the principle of human face tracking based on the MC-KCF
algorithm. In Section V, we present the evaluation method for
the driver’s degree of drowsiness. We describe the DriCare
implementation method and present the results of the experi-
ment in Section VI. In Section VII, presents the conclusions
of this study.

II. RELATED WORK
In this section, we categorize the related work into three parts,
those related to the visual object tracking algorithm, the facial
landmarks recognition algorithm and those to the methods of
driver-drowsiness detection.

A. VISUAL OBJECT TRACKING
Visual object tracking is a crucial problem in computer
vision. It has a wide range of applications in fields such as
human-computer interaction, behavior recognition, robotics,
and surveillance. Visual object tracking estimates the target
position in each frame of the image sequence, given the
initial state of the target in the previous frame. Lucas and
Kanade [19] proposed that the tracking of the moving target
can be realized using the pixel relationship between adja-
cent frames of the video sequence and displacement changes
of the pixels. However, this algorithm can only detect the
medium-sized target that shifts between two frames. With
the recent advances of the correlation filter in computer
vision [7], [20]–[22], Bolme [20] proposed the Minimum
Output Sum of Squared Error (MOSSE) filter, which can
produce stable correlation filters to track the object. Although
the MOSSE’s computational efficiency is high, its algorithm
precision is low, and it can only process the gray information
of a single channel.

Based on the correlation filter, Li and Zhu [22] utilized
HoG, color-naming features and the scale adaptive scheme
to boost object tracking. Danelljan et al. [23] used HOG
and the discriminative correlation filter to track the object.
SAMF andDSST solve the problem of deformation or change
in scale when the tracking target is rotating. Further, they
solve the problem of the tracker’s inability to track object
adaptively and the low operation speed. With the develop-
ment of the deep-learning algorithm, some scholars combine
deep learning and the correlation filter to track the mobile
target [24]–[28]. Although these algorithms have better pre-
cision than the track algorithms based on the correlation filter,
their training is time-consuming. Hence, these algorithms
cannot track the object in real-time in a real environment.
In this study, we propose a MC-KCF algorithm based on the
correlation filter and deep learning. This algorithm uses CNN
andMTCNN to offset the KCF’s limitation and uses the KCF
to track objects. Thus, the algorithm can track the driver’s face
in real-time using our system.

B. FACIAL LANDMARKS RECOGNITION
The purpose of facial key-points recognition is that getting
the crucial information about locations of eyebrows, eyes, lips
and nose in the face. With the development of deep learning,
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it is the first time for Sun et al. [9] to introduced DCNN based
on CNN to detect human facial keypoints. This algorithm
only recognizes 5 facial keypoints, albeit its speed is very fast.
To get a higher precision for facial key points recognition,
Zhou et al. [11] employed FACE++which optimizes DCNN
and it can recognize 68 facial keypoints, but this algorithm
includes too much of a model and the operation of this algo-
rithm is very complicated. Wu et al. [29] proposed Tweaked
Convolutional Neural Networks (TCNN) which is based on
Gaussian Mixture Model (GMM) to improve different layers
of CNN. However, the robustness of TCNN depends on data
excessively. Kowalski et al. [30] introduced Deep Alignment
Network (DAN) to recognize the facial keypoints, which
has better performance than other algorithms. Unfortunately,
DANneeds vastmodels and calculation based on complicated
functions. So in order to meet the requirement about real
time performance, DriCare uses Dlib [31] to recognize facial
keypoints.

C. DRIVER DROWSINESS DETECTION
Driver drowsiness detection can be divided into two
types: contact approaches [32]–[34] and non-contact
approaches [5], [6], [35], [36]. In contact approaches, drivers
wear or touch some devices to get physiological parameters
for detecting the level of their fatigue. Warwick et al. [32]
implemented the BioHarness 3 on the driver’s body to collect
the data and measure the drowsiness. Li et al. [33] used a
smartwatch to detect driver drowsiness based on electroen-
cephalographic (EEG) signal. Jung et al. [34] reformed the
steering wheel and set an embedded sensor to monitor the
electrocardiogram (ECG) signal of the driver. However, due
to the price of contact approaches and installation, there are
some limitations which cannot be implemented ubiquitously.
The other method employs a tag-free approaches to detect the
driver drowsiness, where the measured object does not need
to contact the driver. For example, Omidyeganeh et al. [35]
used the driver’s facial appearance captured by the camera
to detect the driver drowsiness, but this method is not real-
time. Zhang and Hua [37] used fatigue facial expression
reorganization based on Local Binary Pattern (LBP) features
and Support Vector Machines (SVM) to estimate the driver
fatigue, but the complexity of this algorithm is bigger than
our algorithm. Moreover, Picot et al. [38] proposed a method
that uses electrooculogram (EOG) signal and blinking feature
for drowsiness detection. Akrout and Mahdi [39] and Oyini
Mbouna et al. [40] used a fusion system for drowsiness
detection based on eye state and head position. Different from
these methods, we employ simple formulae and evaluations,
which make the results easier to measure.

III. DRICARE OVERVIEW
The proposed system, DriCare, is built using a commercial
camera automobile device, a cloud server that processes
video data, and a commercial cellphone that stores the result.
Figure 1 shows the structure of the DriCare system. While
driving, the automobile’s camera captures the driver’s portrait

FIGURE 1. The architecture of DriCare.

FIGURE 2. System workflow.

and uploads the video stream to the cloud server in real-time.
Then, the cloud server analyzes the video and detects the
driver’s degree of drowsiness. In this stage, three main parts
are analyzed: the driver’s face tracking, facial key-region
recognition, and driver’s fatigue state. To meet the real-time
performance of the system, we use the MC-KCF algorithm
to track the driver’s face and recognize the facial key regions
based on key-point detection. Then, the cloud server esti-
mates the driver’s state when the states of the eyes and mouth
change. The workflow is shown in Figure 2. Finally, the cloud
server transmits the result to the driver’s cellphone and other
apps, throughwhich a warning tone is transmitted if the driver
is observed to be drowsy.

IV. DRIVER FACE TRACKING BY MC-KCF
In this section, we illustrate the principle of driver face
tracking using DriCare. Owing to the complexity of the
real environment, each frame of the video data requires
preprocessing to meet the tracking requirements.

A. PRE-PROCESS
During the detection process, the quality of images is affected
and features of the human face become unclear if the illumi-
nation intensity within the cab is changed during driving. This
usually occurs in case of overcast skylight, rain, and at night.
For detection accuracy, we use the illumination enhancement
method to preprocess images before tracking the driver’s
face. Furthermore, we use the histogram equalization (HE)
algorithm [41] to improve the brightness of the image frame.
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FIGURE 3. The result of histogram equalization.

FIGURE 4. The performance of original KCF and MC-KCF algorithm.

To determine whether light enhancement is required for the
image frame, DriCare evaluates the brightness of the image.
Therefore, we convert the RGB image into a YCbCr image
because in theYCbCr color space, Y represents the luminance
value. We use Eq. (1) for the mean value of Y M around the
driver’s face in the image as follows:

M =

∑n
i L

n− i
(1)

where L denotes the luminance value of each pixel in the
YCbCr space, and n and i represent the first and last serial
numbers of the driver’s facial pixels in the image, respec-
tively. n− i is the total number of driver’s facial pixels. IfM is
lower than the threshold, the image enhances the illumination
using the HE algorithm. Otherwise, the image is retained.
After counting large samples, we set the threshold to 60.
Figure 3 shows the result of the illumination enhancement.

B. THE PRINCIPLE OF MC-KCF
As previously discussed, the KCF algorithm is based on the
FHOG feature [7]. Therefore, in a complex environment and
during long-term operation, the tracking window will drift,
as shown in Figure 4(b). We propose the MC-KCF algorithm
instead of the original KCF algorithm to track a human
face. In the MC-KCF algorithm, a new feature comprises the
FHOG feature and is based on the KCF algorithm and CNN
feature. We will explain the principle of FHOG and CNN
feature execution and how these features are integrated.

1) FHOG FEATURE EXACTION
In our algorithm, the FHOG feature [8] is a key factor for
human-face tracking. To extract the FHOG feature and for
easy calculation, the image is grayed before commencing.
Then, we calculate the gradient G and gradient orientation

at each pixel α in the image as shown in Eq. (2):

Gx(x, y) = H (x + 1, y)− H (x − 1, y)
Gy(x, y) = H (x, y+ 1)− H (x, y− 1)

G =
√
Gx(x, y)2 + Gy(x, y)2

α = arctan(
Gx(x, y)
Gy(x, y)

) α ∈ (0◦, 360◦)

(2)

where H (x, y), Gx(x, y), and Gy(x, y) represent the pixel,
horizontal gradient, and vertical gradient values at (x, y),
respectively.

Then, we segment the image into n × n cells. Accord-
ing to [8], the gradient orientation is categorized into either
9 bins of contrast-sensitive orientations or 18 bins of
contrast-insensitive orientations. If any pixel in a cell belongs
to the corresponding orientation, the value of the orientation
bin increases 1. Finally, each cell has 9-dimensional and 18-
dimensional histograms.

The gradient of each cell is related to the internal pixels and
the 4 cells around it. After calculating the gradient histogram,
we use Eq. (3) and (4) for normalization and truncation.

Na,b(i, j) = (C(i, j)2 + C(i+ a, j)2

+C(i+ a, j+ b)2 + C(i, j+ b)2)
1
2 (3)

H(i, j) =


Tα(C(i, j)/N−1,−1(i, j))
Tα(C(i, j)/N+1,−1(i, j))
Tα(C(i, j)/N+1,+1(i, j))
Tα(C(i, j)/N−1,+1(i, j))

 (4)

In Eq. (3), C(i, j) denotes the 9- or 18-dimensional eigenvec-
tor of the cell at (i, j), Na,b(i, j) represents the normalization
factor and a, b represent that the number of different normal-
ization factors, a, b ∈ {−1, 1}. In Eq. (4), H(i, j) is a feature
vector, and Tα(x) denotes the truncated function. If the value
in x is bigger than α, the value is assigned to α.

After normalization and truncation, the 9-dimensional
feature vector becomes a 36-dimensional feature vector.
The 18-dimensional eigenvector becomes a 72-dimensional
feature vector; in total, there are 108-dimensional feature
vectors. Then, we arrange this eigenvector with reference to
the matrix of 4×27. Finally, we obtain 31-dimensional HOG
features, named the FHOG feature, using matrix addition.

2) CNN FEATURE EXACTED BY SQUEEZENET 1.1
SqueezeNet is a small CNN architecture [17] with very fast
operation. Figure 5 shows the architecture of SqueezeNet
1.1, which includes a standalone convolution layer (conv1),
3 max-pooling layers, 8 fire modules (Fire2− 9), a final con-
volution layer (conv10), and one global average pool layer.

SqueezeNet uses the fire module instead of the tradi-
tional convolution layer to reduce the network parameters
and improve accuracy. The fire module comprises a squeeze
convolution layer of 1 × 1 filters, feeding into an expand
layer with a mix of 1 × 1 and 3 × 3 convolution filters,
similar to that shown in Figure 6. Three tunable dimensions
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FIGURE 5. The architecture of SqueezeNet 1.1.

FIGURE 6. The architecture of Fire module.

are S1, e1, and e3. A feature map sized H ×W ×M becomes
H ×M × S1 by squeezing layer processing [17]. Processing
by expanding layer [17], we can obtain a feature map sized
H ×W × (e1 + e3).

3) MULTI-FEATURE FUSION
To avoid large and redundant CNN features, DriCare uses the
CNN feature obtained from the 1×1 convolution filter in the
expand layer of Fires 5 and 9 of the SqueezeNet model. After
conducting the feature extraction of aD1×G1 original image
using the MC-KCF algorithm, we obtain a FHOG feature
sized D2 × G2 and two CNN features sized D3 × G3 and
D4 × G4. Obviously, the sizes of the three features differ.
Therefore, we adjust them so that they have the same size.
Thus, the adjustment equation is written as follows:{

D = Da × θ
G = Ga × ϕ

(5)

where D and G denote the standard length and width, respec-
tively. Da and Ga represent the original length and width of
the three features, respectively. θ and ϕ are the scaling factors.

Similar to the structure of the KCF algorithm, in the
MC-KCF algorithm, we use each feature to train their clas-
sifiers separately using the kernel ridge regression, which is
written as follows [7]:

Eα = Êα = Ey(K+ λI)−1 =
Êy
ˆkxx + λ

(6)

where K is the kernel matrix, I denotes an identity matrix, Eα
represents the vector of coefficients αi, λ is a hyperparameter,

FIGURE 7. The face tracking result in different weights of features.

and Ey is the vector of regression targets. Moreover, a hat ˆ
denotes the DFT of a vector, and kxx is the first row of the
kernel matrix K.

After the training, we use each classifier to evaluate the
regression function f (z) for every image sample z. The biggest
value of f (z) is the forecasted position of the target for each
feature. The equation is as follows:

f (z) = F−1( ˆkxz � α̂) (7)

where F−1 denotes the inverse DFT. Thus, we obtain three
tracking results. To obtain the final result of the MC-KCF
algorithm, we set different weights for the result of three
features: δ1, δ2, and δ3. We calculate the entire response
value of the MC-KCF algorithm F using the weights and the
prediction positions based on FHOG and CNN features. The
formula is as follows:

F = δ1 × f (zfhog)+ δ2 × f (zfire5)+ δ3 × f (zfire9) (8)

In Eq. (8), the codomain of δ is [0, 1]. When one of δ = 0,
the response value of the corresponding feature is not the
final result; otherwise, when δ = 1, the response value of
the corresponding feature is the entire response value. From
the response value, we obtain the position of the driver’s face.
The different weights of the three features can influence the
tracking accuracy. Thus, we calculate 1000 weight ratios of
the three features. Figure (7) shows a representative ratio.
When the ratio of δ1 : δ2 : δ3 is 0.57 : 0.14 : 0.29, respec-
tively, the performance is optimal. In our system, the ratio is
0.57 : 0.14 : 0.29.
Therefore, the total dimension of the CNN features is 384,

bigger than the dimension of the original FHOG feature,
which is a 31-dimensional HOG feature. Since the modified
object is small in some frames, we update the model of every
N frame to increase the computing speed of the model and
improve the real-time performance of the system. We set N
value as 3. The whole process is shown in Figure (8).

4) CALIBRATION OF MC-KCF
As discussed above, the original KCF algorithm is unable
to automatically obtain the tracking target of the first video
frame. Besides the original KCF algorithm, in which the
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FIGURE 8. The process of MC-KCF algorithm.

object goes out of the camera’s sight, we align the MC-KCF
algorithm in case the algorithm is unable to track the driver’s
face. In Section III, the MTCNN algorithm uses the bounding
box to precisely determine the human face. Thus, we use
MTCNN to periodically calibrate the MC-KCF algorithm.

After preprocessing the video frame, the cloud severs will
judge whether the current image is the first frame. If it is,
the cloud server will use the MTCNN algorithm to locate
the human face in the image; otherwise, the cloud sever will
continue to judge whether the span of tracking time surpasses
10s. If the answer is yes, the cloud sever will use theMTCNN
algorithm to relocate the human face and reset the tracking
time. If the system evaluates that the current image is not
the first frame and the duration of the tracking time is less
than 10s, DriCare will use the MC-KCF algorithm to track
the driver’s face using the result to update the scope of the
search for the driver’s face for the next frame. We summarize
the MC-KCF calibration process in Algorithm 1.

V. EVALUATION OF THE DRIVER’S FATIGUE STATE
In this section, we discuss the method of analyzing the
driver’s face via the DriCare system in case of drowsiness.
Further, we discuss methods to locate the regions of the eyes
and mouth on the driver’s face. A change state of the eyes
and mouth is a crucial indicator of drowsiness. Additionally,
we discuss a new algorithm to detect the driver’s fatigue.

A. DETERMINATION OF EYES AND MOUTH REGIONS
In Section 4, we recognize and track the driver’s face in each
video frame. Then, we use Dlib [31] to locate 68 facial key
points on the driver’s face. The result is shown in Figure (9).
After obtaining the key points, we set the coordinate of each
key point as (xi, yi) and use the key points to locate the regions
of the eyes and mouth on the driver’s face.

1) THE REGION OF THE EYES
First, we offer the solution for locating the eyes’ regions.
From Figure 9, one eye has six key points. However, these
points are near the eyeball. By using these points to detect
the region of an eye, the region will not include the upper
and lower eyelids from the analysis, thereby influencing the
result of the subsequent evaluation. Therefore, we use the key

Algorithm 1 Calibration of MC-KCF Algorithm
Input: frame of the video fram, the span of the tracking

time t , the count number of frames cnt , the number of all
framesframs

Output: the result of human face tracking res_img
Load fram, set t is 0 and cnt is 0
while t 6 10s and cnt 6 frams do
if the current frame is the first frame then

Use MTCNN algorithm to detect a human face
else if MC-KCF algorithm cannot detect a human face
then

Use MTCNN algorithm to detect a human face
else

Use MC-KCF algorithm to detect a human face
t ++
cnt ++
Output the result res_img
Update the scope of the detection
Read the next frame

end if
end while
if t == 10s then
UseMTCNN algorithm to align the MC-KCF algorithm
(use MTCNN algorithm to detect human face) in the
current frame
Output the result res_img
Update the scope of the detection
t = 0
cnt ++

end if
Read the next frame

points of the eyebrow and nose to define the scope of the eye
and eye socket. The equation is as follows:

lex =
xi + xj

2
ley = ym +

yn − ym
4

(9)

In Eq. (9), xi and xj represent the X coordinate of the ith and jth
key points, respectively. yn and ym represent the Y coordinate
of the nth and mth key points, respectively. lex and ley denote
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FIGURE 9. The numbering of facial key points.

FIGURE 10. The ratio of mouth’s width and height in different states.

TABLE 1. The calculation parameters of the position of the two eyes.

the vertices’ coordinates of the rectangular region of the eye.
In our system, according to Fig. 9(b), when i is Point 18, j is
Point 37.m is the point number, with the minimum value of Y
coordinate between Points 18 and 22. n represents the point
number with the minimum value of Y coordinate between
Points 38 and 39. As shown in Figure (10), we obtain the A
vertex of the left eye.

After we obtain the coordinate of the upper leftA and lower
right vertices of the region D, we determine the eye socket
region on the driver’s face based on rectangular symmetry.
Table 1 shows the calculation parameters of the position of
the two eyes.

B. EVALUATION OF THE DRIVER’S FATIGUE STATE
In this section, we discuss the principle of evaluating the
driver’s fatigue state. As shown in Figure 2, DriCare uses two
factors to evaluate the state of the driver’s fatigue: the states

FIGURE 11. The architecture of CNN.

of the eyes and mouth. Unlike other methods, we propose a
new assessment for the eyes state to achieve higher accuracy.
With CNN, we use the angle of the eyes to evaluate the eye
state. Moreover, we use the state of the single eye near the
camera to assess the state of the whole eye. Besides, DriCare
also measures the state of the mouth to judge if the driver
is yawning. After these assessments, DriCare merges these
results and evaluates the driver’s degree of drowsiness.

1) EYE STATUS RECOGNITION
a: RECOGNITION BASED ON CNN
We build a CNN to recognize the eight layers of the eye state.
Figure 11 shows the CNN architecture.

We use two convolutional layers and maximum pooling
layers to extract the feature based on the eye region. The
features are integrated by two full connection layers. Finally,
the results of the output are used to judge if the eye is open.
The number of neurons in the output layer is 1, and the
activation value is obtained using the sigmoid function as the
values are equal to or greater than 0, as shown in Eq. (10).

S(x) =
1

1+ e−x
(10)

In Eq. 10, the range of the result is in [0, 1]. During
training, the value of an open eye is 1, representing positive
samples, and the value of a closed eye is 0, representing
negative samples. A predicted value of greater than 0.5 in
the sigmoid activation function output represents the result
of open eyes; otherwise, it represents closed eyes.

b: RECOGNITION BASED ON ANGLE
Owing to the CNNdrawbacks (the accuracy of the eye closure
recognition by CNN is poor), we use the angle of the eye to
compensate for the CNN’s limitations regarding eye closure
recognition. After the CNN validates that the driver’s eye is
open, we use the angle of the eye to validate the result. A blink
is the process of the eye closing and opening. As discussed
in the previous section, we identify the eye region using the
video frame. As revealed in Fig. 12(a), we use the key points
in the eye region to assess the angle of the eye. The equation
is as follows:

dij =
√
(yj−yi)2 + (xj − xi)2

A = (arccos
d2ab + d

2
ac − d

2
bc

2× dab × dac
)/π × 180◦

(11)

In Eq. (11), dij is the distance between Points i and j. (xi, yi)
and (xj, yj) represent the coordinates of Points i and j in the

VOLUME 7, 2019 118733



W. Deng, R. Wu: Real-Time Driver-Drowsiness Detection System Using Facial Features

FIGURE 12. The state recognition for eye and mouth.

frame, respectively. In our system, (xi, yi) and (xj, yj) are the
two average coordinate values of two points in the eyelids.
A is the angle of the eye. When we obtain the result, if the
result is bigger than the threshold, DriCare will consider if
the state of the eye is opening, and vice versa. We analyze the
large number of samples. In the eye-closed state, the angle of
the eye is lower than 20◦. Therefore, we set the threshold at
20◦.

We assess the driver’s degree of fatigue from three per-
spectives based on the angle of the eye: (1) the proportion
of the number of closed-eye frames to the total number of
frames in 1 minute, (2) continuous time of eye closure, and
(3) frequency of blinking. According to [42], [43], when the
driver is awake, the proportion of closed-eye frames is less
than 30%.Moreover, the driver’s closure time for a single eye
is shorter when he or she is awake, so when the driver’s single
eye closure time exceeds 2s, the driver is considered fatigued.
Besides, when people are awake, they blink an average of
10 to 15 times per minute. However, when people are mildly
tired, the number of blinks increase; in case of severe fatigue,
the number of blinks will be lower because the eyes are closed
most of the time. To detect fatigue based on the frequency of
blinking, it is necessary to count the blinking frequency of the
eyes within 1 minute. If the blinking frequency is greater than
25 times/min or lower than 5 times/min, fatigue is indicated.

2) MOUTH STATUS RECOGNITION
For the detection of fatigued driving, the features of themouth
are important because when a driver is drowsy, continuous
yawns will occur. Therefore, DriCare uses these features to
measure the accuracy of evaluation. In Section 4, we obtain
some key points in the mouth to calculate the ratio of
the mouth’s width and height. The equation is rewritten as
follows: 

H =
√
(yr − ye)2 + (xr − xe)2

W =
√
(yu − yv)+(xu − xv)2

f =
H
W

(12)

In Eq. (12), f is the ratio of the mouth’s width and height in
one image frame. H represents the height of the mouth, and
W denotes the width of the mouth. (xr , yr ) is the coordinate
of the vermilion tubercle, and (xe, ye) is the lowest point in

FIGURE 13. The ratio of mouth’s width and height in different states.

the lower low lip. (xu, yu) and (xv, yv) are two coordinates of
the angulus oris. If f is larger than the threshold, DriCare will
consider that the driver is opening the mouth, and vice versa.
According to the measurement for a large number of samples,
in our paper, we set the threshold to 0.6.

In practice, the opening of the mouth may resemble
other situations, such as singing, speaking, and laughing.
These phenomena present the same results. To reduce errors,
we draw the diagram of curves using the width-height ratio
of the mouth obtained in each frame as shown in Figure (13).
From this illustration, when the driver is yawning, the mouth
will open continuously for a longer time, and the wave peaks
are wider. Otherwise, when the driver is speaking, the mouth
opens continuously for a shorter time, and the wave peaks are
narrower. Hence, we use Eq. (13) to calculate the duration
time ratio R of the opening mouth, which can discriminate
actions such as yawning and speaking. The equation is written
as follows:

R =
n
m
× 100% (13)

where m represents the number of frames for some time.
n is the number of the frame, and f exceeds the threshold.
According to [44], [45], we know that the whole yawning
process lasts for 7s in general, and the video frames, the f
of which is higher than the threshold, are approximately
3 ∼ 4s. Therefore, we set R to 50%. When judging whether
yawning occurs, we count the number of frames the ratio of
mouth-height to -width of which is higher than the threshold
of 7s. To determine the proportion of these frames, the total
number of detections should be greater than 50%. If this is
established, we consider the driver to be yawning. We count
the number of yawns in one minute and if the number of
yawns is more than two times per minute, the driver is said to
be drowsy.

However, according to [46], we can know that when driver
is a condition of boring or tedious activities that increased
yawning frequency. Hence, in order to eliminate the error,
we set weights for these features separately, and then we
account the total of weight, if the total of weight is higher than
the threshold, DriCare will consider the driver is drowsy.
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We summarize the entire detection process for DriCare in
Algorithm 2.

Algorithm 2 Fatigue Detection Algorithm for DriCare
Input: frames of the video
Output: Evaluation of the degree of driver fatigue

Load the frames of video
Assess the states of the eye and mouth
Calculate r the ratio of the frame of eye closure in 1 minute
and t a duration time of eye closure.
Calculate b the frequency of blinking and y the number of
yawning in 1 minute.
if r > 30% then
Wr = 1

end if
if t > 2s and is not yawning then
Wt = 1

end if
if b > 25 or b < 5 then
Wb = 1

end if’
if y > 2 then
Wy = 1

end if
Calculate T the total value of these weight. (T = Wr +

Wt +Wb +Wy)
if T > 2 then
The driver is drowsy

else
The driver is awake

end if

VI. EXPERIMENTS
A. DATASETS AND SETUP
Figure 14(a) shows a prototype of DriCare comprising a com-
mercial Qihu 360 camera and an Intel Core i7 CPUMacbook
Laptop at 2.5 GHZ and 16 GB memory to simulate the cloud
server. Figure 14(b) shows the system interface.

We use 10 volunteers to collect the video data captured by
the vehicle camera. Each volunteer simulates the drowsy and
clear driving states. Each video is 1-h long. For the evalu-
ation of drowsiness, we use the CelebA [47], YawDD [48]
dataset and volunteer video data to assess the performance of
DriCare.

We used Python 3.6, OpenCV 3.4, Tensorflow 1.8, and
Tkinter 8.6 to build the software environment required for our
experiments.

B. EXPERIMENTAL EVALUATION
We tested the DriCare performance and compared them with
other methods in the same condition.

1) PERFORMANCE OF MC-KCF
The Euclidean distance between the predicted and real values
of the target border is used to evaluate the performance of

FIGURE 14. Experimental environment and interface of the system.

FIGURE 15. The accuracy of face tracking in different environment.

the tracking algorithms. We compare the MC-KCF algorithm
with the other tracking algorithms using different scenarios.
The main test scenarios are fast motion, target disappears in
the field of vision, and target rotation. The average test results
in each scenario are counted as the final experimental results,
as shown in Figure15(a).

From Figure15(a), the MC-KCF algorithm demonstrates
the best tracking accuracy. In a complex environment,
the accuracy of MC-KCF is nearly 90%. Face tracking in the
driving environment is simpler than in other environments
because the driver’s face moves less and the speed is average.
Moreover, the face will be visible in the field of vision.
Figure 15(b) shows the results of the MC-KCF test per-
formance and other tracking algorithms, revealing that the
MC-KCF algorithm produces the best performance, with the
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TABLE 2. Comparison of other performances.

FIGURE 16. The comparison of eye state recognition method.

accuracy reaching approximately 95%., when the Euclidean
distance within 20px.

As shown in Table 2, we further compare the different
methods in terms of speed. Although the KCF algorithm
offers the highest speed, its accuracy is the worse than those
of MC-KCF and KCF + CNN. The MC-KCF algorithm has
the best accuracy for face tracking; its accuracy is nearly
20% more than that of the Struck algorithm; however, its
speed is slightly lower than that of KCF. The MC-KCF algo-
rithm can process 25 video frames per second, which meets
the requirement of our system. Thus, we consider that the
MC-KCF algorithm performs better and offers the practical
requirements for speed and accuracy.

2) PERFORMANCE OF DETECTION METHODS
For testing the performance of our evaluation algorithm,
we compare our method for evaluating the state of the eye
with other methods. Figure 16 shows the result, indicating
that the angle of eye opening is 95.2%, which is the highest
among the evaluated methods. Additionally, the closed-eye
recognition is the highest, at 93.5%. The success rate of
identifying a closed eye is significantly improved by our
method; it is 10% more than HoughCircle.

Figures 17(a) and (b) show that the recognition result of the
states of the eye and mouth during drowsiness and otherwise.
The horizontal axis represents the number of video frames;
and the left vertical axis represents the opening of the eyes,
wherein 1 represents the eye opening and 0 represents the
eye closing. The right vertical axis represents the ratio of
the height and width of the mouth. The experimental results
show that when the driver is awake, the blinking frequency
and eye-closing time are low. However, when the driver is

FIGURE 17. The recognition result of eye and mouth in different state.

TABLE 3. The performance in different environments.

tired, the blinking frequency and eye-closing time are high,
and sometimes, the driver will be yawning.

3) PERFORMANCE OF DRICARE
To test the performance of our system, wemeasure the system
in different experimental environments. The result is shown
in Table 3.

From Table 3, our system provides the best accuracy when
the cab is bright and the driver wears no glasses. If the
driver wears glasses and the driving environment is slightly
dim, the accuracy of fatigue driving is reduced. Regardless
of the environmental condition, the average accuracy of our
method is approximately 92%.However, the average process-
ing speed is 18fps when the environment is bright. When the
environment is dark, the speed is 16fps.

For now, there are not an image-based public driver
drowsiness recognition dataset can be used to estimated the
efficiency of our method. Therefore, we cannot compare the
effectiveness of DriCare with other methods [37]–[39] due
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TABLE 4. Comparison of results between DriCare and other
state-of-the-art methods.

to different datasets. So we compare our method with other
methods which are obtained from a video-based dataset. The
result are shown in Table 4.

Table 4 reveals that compared with existing methods such
as Zhang and Hua [37], Picot et al. [38] and Akrout and
Mahdi [39], the average accuracy of DriCare is better than
other methods, especially, the accuracy of DriCare is 11%
more than Picot et al. [38]. Thus, DriCare can meet our
requirements in terms of the estimation accuracy.

VII. CONCLUSION
We propose a novel system for evaluating the driver’s level
of fatigue based on face tracking and facial key point detec-
tion. We design a new algorithm and propose the MC-KCF
algorithm to track the driver’s face using CNN and MTCNN
to improve the original KCF algorithm. We define the facial
regions of detection based on facial key points. Moreover,
we introduce a new evaluation method for drowsiness based
on the states of the eyes and mouth. Therefore, DriCare
is almost a real-time system as it has a high operation
speed. From the experimental results, DriCare is applicable
to different circumstances and can offer stable performance.
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